Calidad higiénica de los alimentos de origen animal y resistencia a los antibióticos de Escherichia coli en una región fronteriza de Argelia
Resumen
Los alimentos de origen animal como la leche y la carne tienen un alto valor nutricional y forman una parte importante de la dieta humana y animal, pero son difíciles de producir y muy perecederos. Además, si se descuidan las condiciones de producción y/o almacenamiento, el resultado será una pérdida socioeconómica significativa, ya sea por la pérdida de alimentos o por enfermedades causadas por el consumo y el tratamiento. Fue en este contexto que llevamos a cabo este estudio, para evaluar la calidad higiénica de la leche y la carne de vaca producidas y consumidas en una región fronteriza de Argelia. Se tomaron un total de 130 muestras de alimentos de origen animal (leche cruda de vaca, canales de oveja, carne de pollo y pavo) a nivel de granja, matadero y carnicería. Se enumeraron la flora aeróbica mesófila, los coliformes totales, los coliformes termotolerantes y Escherichia coli, y se evaluó la sensibilidad de las E. coli a ciertos antibióticos más comúnmente utilizados en medicina humana y veterinaria. Altos niveles de contaminación y cargas bacterianas que van desde 5,36×102 CFU·mL–1 para la leche, hasta 1,56×105 CF·cm–2 para la carne de ovino, algunos de nuestros alimentos son aceptables pero representan un peligro alimentario, y otros no son aceptables según las regulaciones. Se detectó un alto porcentaje de cepas multirresistentes y tasas de resistencia preocupantes, y si no se toman urgentemente las medidas necesarias en el contexto de “Una sola salud”, es probable que la situación empeore y la salud humana y animal se vea afectada.
Descargas
Citas
Moosavy MH, Kordasht HK, Khatibi S, Sohrabi H. Assessment of the chemical adulteration and hygienic quality of raw cow milk in the northwest of Iran. Qual. Assur. Saf. Crop Foods. [Internet]. 2019; 11(5):491–498. doi : https://doi.org/m7f2
Forsythe SJ. The Microbiology of Safe Food. 3rd ed. Hoboken (NJ, USA): Wiley–Blackwe;ll; 2020. 608 p.
FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum [Internet]. Rome: FAO; IFAD; UNICEF; WFP; WHO; 2023. 316 p. doi: https://doi.org/gtsdxk
Codex Alimentarius Commission. WHO Global strategy for Food Safety 2022–2030 – update of status. Joint FAO/WHO food standards programme. Forty–fourth Session [Internet]. Rome: FAO; WHO; 2023 [cited 08 Jan 2024]. 3 p. Available in: https://goo.su/DeErUzU
Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 25th Informational Supplement. Wayne (Pennsylvania, USA): CLSI; 2015; 231 p. (CLSI Supplement M100–S25)
International Organization for Standardization. ISO 17604:2015. Microbiology of the food chain—Carcass sampling for microbiological analysis. 2nd ed. Geneva (Switzerland): ISO; 2015. 13 p.
International Organization for Standardization. ISO 6887–1:2017. Microbiology of the food chain—Preparation of test samples, initial suspension and decimal dilutions for microbiological examination. Part 1: General rules for the preparation of the initial suspension and decimal dilutions. 2nd ed. Geneva (Switzerland): ISO; 2015. 26 p.
Guiraud JP. Microbiologie alimentaire. Paris: DUNOD; 1998. 652 p.
International Organization for Standardization. ISO 7218:2007. Microbiology of food and animal feeding stuffs—General requirements and guidance for microbiological examinations 3rd ed. Geneva (Switzerland): ISO; 2007. 66 p.
Marques de Sá JP. Applied Statistics Using SPSS, STATISTICA, MATLAB and R. 2nd ed. Helderberg (Germany): Springer; 2007. 505 p.
