Efecto protector de Helichrysum plicatum sobre la inflamación de la proteína de choque termico y la apoptosis en la nefrotoxicidad inducida por gentamicina

  • Ismail Bolat Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
  • Kubra Asena Terim–Kapakin Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
  • Betul Apaydin Yildirim Atatürk University, Faculty of Veterinary Medicine, Departments of Biochemistry. Erzurum, Türkiye
  • Esra Manavoğlu Kirman Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
Palabras clave: Caspasa, gentamicina, Helichrysum plicatum, HSP, riñón, NOS

Resumen

La gentamicina (GM) es un antibiótico aminoglucósido de los más utilizado en el tratamiento de enfermedades infecciosas tanto en humanos como en animales. Sin embargo, la GM causa daños en muchos tejidos y órganos del cuerpo, especialmente en los riñones. Helichrysum plicatum (Hp), originaria de los Balcanes y Anatolia, es una planta utilizada en diversas enfermedades como la diabetes y los daños hepáticos y renales. En este estudio, se utilizaron ratas machos Spraque Dawley (n=36 y 200–250 g) las cuales se dividieron aleatoriamente en 6 grupos experimentales: Grupo 1: Control; recibieron solución salina normal (vía intraperitoneal –i.p.–), Grupo 2: Hp (100 mg·kg–1 día i.p.), Grupo 3: Hp (200 mg·kg–1 día i.p.), Grupo 4: GM (80 mg·kg–1 día i.p.), Grupo 5: GM 80 + Hp 100 (mg·kg–1 día i.p.), y Grupo 6: GM 80 + Hp 200 (mg·kg–1 día i.p.). A continuación, se recogieron muestras de tejido renal para su evaluación. Todos nuestros resultados mostraron que Hp (100 mg·kg–1 día) redujo los niveles de citoquinas proinflamatorias como IL–8, IL–6, y TNF–α, mientras que, aumentó el nivel de citoquina antiinflamatoria IL–10. También se observó que la Hp reducía las expresiones de la caspasa3, la NOS y las proteínas de choque térmico como la Hsp27 y la Hsp70. Con este estudio, hemos demostrado que la Hp probablemente debido a sus propiedades químicas tiene un efecto protector contra la nefrototoxicidad inducida por GM reduciendo los valores arriba indicados a valores normales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Becker B, Cooper MA. Aminoglycoside Antibiotics in the 21st Century. ACS. Chem. Biol. [Internet]. 2013; 8(1):105–15. doi: https://doi.org/f4jnqm

Jado JC, Humanes B, González–Nicolás MÁ, Camaño S, Lara JM, López B, Emilia C, García–Bordas J, Tejedor A, Lazaro A. Nephroprotective Effect of Cilastatin against Gentamicin–Induced Renal Injury In Vitro and In Vivo without Altering Its Bactericidal Efficiency. Antioxidants [Internet]. 2020; 9(9):821. doi: https://doi.org/gq5x84

Edeogu CO, Kalu ME, Famurewa AC, Asogwa NT, Onyeji GN, Ikpemo KO. Nephroprotective Effect of Moringa Oleifera Seed Oil on Gentamicin–Induced Nephrotoxicity in Rats: Biochemical Evaluation of Antioxidant, Anti–inflammatory, and Antiapoptotic Pathways. J. Am. Coll. Nutr. [Internet]. 2020; 39(4):307–315. doi: https://doi.org/ghj22w

Apaydin Yildirim B, Kordali S, Terim Kapakin KA, Yildirim F, Aktas Senocak E, Altun S. Effect of Helichrysum plicatum DC. subsp. plicatum ethanol extract on gentamicin–induced nephrotoxicity in rats. J. Zhejiang Univ. Sci. B. [Internet]. 2017; 18:501–511. doi: https://doi.org/gt5kh4

Medić B, Stojanović M, Rovčanin B, Kekić D, Škodrić SR, Jovanović GB, Vujović KS, Divac N, Stojanović R, Radenković M, Prostan M. Pioglitazone attenuates kidney injury in an experimental model of gentamicin–induced nephrotoxicity in rats. Sci. Rep. [Internet]. 2019; 9:13689. doi: https://doi.org/gmq9z2

Famurewa AC, Maduagwuna EK, Folawiyo AM, Besong EE, Eteudo AN, Famurewa OA, Fidelis EE. Antioxidant, anti‐inflammatory, and antiapoptotic effects of virgin coconut oil against antibiotic drug gentamicin‐induced nephrotoxicity via the suppression of oxidative stress and modulation of iNOS/NF‐ĸB/caspase‐3 signaling pathway in Wistar rats. J. Food Biochem. [Internet]. 2020; 44(1):e13100. doi: https://doi.org/gmdxg4

