Investigación patológica y bioquímica de los efectos de Silybum marianum contra el daño por metomilo en hígado de pollo
Resumen
En este estudio, el objetivo fue investigar los efectos protectores/preventivos y/o curativos del polvo de semillas de Silybum marianum contra la toxicidad del Metomil examinando algunos parámetros bioquímicos y cambios Hepáticos en pollos de engorde alimentados con alimentos y cambios patológicos en pollos de engorde a los cuales se les suministró alimento mezclado con Metomil y/o S. marianum. Para ello, se crearon 4 grupos diferentes, cada uno compuesto por 32 animales: grupo control (CONT), grupo Metomil (MET), grupo de semillas de S. marianum en polvo (SMT) y grupo de Metomil+Polvo de semillas S. marianum (MET+SMT). En la investigación, se añadió Metomilo al pienso en 20 ppm y 10 g·kg-1 de polvo de semilla de S. marianum. El período de prueba se planificó en 28 días y se realizaron necropsias semanales de los animales de cada grupo y se tomaron muestras para histopatología y bioquímica. En el estudio, se encontró que las actividades de las enzimas hepáticas y los valores de los marcadores de estrés oxidativo del tejido hepático GPx, MDA y SOD eran similares en los grupos CONT y SMT, pero estadísticamente más altos en el grupo MET. Los parámetros crecientes en el grupo MET+SMT fueron menores que en el grupo MET. El examen histopatológico de las secciones del hígado reveló hiperemia, sangrado, degeneración hidrópica y cambios grasos en los hepatocitos, necrosis focal, disociación de los cordones de estimulación, infiltración de células mononucleares en el área portal e hiperplasia en los conductos biliares. Se ha observado que S. marianum, administrado con fines preventivos/curativos, reduce el daño histopatológico y realiza una contribución positiva en todos los grupos. Segun los resultados de este estudıo, se concluyó que S. marianum se puede añadir a las dietas de aves de corral para disminuir los efectos adversos de residuos de Metomil o contaminaciones de Metomil.
Descargas
Citas
Kumar A, Thakur A, Sharma V, Koundal S. Pesticide residues in animal feed: status, safety and scope. J. Anim. Feed. Sci. Technol. [Internet]. 2019 [cited 23 Nov 2023]; 7(2):73–80. Available in: https://bit.ly/3Veyoce
Lin Z, Zhang W, Pang S, Huang Y, Mishra S, Bhatt P, Chen S. Current Approaches to and Future Perspectives on Methomyl Degradation in Contaminated Soil/Water Environments. Molecules [Internet]. 2020; 25(3):738. doi: https://doi.org/ggqw6t
Tiryaki O, CanhilaL R, Horuz S. [Use and risks of pesticides]. Erciyes Üniversitesi Fen Bilim. Enst. Derg. [Internet]. 2010 [cited 24 Jun 2023]; 26(2):154–169. Turkish. Available in: https://bit.ly/3xkttye
Nag SK, Raikwar MK. Persistent organochlorine pesticide residues in animal feed. Environ. Monit. Assess. [Internet]. 2011; 174:327–335. doi: https://doi.org/b23rbp
Van Scoy AR, Yue M, Deng X, Tjeerdema RS. Environmental fate and toxicology of methomyl. In: Whitacre D, editor. Reviews of Environmental Contamination and Toxicology, Vol. 222 [Internet]. New York: Springer; 2013. p. 93–109. doi: https://doi.org/f4g885
Özdemir Ö, Ateş MB, Ortatatli M, Terzi F, Tülay A, Hatipoğlu F, Ciftci MK. Dog massacre with pesticide for theft: methomyl poisoning. Kafkas Üniv. Vet Fak. Derg. [Internet]. 2019; 25(5):717–720. doi: https://doi.org/m244
Mansour SA, Ali AR, Mohamd RI. Ameliorating effect of green tea, sage, and their mixture against methomyl–induced physiological, biochemical, and histopathological alterations in male rats. Egypt. Pharm. J. [Internet]. 2018 [cited 15 Nov. 2023]; 17(3):223–236. Available in: https://bit.ly/3Xlmvnz
Internatıonal Programme On Chemıcal Safety (IPCS). Methomyl (EHC, 178, 1996). [Internet]. 1996 [cited 24 Jun. 2023]; 178 p. Available in: https://goo.su/CR5JLNq
Subapriya S, Vairamuthu S, Manohar BM, Balachandran C. Pathomorphological changes in thiram toxicosis in broiler chicken. Int. J. Poult. Sci. [Internet]. 2007; 6(4):251–254. doi: https://doi.org/cw5szv
Veltmann Jr J, Linton SS. Influence of dietary tetramethylthiuram disulfide (a fungicide) on growth and incidence of tibial dyschondroplasia in single comb White Leghorn chicks. Poult. Sci. [Internet]. 1986; 65(6):1205–1207. doi: https://doi.org/m246
El–Demerdash F, Attia AA, Elmazoudy RH. Biochemical and histopathological changes induced by different time intervals of methomyl treatment in mice liver. J. Environ. Sci. Health. [Internet]. 2012; 47(12):1948–1954. doi: https://doi.org/m247
Eren HB, Şar S. [Milk Thistle Plant: A Pharmacological and Folkloric Evaluation]. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. [Internet]. 2020;10(1):23–27. Turkish. doi: https://doi.org/m248
Ding T, Tian S, Zhang Z, Gu D, Chen Y, Shi Y, Zun S. Determination of active component in silymarin by RP–LC and LC/MS. J. Pharm. Biomed. Anal. [Internet]. 2001; 26(1):155–161. doi: https://doi.org/bjxh6v
Çelik AS, Kan Y. [Determination of Seed Yield, Silymarin and Fixed Oil Components of Virgin Mary Plant (Silybum marianum) Grown in Konya Ecological Conditions]. Selcuk J. Agr. Food Sci. [Internet]. 2013 [cited 18 Jun. 2023]; 27(1):24–31. Turkish. Available in: https://bit.ly/4aTJf0L
Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroenterol. [Internet]. 1998; 93(2):139–143. doi: https://doi.org/b3bmnv
Fraschini F, Demartini G, Esposti D. Pharmacology of Silymarin. Clin. Drug. investig. [Internet]. 2002 [cited 24 Jun 2023]; 22(1) Available in: https://wb.md/4c7TC20
European Pharmacopoeia. European Directorate for the Quality of Medicines & Healthcare (EDQM). Strasbourg, France: EDQM; 2002. 3:2425–2426
Luna L. Routine Staining Procedures. In: Manual of histologic staining methods of the Armed Forces, Institute of Pathology. 3rd Ed. New York: McGraw–Hill; 1968. p. 32–46.