Ghazi K, Niar A. [Hygienic Quality of Cow Milk, in Various Bovine Breeds of Tiaret Area (Algeria)].Tropicultura. [Internet]. 2011 [cited 19 Dec 2023]; 29(4):193–196. French. Available in: https://goo.su/Az8AC
Aggad H, Mahouz F, Ahmed Ammar Y, Kihal M. [Assessment of milk hygienic quality in western Algeria]. Rev. Méd. Vét. [Internet]. 2009 [cited 19 Dec 2023]; 160(12):590–595. Available in: https://goo.su/tPrJOo1
Hamiroune M, Berber A, Boubekeur S. [Bacteriological quality of raw milk from local and improved cows in the region of Jijel and Blida (Algeria) and impact on public health]. Ann. Méd. Vét. [Internet]. 2014 [cited 8 Apr 2023]; 158(2):137–144. French. Available in: https://bit.ly/46MS9vf
Ministry of Commerce. Interministerial Decree of 2 Moharram 1438 corresponding to 4 October 2016, setting the microbiological criteria for foodstuffs. Official Journal of the Republic of Algeria [Internet]. 2017 [cited 19 Dec 2023]. 39:11–32. Available in: https://bit.ly/3NhGJsh
Fereja AB, Aboretugn NF, Bulti NQ. Determination of microbial hygiene indicators of raw cow milk in Assosa district, Ethiopia. J. Food Qual. [Internet]. 2023; 2023:6769108. doi: https://doi.org/m7jr
Mannani M, Ariri N, Bitar A. Microbiological and physicochemical quality of raw milk of Beni Mellal–Khenifra. Rocz. Panstw. Zakl. Hig. [Internet]. 2023;74(3):265–274. doi: https://doi.org/m7js
Bacigale SB, Ayagirwe RB, Mutwedu VB, Mugumaarhahama Y, Mugisho JZ, Nziku Z, Fofana M, Udomkun P, Mignouna J. Assessing milk products quality, safety, and influencing factors along the dairy value chain in eastern Democratic Republic of the Congo. Front. Sustain. Food Syst. [Internet]. 2023; 7:1105515. doi: https://doi.org/m7jt
Vignola CL; Fondation de technologie laitière du Québec. Sciences et technologie du lait. Montréal (Canada): Presses internationale Polytechnique; 2002. Chapitre 6, Classification des principaux microorganismes du lait; p. 89–91.
Guergueb N. The hygienic quality of raw milk intended for human consumption in Algeria: Meta–analysis. Rev. Cient. FCV–LUZ. [Internet]. 2024; 34(1):e34301. doi: https://doi.org/m7k5
Harhoura Kh, Boukhors KT, Dahmani A, Zenia S, Aissi M. Survey of hygiene in ovine slaughterhouses of Algiers region by bacteriological analysis of carcasses. Afr. J. Microbiol. Res. [Internet]. 2012 [cited 19 Dec 2023]; 6(22):4722–4726. Available in: https://goo.su/shSDFn8
Jaja IF, Green E, Muchenje V. Aerobic Mesophilic, Coliform, Escherichia coli, and Staphylococcus aureus counts of raw meat from the formal and informal meat sectors in South Africa. Int. J. Environ. Res. Public Health. [Internet]. 2018; 15(4):819. doi: https://doi.org/gdvt7j
Djenidi R. Étude de la contamination superficielle des carcasses ovines à l’aide d’examens bactériologiques au niveau de l’abattoir de Bordj Bou Arréridj [Study of surface contamination of sheep carcasses by bacteriological examinations at the Bordj Bou Arréridj slaughterhouse]. Rev. Agric. [Internet]. 2016 [cited 22 Dec 2023]; 7(2):47–56. Available in: https://goo.su/aAl0w
Nouichi S, Hamdi TM. Superficial bacterial contamination of ovine and bovine carcasses at El–Harrach slaughterhouse (Algeria). Eur. J. Sci. Res. [Internet]. 2009 [cited 19 Dec 2023]; 38(3):474–485. Available in: https://goo.su/Xf5y