Ince S, Kucukkurt I, Demirel HH, Arslan–Acaroz D, Varol N. Boron, a Trace Mineral, Alleviates Gentamicin–Induced Nephrotoxicity in Rats. Biol. Trace Elem. Res. [Internet]. 2020; 195(2):515–524. doi: https://doi.org/gt5kh5

Galaly SR, Ahmed OM, Mahmoud AM. Thymoquinone and Curcumin Prevent Gentamicin–Induced Liver Injury by Attenuating Oxidative Stress, Inflammation and Apoptosis. J. Physiol. Pharmacol. [Internet]. 2014 [cited 12 Jan. 2024]; 65(6):823–832. Available in: https://goo.su/OJFZ0B7

Arjinajarn P, Chueakula N, Pongchaidecha A, Jaikumkao K, Chatsudthipong V, Mahatheeranont S, Orranuch N, Nipon C, Anusorn L. Anthocyanin–rich Riceberry bran extract attenuates gentamicin–induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Biomed. Pharmacother. [Internet]. 2017; 92:412–420. doi: https://doi.org/gbt6bb

Khaksari M, Esmaili S, Abedloo R, Khastar H. Palmatine ameliorates nephrotoxicity and hepatotoxicity induced by gentamicin in rats. Arch. Physiol. Biochem. [Internet]. 2021; 127(3):273–278. doi: https://doi.org/gt5kh6

Ali FEM, Hassanein EHM, Bakr AG, El–Shoura EAM, El–Gamal DA, Mahmoud AR, Abd–Elhamid TH. Ursodeoxycholic acid abrogates gentamicin–induced hepatotoxicity in rats: Role of NF–κB–p65/TNF–α, Bax/Bcl–xl/Caspase–3, and eNOS/iNOS pathways. Life Sci. [Internet]. 2020; 254:117760. doi: https://doi.org/gt5kh7

Adil M, Kandhare AD, Dalvi G, Ghosh P, Venkata S, Raygude KS, Bondhankar SL. Ameliorative effect of berberine against gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Ren. Fail. [Internet]. 2016; 38(6):996–1006. doi: https://doi.org/gmq9xj

Helal MG, Zaki MMAF, Said E. Nephroprotective effect of saxagliptin against gentamicin–induced nephrotoxicity, emphasis on anti–oxidant, anti–inflammatory and anti–apoptic effects. Life Sci. [Internet]. 2018; 208:64–71. doi: https://doi.org/gd6wcn

Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug. Deliv. Rev. [Internet]. 2009; 61(4):310–318. doi: https://doi.org/cwkf8q

Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones [Internet]. 2017; 22(3):319–343. doi: https://doi.org/f98bsc

Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals [Internet]. 2018; 11(1):2. doi: https://doi.org/gt5kh8

Gouda SAA, Aboulhoda BE, Abdelwahed OM, Abdallah H, Rashed L, Hussein RE, Sharawy N. Low–intensity pulsed ultrasound (LIPUS) switched macrophage into M2 phenotype and mitigated necroptosis and increased HSP 70 in gentamicin–induced nephrotoxicity. Life Sci. [Internet]. 2023; 314:121338. doi: https://doi.org/gt5kh9

Le TA, Hiba T, Chaudhari D, Preston AN, Palowsky ZR, Ahmadzadeh S, Shekoohi S, Cornett EM, Kaye AD. Aminoglycoside–Related Nephrotoxicity and Ototoxicity in Clinical Practice: A Review of Pathophysiological Mechanism and Treatment Options. Adv. Ther. [Internet]. 2023; 40(4):1357–1365. doi: https://doi.org/gtn572

Kalkan Y, Kapakin KAT, Kara A, Atabay T, Karadeniz A, Simsek N, Karakus E, Can I, Yildirim S, Ozkanlar S, Sengul E. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate. J. Mol. Histol. [Internet]. 2012; 43:603–613. doi: https://doi.org/gt5kjb

Mohamadi Yarijani Z, Najafi H, Shackebaei D, Madani SH, Modarresi M, Jassemi SV. Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed. Pharmacother. [Internet]. 2019; 112:108635. doi: https://doi.org/gt5kjc

Akaberi M, Sahebkar A, Azizi N, Emami SA. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind Crops Prod. [Internet]. 2019;138:111471. doi: https://doi.org/gt5kjd

Jovanović M, Drinić Z, Bigović D, Alimpić–Aradski A, Duletić–Laušević S, Šavikin K. In vitro and in silico predictions of antineurodegenerative properties of Helichrysum plicatum flower extract. Lekovite Sirovine. [Internet]. 2020; 40(1):45–51. doi: https://doi.org/gt5kjf

