Susceptibilidad a los antibióticos y genes de resistencia de aislados de Escherichia coli procedentes de truchas arco iris (Oncorhynchus mykiss) enfermas

  • Ahmet Murat Saytekin Harran University, Faculty of Veterinary Medicine, Department of Microbiology. Şanlıurfa, Türkiye
  • Muhammed Yaşar Dörtbudak Harran University, Faculty of Veterinary Medicine, Department of Fisheries and Diseases. Şanlıurfa, Türkiye
  • Hikmet Dinç Gaziantep Islam Science and Technology University, Faculty of Medicine, Department of Pharmacology. Gaziantep, Türkiye
  • Mehmet Demirci Kırklareli University, Faculty of Medicine, Department of Medical Microbiology. Kırklareli, Türkiye
  • Akın Yiğin Harran University, Department of Genetics, Faculty of Veterinary Medicine. Şanlıurfa, Türkiye
  • Emine Atçı Saytekin Harran University, Faculty of Arts and Science, Department of Biology, Şanlıurfa, Türkiye
Palabras clave: Acuicultura, sensibilidad a los antibióticos, E. coli, aislamiento, genes de resistencia

Resumen

Con el objetivo de aislar Escherichia coli de truchas infectadas en diferentes granjas, e investigar los perfiles de susceptibilidad a los antibióticos y los genes de resistencia a los antibióticos de estos aislados. Los procesos de identificación se llevaron a cabo de acuerdo con las directrices ISO 6887–3:2017 e ISO 16654:2001. La susceptibilidad antimicrobiana se probó de acuerdo con las directrices del Instituto de Normas Clínicas y de Laboratorio (CLSI). Las cepas resistentes a betalactamasas de espectro extendido (EBSL) se investigaron mediante el método de prueba de sinergia de doble disco modificado (MDDST). Se analizaron las regiones específicas de 15 genes mediante el sistema PCR en tiempo real. Como resultado, se realizaron 24 aislamientos a partir de diferentes tejidos pertenecientes a ocho de las 108 truchas enfermas. El mayor estado de resistencia fenotípica se encontró frente a penicilinas (ampicilina 100%, amoxicilina 91,67%) y cefalosporinas de primera generación (cefazolina 100%). La tasa de resistencia fenotípica a la amoxicilina–clavulánico, el ácido nalidíxico y la eritromicina fue del 83,33%, la de la tetraciclina del 75%, la de la ceftazidima, la ceftriaxona, la cefotaxima, la cefepima y la ciprofloxacina del 66,67%, la del trimetoprim–sulfametoxazol del 50%, y la del cloranfenicol y la gentamicina del 33,33%. La resistencia fenotípica a la amicaína y al imipenem se detectó a un nivel del 16,67%. Además, se detectó fenotípicamente la producción de ESBL en 12 (50%) de los 24 aislados de E. coli. La tasa más alta de genes resistentes a los antimicrobianos fue del 58,33% para tetA. Las regiones génicas de sull, ermB, ermF, qnrB, suIll, qnrS y tetB se detectaron en un 50%, 50%, 50%, 33,33%, 25%, 16,67% y 16,67% respectivamente. Ninguno de los aislados incluía la región génica de qnrA, qnrC, qnrD y qepA. Los genes productores de ESBL, blaTEM, blaCTX y blaSHV se detectaron en un 33,33%, 33,33% y 16,67% respectivamente. En conclusión, la contaminación del agua por E. coli puede causar infecciones entre los peces y aumentar la resistencia antimicrobiana del agente. Las cepas resistentes de E. coli no sólo pueden causar perjuicios económicos al crear pérdidas de rendimiento, sino que también pueden amenazar la salud humana al provocar infecciones en toda la cadena alimentaria.

Descargas

La descarga de datos todavía no está disponible.

Citas

Muir JF. Aquaculture and the environment: change and challenge In: Rosen D, Tel–Or E, Hadar Y, Chen Y, editors. Developments in plant and soil sciences. Proceedings of the 1st Rehovot Conference on Modern Agriculture and the Environment; 1994 Oct 2–6; The Hebrew University of Jerusalem, Rehovot (Israel): Springer Science + Business Media Dordrecht; 1997. p. 183–196.