El Hadef–El Okki S, El–Groud R, Kenana H, Quessy S. [Assessment of superficial contamination of bovine and ovine carcasses from the municipal slaughterhouse of Constantine]. Can. Vet. J. [Internet]. 2005 [cited 23 Dec 2023]; 46(7):638–640. Available in: https://goo.su/vs9S
Boudjerda D, Lahouel M. Virulence and antimicrobial resistance of Escherichia coli isolated from chicken meat, beef, and raw milk. Austral J. Vet. Sci. [Internet]. 2022; 54(3):115–125. doi: https://doi.org/m7nf
Guergueb N, Alloui N, Ayachi A, Bennoune O. Effect of slaughterhouse hygienic practices on the bacterial contamination of chicken meat. Sci. J. Vet. Adv. [Internet]. 2014 [cited 23 Dec 2023]; 3(5):71–76. Available in: https://goo.su/qI9uH6o
Fazza O, Favard Ennachachibi M, Ennassiri H, Hmyene A. Antibiotic susceptibility of β–Glucuronidase–Positive Escherichia coli isolated from poultry products in Morocco. Int. J. Food Sci. [Internet]. .2023; 2023:7862168. doi: https://doi.org/m7ng
Martínez–Vázquez AV, Mandujano A, Cruz–Gonzalez E, Guerrero A, Vazquez J, Cruz–Pulido WL, Rivera G, Bocanegra–García V. Evaluation of retail meat as a source of ESBL Escherichia coli in Tamaulipas, Mexico. Antibiotics. [Internet]. 2022; 11(12):1795. doi: https://doi.org/m7nh
Nobili G, La Bella G, Basanisi MG, Damato AM, Coppola R, Migliorelli R, Rondinone V, Leekitcharoenphon P, Bortolaia V, La Salandra G. Occurrence and characterisation of colistin–resistant Escherichia coli in raw meat in southern Italy in 2018–2020. Microorganisms [Internet]. 2022; 10(9):1805. doi: https://doi.org/m7nj
Ranasinghe RASS, Satharasinghe DA, Anwarama PS, Parakatawella PMSDK, Jayasooriya LJPAP, Ranasinghe RMSBK, Rajapakse RPVJ, Huat JTY, Rukayadi Y, Nakaguchi Y, Nishibuchi M, Radu S, Premarathne JMKJK. Prevalence and antimicrobial resistance of Escherichia coli in chicken meat and edible poultry organs collected from retail shops and supermarkets of North Western province in Sri Lanka. J. Food Qual. [Internet]. 2022; 2022:8962698. doi: https://doi.org/m7nk
Klaharn K, Pichpol D, Meeyam T, Harintharanon T, Lohaanukul P, Punyapornwithaya V. Bacterial contamination of chicken meat in slaughterhouses and the associated risk factors: A nationwide study in Thailand. Plos One. [Internet]. 2022; 17(6):e0269416. doi: https://doi.org/m7nm
Hossain MMK, Islam MS, Uddin MS, Rahman ATMM, Ud–Daula A, Islam MA, Rubaya R, Bhuiya AA, Alim MA, Jahan N, Li J, Alam J. Isolation, identification and genetic characterization of antibiotic resistant Escherichia coli from frozen chicken meat obtained from supermarkets at Dhaka city in Bangladesh. Antibiotics. [Internet]. 2022; 12(1):41. doi: https://doi.org/m7nq
Akermi A, Ould A, Aggad H. Bacteriological status of chicken meat in western Algeria. Lucr. Ştiinţ. Med. Vet. [Internet]. 2020 [cited 23 Dec 2023]; 53(2):5–13. Available in: https://goo.su/hytqH
Eyi A, Arslan S. Prevalence of Escherichia coli in retail poultry meat, ground beef and beef. Med Weter. [Internet]. 2012 [cited 23 Dec 2023]; 68(4):237–240. Available in: https://goo.su/Fd9VO
Fédération du Commerce et de la Distribution. Critères microbiologiques applicables à partir de 2020 aux marques de distributeurs, marques premiers prix et matières premières dans leur conditionnement initial industriel. France. [Internet]. 2020 [cited 19 Dec 2023]; 61 p. French. Available in: https://goo.su/CTwR
Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 15th informational supplement. Wayne (Pennsylvania, USA): CLSI; 2008. 22 p. (CLSI Supplement M100–S15).