Vujić B, Vidaković V, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Composition, Antioxidant Potential, and Antimicrobial Activity of Helichrysum plicatum DC. Plants [Internet]. 2020; 9(3):337. doi: https://doi.org/gt5kjg

Güneş A, Kordali Ş, Turan M, Usanmaz Bozhüyük A. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Ind. Crops Prod. [Internet]. 2019; 137:208–213. doi: https://doi.org/gt5kjh

Iskender H, Dokumacioglu E, Terim Kapakin KA, Bolat I, Mokhtare B, Hayirli A, Yenice G. Effect of Oleanolic acid administration on hepatic AMPK, SIRT–1, IL–6 and NF–κB levels in experimental diabetes. J. Diabetes Metab. Disord. [Internet]. 2023; 22:581–590. doi: https://doi.org/gt5kjj

Kapakin KAT, Sahin M, Buyuk F, Kapakin S, Gursan N, Saglam YS. Respiratory tract infection induced experimentally by Ornithobacterium rhinotracheale in quails: effects on heat shock proteins and apoptosis. Rev. Méd. Vét. 2013: 164(3):132–140.

Dokumacioglu E, Iskender H, Yenice G, Kapakin KAT, Sevim C, Hayirli A, Saral S, Comakli S. Effects of astaxanthin on biochemical and histopathological parameters related to oxidative stress on testes of rats on high fructose regime. Andrologia [Internet]. 2018; 50(7):e13042. doi: https://doi.org/gmt9jz

Jaikumkao K, Pongchaidecha A, Thongnak L, Wanchai K, Arjinajarn P, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Amelioration of Renal Inflammation, Endoplasmic Reticulum Stress and Apoptosis Underlies the Protective Effect of Low Dosage of Atorvastatin in Gentamicin–Induced Nephrotoxicity. Plos One [Internet]. 2016; 11(10):e0164528. doi: https://doi.org/f9rt92

Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, Ernst A, Jones SA, Topley N, Jenkins BJ. IL–6 Regulates Neutrophil Trafficking during Acute Inflammation via STAT3. J. Immunol. [Internet]. 2008; 181(3):2189–2195. doi: https://doi.org/f3v2xb

Subramanian P, Anandan R, Jayapalan JJ, Hashim OH. Hesperidin protects gentamicin–induced nephrotoxicity via Nrf2/HO–1 signaling and inhibits inflammation mediated by NF–κB in rats. J. Funct. Foods [Internet]. 2015; 13:89–99. doi: https://doi.org/f64px2

Muthuraman A, Singla SK, Rana A, Singh A, Sood S. Reno–protective Role of Flunarizine (Mitochondrial Permeability Transition Pore Inactivator) against Gentamicin induced Nephrotoxicity in rats. Yakugaku Zasshi [Internet]. 2011; 131(3):437–443. doi: https://doi.org/b7n52p

Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, Varatharajan R, Jayachristy SA, Sundram K, Bahari MB. Effects of pre and post–treatments with dipyridamole in gentamicin–induced acute nephrotoxicity in the rat. Regul. Toxicol. Pharmacol. [Internet]. 2017; 84:35–44. doi: https://doi.org/gf4557

Aboubakr M, Abdelazem AM. Hepatoprotective effect of aqueous extract of cardamom against gentamicin induced hepatic damage in rats. Int. J. Basic Appl. Sci. [Internet]. 2016; 5(1):1–4. doi: https://doi.org/gt5kjk

Antunes Viegas D, Palmeira–de–Oliveira A, Salgueiro L, Martinez–de–Oliveira J, Palmeira–de–Oliveira R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. [Internet]. 2014; 151(1):54–65. doi: https://doi.org/f5rt8q

Kim YJ, Seok JH, Cheung W, Lee SN, Jang HH, Bae S, Le H. Effects of Helichrysum bracteatum flower extracts on UVB irradiation–induced inflammatory biomarker expression. Biomed. Dermatol. [Internet]. 2019; 3(1):9. doi: https://doi.org/gt5kjm

De Canha MN, Komarnytsky S, Langhansova L, Lall N. Exploring the Anti–Acne Potential of Impepho [Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front Pharmacol. [Internet]. 2020; 10:1559. doi: https://doi.org/gt5kjn

Kherbache A, Senator A, Laouicha S, Al–Zoubi RM, Bouriche H. Phytochemical analysis, antioxidant and anti–inflammatory activities of Helichrysum stoechas (L.) Moench extracts. Biocatal. Agric. Biotechnol. [Internet]. 2020; 29:101826. doi: https://doi.org/gt5kjp