Yüngül M, Karaman Z, Dörücü M. Karkamış Baraj Gölü’ndeki Yetiştiricilik Tesislerinin Su Ürünleri Mekanizasyonu Yönünden Araştırılması [Investigation of aquatic products mechanization aspects of aquaculture facilities in Karkamış Dam Lake]. Yunus Arş. Bül. [Internet]. 2016; 16(1):37–46. Turkish. doi: https://doi.org/gvdr35

Baydan E, Yurdakök, B, Aydın FG. Balıklarda antibiyotik kullanımı [Antibiotic Use in Fish]. Turkiye Klinikleri J. Vet. Sci. [Internet]. 2012 [cited 02 Feb. 2024]; 3(3):45–52. Turkish. Available in: https://goo.su/jW2kBT

Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquacult. [Internet]. 2019; 12(2):640–663. doi: https://doi.org/gjp2c9

Zdanowicz M, Mudryk ZJ, Perliński P. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet. Res. Commun. [Internet]. 2020; 44(1):9–18. https://doi.org/gvdr36

He S, Wang Q, Li S, Ran C, Guo X, Zhang Z, Zhou Z. Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis. Sci. China Life Sci. [Internet]. 2017; 60(11):1260–1270. doi: https://doi.org/gcrmbc

Das P, Horton R. Antibiotics: achieving the balance between access and excess. The Lancet [Internet]. 2016; 387(10014):102–104. doi: https://doi.org/gjtb8d

Manyi–Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules [Internet]. 2018; 23(4):795. doi: https://doi.org/gdrtzq

Sharafati–Chaleshtori R, Mardani G, Rafieian–Kopaei M, Sharafati–Chaleshtori A, Drees F. Residues of oxytetracycline in cultured rainbow trout. Pak. J. Biol. Sci. [Internet]. 2013; 16(21):1419–1422. doi: https://doi.org/gvdr37

Ayıkol S, Kutlu F, Dincer O, Aydın FG. Akuakültürde antibiyotik direnci ve biyofilmin rolü [Antibiotic Resistance in Aquaculture and the role of Biofilms]. Vet. Farm. Toks. Dern. Bult. [Internet]. 2020; 11(3):168–178. doi: https://doi.org/gvdr38

Muteeb G, Rehman T, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals [Internet]. 2023; 16(11): 1615. doi: https://doi.org/gvdr39

Tepe R, Kutlu B. Examination water quality of Karkamış Dam Lake. Turk Tarim–Gida Bilim Teknol. Derg. [Internet]. 2019; 7(3):458–466. Turkish. doi: https://doi.org/gvdr4b

Assefa A, Regassa F, Ayana D, Amenu K, Abunna F. Prevalence and antibiotic susceptibility pattern of Escherichia coli O157:H7 isolated from harvested fish at Lake Hayq and Tekeze dam, Northern Ethiopia. Heliyon [Internet]. 2019; 5(12):e02996. doi: https://doi.org/ggr4v3

International organization for standardization. ISO 6887–3:2017. Microbiology of the food chain — Preparation of test samples, initial suspension and decimal dilutions for microbiological examination — Part 3: Specific rules for the preparation of fish and fishery products. 2nd ed. Geneva (Switzerland): ISO; 2017. 16 p.

International organization for standardization. ISO 16654:2001. Microbiology of food and animal feeding stuffs — Horizontal method for the detection of Escherichia coli O157. Geneva (Switzerland): ISO; 2001. 13 p.

Vásquez–Garcia A, De Oliviera APSC, Mejía–Ballesteros JE, De Godoy SHS, Barbieri E, De Sousa RLM, Fernandes AM. Escherichia coli detection and identification in shellfish from southeastern Brazil. Aquaculture [Internet]. 2019; 504:158–163. doi: https://doi.org/gvdr4c

Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 19th Informational Supplement. Wayne (Pennsylvania, USA): CLSI; 2009; 149 p. (CLSI Supplement M100–S19).

Kaur J, Chopra S, Sheevani, Mahajan G. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. J. Clin. Diagn. Res. [Internet]. 2013; 7(2):229–233. doi: https://doi.org/gntw5m

Hassuna NA, Khairalla AS, Farahat EM, Hammad AM, Abdel–Fattah M. Molecular characterization of extended–spectrum β lactamase– producing E. coli recovered from community–acquired urinary tract infections in Upper Egypt. Sci. Rep. [Internet]. 2020; 10:2772. doi: https://doi.org/gmtgvx