Mshana SE, Sindato C, Matee MI, Mboera LEG. Antimicrobial use and resistance in agriculture and food production systems in Africa: a systematic review. Antibiotics. [Internet]. 2021; 10(8):976. doi: https://doi.org/gqdb26
Schar D, Sommanustweechai A, Laxminarayan R, Tangcharoensathien V. Surveillance of antimicrobial consumption in animal production sectors of low – and middle–income countries: Optimizing use and addressing antimicrobial resistance. PLoS medicine. [Internet]. 2018; 15(3):e1002521. https://doi.org/gpcwf7
Aberkane C, Messaï A, Messaï CR, Boussaada T. Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended–spectrum β–lactamase–producing isolates in broilers in east Algeria. Vet World. [Internet]. 2023; 16(3):449–454. doi: https://doi.org/mxzq
Dib AL, Chahed A, Lakhdara N, Agabou A, Boussena S, Ghougal K, Lamri M, Sana Kerrour N, Kadja L, Bouaziz A, Benmerzoug M, Ousaad L, Mezouani O, Moreno E, Espigares E, Gagaoua M. Preliminary investigation of the antimicrobial and mechanisms of resistance of Enterobacteria isolated from minced meat in the Northeast of Algeria: The case of butchers from Constantine. Integr. Food Nutr. Metab. [Internet]. 2019; 6:1–7. doi: https://doi.org/m7pw
Agabou A, Lezzar N, Ouchenane Z, Khemissi S, Satta D, Sotto A, Lavigne JP, Pantel A. Clonal relationship between human and avian ciprofloxacin–resistant Escherichia coli isolates in North–Eastern Algeria. Eur. J. Clin. Microbiol. Infect. Dis. [Internet]. 2016; 35(2):227–234. doi: https://doi.org/m7px
Furlan JPR, Gallo IFL, de Campos ACLP, Passaglia J, Falcão JP, Navarro A, Nakazato G, Stehling EG. Molecular characterization of multidrug–resistant Shiga toxin–producing Escherichia coli harboring antimicrobial resistance genes obtained from a farmhouse. Pathog. Glob. Health. [Internet]. 2019; 113(6):268–274. doi: https://doi.org/m7pz
Owoseni AA, Adigun TO, Asogbon OH, Atobatele BO, Adeleke OA, Nejo YT. Presence of antibiotic resistance genes in bacteria isolated from raw cow milk obtained from Bowen University Dairy Farm [Internet]. IOP Conference Series: Earth Environmental Science. International Conference on Sustainable Dairy Production; 2022 Nov 28 – Dec 01; Bowen University, Iwo (Nigeria). Bristol (GB): IOP Publishing Ltd; 2023. 10 p. doi: https://doi.org/m7p2
Hussein ND, Hassan JW, Osman M, El–Omari K, Kharroubi SA, Toufeili I, Kassem II. Assessment of the microbiological acceptability of white cheese (Akkawi) in Lebanon and the antimicrobial resistance profiles of associated Escherichia coli. Antibiotics. [Internet]. 2023; 12(3):610. doi: https://doi.org/m7p4
Worku W, Desta M, Menjetta T. High prevalence and antimicrobial susceptibility pattern of Salmonella species and extended–spectrum β–lactamase producing Escherichia coli from raw cattle meat at butcher houses in Hawassa city, Sidama regional state, Ethiopia. PLoS ONE. [Internet]. 2021. 17(1):e0262308. doi: https://doi.org/m7p5
Obaidat MM. Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp. Immunol. Microbiol. Infect. Dis. [Internet]. 2020. 70:101447. doi: https://doi.org/m7p6
Onohuean H, Igere BE. Occurrence, Antibiotic susceptibility and genes encoding antibacterial resistance of salmonella spp. and Escherichia coli from milk and meat sold in markets of Bushenyi district, Uganda. Microbiol. Insights [Internet]. 2022; 15:11786361221088992. doi: https://doi.org/m7p7
Rahman MA, Rahman AKMA, Islam MA, Alam MM. Antimicrobial resistance of Escherichia coli isolated from milk, beef and chicken meat in Bangladesh. Bangl. J. Vet. Med. [Internet]. 2017; 15(2):141–146. doi: https://doi.org/m7p9
Hemeg HA. Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi J. Biol. Sci. [Internet]. 2018; 25(5):928–931. doi: https://doi.org/m7qb
Asfaw T, Genetu D, Shenkute D, Shenkutie TT, Amare YE, Habteweld HA, Yitayew. Pathogenic bacteria and their antibiotic resistance patterns in milk, yoghurt and milk contact surfaces in Debre Berhan Town, Ethiopia. Infect. Drug Resist. [Internet]. 2023; 16:4297–4309. doi: https://doi.org/m7qc
Boudjerda D, Brugère H, Bibbal D, Lehouel M. Antibioresistance, phylogeny and virulence markers of Escherichia coli strains isolated from chicken meat commercialised in Jijel Area (east Algeria). Bulg. J. Agric Sci. [Internet]. 2016 [cited 19 Dec 2023]; 22(3):505–512. Available in: https://goo.su/IDkBi
Derechos de autor 2024 Sofiane Tamendjari, Khelaf Saidani, Lina Chaib, Hebib Aggad, Zoubir Bouzebda, Farida Afri Bouzebda
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.