Archana PR, Aleena J, Pragna P, Vidya MK, Abdul Niyas PA, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien EK, Veerasamy S, Bhatta R. Role of Heat Shock Proteins in Livestock Adaptation to Heat Stress. J. Dairy Vet. Anim. Res. [Internet]. 2017; 5(1):13-19 doi: https://doi.org/gt5kjq

Cheng M, Razzaque MS, Nazneen A, Taguchi T. Expression of the heat shock protein 47 in gentamicin‐treated rat kidneys. Int. J. Exp. Pathol. [Internet]. 1998; 79(3):125–132. doi: https://doi.org/dsgw28

Wang Z, Liu L, Mei Q, Liu L, Ran Y, Zhang R. Increased Expression of Heat Shock Protein 72 Protects Renal Proximal Tubular Cells from Gentamicin–induced Injury. J. Korean Med. Sci. [Internet]. 2006; 21(5):904-910. doi: https://doi.org/b8gcfh

Ohtani H, Wakui H, Komatsuda A, Satoh K, Miura AB, Itoh H, Tashima Y. Induction and intracellular localization of 90–kilodalton heat–shock protein in rat kidneys with acute gentamicin nephropathy. Lab. Invest. 1995; 72(2):161–165. PMID: 7853850.

Yamamoto S, Nakano S, Owari K, Fuziwara K, Ogawa N, Otaka M, Tamaki K, Watanabe S, Komatsuda A, Wakui H, Sawada K, Kubota H, Itoh H. Gentamicin inhibits HSP70‐assisted protein folding by interfering with substrate recognition. FEBS Lett. [Internet]. 2010; 584(4):645–651. doi: https://doi.org/fb45f7

Abdelrahman RS, Abdelmageed ME. Renoprotective effect of celecoxib against gentamicin–induced nephrotoxicity through suppressing NFκB and caspase–3 signaling pathways in rats. Chem. Biol. Interact. [Internet]. 2020; 315:108863. doi: https://doi.org/gt5kjr

Abd–Elhamid TH, Elgamal DA, Ali SS, Ali FEM, Hassanein EHM, El–Shoura EAM, Hemeida RAM. Reno–protective effects of ursodeoxycholic acid against gentamicin–induced nephrotoxicity through modulation of NF–κB, eNOS and caspase–3 expressions. Cell Tissue Res. [Internet]. 2018; 374(2):367–387. doi: https://doi.org/gfjhjs

Christo JS, Rodrigues AM, Mouro MG, Cenedeze MA, Simões MJ, Schor N, Higa EMS. Nitric oxide (NO) is associated with gentamicin (GENTA) nephrotoxicity and the renal function recovery after suspension of GENTA treatment in rats. Nitric Oxide [Internet]. 2011; 24(2):77–83. doi: https://doi.org/bk64f3

Dawood AF, Maarouf A, Alzamil NM, Momenah MA, Shati AA, Bayoumy NM, Kamar SS, Haidara MA, ShamsEldeen AM, Yassin HZ, Hewett PW, Al-Ani B. Metformin Is Associated with the Inhibition of Renal Artery AT1R/ET–1/iNOS Axis in a Rat Model of Diabetic Nephropathy with Suppression of Inflammation and Oxidative Stress and Kidney Injury. Biomedicines [Internet]. 2022; 10(7):1644. doi: https://doi.org/gt5kjs

Antar S, Al–Karmalawy AA, Mourad A, Mourad M, Elbadry M, Saber S, Khodir A. Protective Effects of Mirazid on Gentamicin–induced Nephrotoxicity in Rats through Antioxidant, Anti–inflammatory, JNK1/iNOS, and Apoptotic Pathways; Novel Mechanistic Insights. Pharm. Sci. [Internet]. 2022; 28(4):525–540. doi: https://doi.org/gt5kjt

Aslan M, Deliorman Orhan D, Orhan N, Sezik E, Yesilada E. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. Pllicatum capitulums in streptozotocin–induced–diabetic rats. J. Ethnopharmacol. [Internet]. 2007; 109(1):54–59. doi: https://doi.org/bjfw45

Publicado
2024-08-08
Cómo citar
1.
Bolat I, Terim–Kapakin KA, Yildirim BA, Manavoğlu Kirman E. Efecto protector de Helichrysum plicatum sobre la inflamación de la proteína de choque termico y la apoptosis en la nefrotoxicidad inducida por gentamicina. Rev. Cient. FCV-LUZ [Internet]. 8 de agosto de 2024 [citado 25 de diciembre de 2024];34(2):9. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/42556
Sección
Medicina Veterinaria