Guillard T, Moret H, Brasme L, Carlier A, Vernet–Garnier V, Cambau E, De Champs C. Rapid detection of qnr and qepA plasmid–mediated quinolone resistance genes using real–time PCR. Diagn. Microbiol. Infect. Dis. [Internet]. 2011; 70(2):253–259. doi: https://doi.org/fqc3f2

Quiles MG, Menezes LC, Castro Bauab K, Gumpl EK, Rocchetti TT, Palomo FS, Carlesse F, Pignatari ACC. Diagnosis of bacteremia in pediatric oncologic patients by in–house real–time PCR. BMC Infect. Dis. [Internet]. 2015; 15(283). doi: https://doi.org/gb326c

Schmidt GV, Mellerup A, Christiansen LE, Ståhl M, Olsen JE, Angen Ø. Sampling and pooling methods for capturing herd level antibiotic resistance in swine feces using qPCR and CFU approaches. PLoS One. [Internet]. 2015; 10(6):e0131672. doi: https://doi.org/f7sb96

Mdegela RH, Mwakapeje ER, Rubegwa B, Gebeyehu DT, Niyigena S, Msambichaka V, Nonga HE, Antoine–Moussiaux N, Fasina FO. Antimicrobial use, residues, resistance and governance in the food and agriculture sectors, Tanzania. Antibiotics [Internet]. 2021; 10(4):454. doi: https://doi.org/gvdr4d

Matyar F, Eraslan B, Akkan T, Kaya A, Dinçer S. İskenderun Körfezi balıklarından izole edilen bakterilerde antibiyotik ve ağır metal dirençliliklerinin araştırılması [Antibiotic and Heavy Metal Resistance of Bacteria Isolated from Fishes of Iskenderun Bay]. Biyoloji Bilim. Araştırma Derg. [Internet]. 2009 [cited 02 March 2024]; 2(2):1–5. Turkish. Available in: https://goo.su/N5su

Akkan T, Özşavlı A, Dinçer S. Balık çiftliklerinin ekolojik tahribatina bir örnek: Bakterilerdeki antibiyotik dirençliliğine etkileri, İskenderun Körfezi [An Example of Ecological Damage in Fish Farms: Effects of Antibiotic Resistance in Bacteria, İskenderun Bay]. Anad. Doğ. Bilim. Derg. [Internet]. 2015 [cited 02 Feb. 2024]; 6(1):20–27. Turkish. Available in: https://goo.su/fxQor7m

Gufe C, Hodobo TC, Mbonjani B, Majonga O, Marumure J, Musari S, Jongi G, Makaya PV, Machakwa J. Antimicrobial profiling of bacteria isolated from fish sold at informal market in Mufakose, Zimbabwe. Int. J. Microbiol. [Internet]. 2019; 2019(1):8759636 doi: https://doi.org/gvdr4f

Zhang S, Lv L, Zhang Y, Zhang H, Yu X, Zhang S. Occurrence and variations of five classes of antibiotic resistance genes along the Jiulong River in southeast China. J. Environ. Biol. [Internet]. 2013 [cited 12 Dec. 2023]; 34(2):345–351. Available in: https://goo.su/mzwfwL

Ryu SH, Park SG, Choi SM, Hwang YO, Ham HJ, Kim SU, Lee YK, Kim MS, Park GY, Kim KS, Chae YZ. Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. Int. J. Food Microbiol. [Internet]. 2012; 152(1–2):14–18. doi: https://doi.org/dwtm43

Corona F, Martinez JL. Phenotypic resistance to antibiotics. Antibiotics [Internet]. 2013; 2(2): 237–255. doi: https://doi.org/gdm3q7

Saka HK, García–Soto S, Dabo NT, Chavarrias VL, Muhammad B, Ugarte–Ruiz M, Alvarez J. Molecular detection of extended spectrum β–lactamase genes in Escherichia coli clinical isolates from diarrhoeic children in Kano, Nigeria. PLoS One. [Internet]. 2020; 15(12):e0243130. doi: https://doi.org/gvdr4g

Publicado
2024-09-19
Cómo citar
1.
Saytekin AM, Dörtbudak MY, Dinç H, Demirci M, Yiğin A, Atçı Saytekin E. Susceptibilidad a los antibióticos y genes de resistencia de aislados de Escherichia coli procedentes de truchas arco iris (Oncorhynchus mykiss) enfermas. Rev. Cient. FCV-LUZ [Internet]. 19 de septiembre de 2024 [citado 19 de octubre de 2024];34(3):7. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/42766
Sección
Medicina Veterinaria