Tuzcu M, Tuzcu N, Akcakavak G, Celik Z. Diagnosis of Sarcina ventriculi–derived haemorrhagic abomasitis in lambs by histopathology and real–time PCR. Acta Vet. Brno. [Internet]. 2022; 91(3):227–233. doi: https://doi.org/m25z
Ozdemır O, Ates MB, Akcakavak G. The effect of etanercept and anakinra on experimental type 2 diabetes pathology in rats. Acta Vet. Brno. [Internet]. 2021; 90(4):421–429. doi: https://doi.org/m252
Karatas O, Akcakavak G. Evaluation of local expressions of acute phase proteins in white muscle disease in lambs by the immunohistochemical method. Rev. Cient. FCV–LUZ. [Internet]. 2024; 34(1):1–7. doi: https://doi.org/m253
Meyerholz DK, Tintle NL, Beck AP. Common pitfalls in analysis of tissue scores. Vet. Pathol. [Internet]. 2019; 56(1):39–42. doi: https://doi.org/m254
Wang Z, Xu Y, Xu M, Lin Y, Yang S, Wen C, Wang X, Zhou Y, Zhang M. Effect on CYP450 isoforms activity of rats after acute methomyl poisoning. Int. J. Clin. Exp. Med. [Internet]. 2016 [cited 24 Jun. 2023]; 9(3):6490–6496. Available in: https://goo.su/Q2Rm
Aboushouk AA, Mehana E–SE, Oda SS, Hashem MA, El–Karim DRG. The protective role of thymol against methomyl–induced toxicity in male rats: clinico–biochemical, histopathological and immuno–histochemical studies. Slov. Vet. Res. [Internet]. 2021; 58(Suppl. 24):209–221. doi: https://doi.org/m26f
Krishnakumar T, Visvanathan R. Acrylamide in food products: a review. J. Food Process. Tech. [Internet]. 2014; 5(7):1000344. doi: https://doi.org/gj7czz
Gür FM, Aktaş İ. Silymarin protects kidneys from paclitaxel–Induced nephrotoxicity. Turkish JAF Sci. Tech. [Internet]. 2022; 10(3):452–458. doi: https://doi.org/m26g
Miguez M–P, Anundi I, Sainz–Pardo LA, Lindros KO. Hepatoprotective mechanism of silymarin: no evidence for involvement of cytochrome P450 2E1. Chem. Biol. Interact. [Internet]. 1994; 91(1):51–63. doi: https://doi.org/dd7z8q
Amacher D. A toxicologist's guide to biomarkers of hepatic response. Hum. Exp. Toxicol. [Internet]. 2002; 21(5):253–262. doi: https://doi.org/bxjt9g
El–Sheikh E–S, Mahrose K, Ismail I. Dietary exposure effect of sublethal doses of methomyl on growth performance and biochemical changes in rabbits and the protective role of vitamin e plus selenium. Egypt. J. Rabbit Sci. [Internet]. 2015; 25(1):59–81. doi : https://doi.org/m26h
Alvarenga RR, Zangeronimo MG, Pereira LJ, Rodrigues PB, Gomide EM. Lipoprotein metabolism in poultry. World's Poult. Sci. J. [Internet]. 2011; 67(3):431–440. doi: https://doi.org/d84mrg
Muriel P, Mourelle M. Prevention by silymarin of membrane alterations in acute CCI4 liver damage. J. Appl. Toxicol. [Internet]. 1990; 10(4):275–279. doi: https://doi.org/cbvm3p
Chawla Y, Radha NS, Jang KD, Dilawari B. Portal hemodynamics by duplex Doppler sonography in different grades of cirrhosis. Dig. Dis. Sci. [Internet]. 1998; 43:354–357. doi: https://doi.org/czc684
Kazemifar AM, Hajaghamohammadi AA, Samimi R, Alavi Z, Abbasi E, Asl MN. Hepatoprotective property of oral silymarin is comparable to n–acetyl cysteine in acetaminophen poisoning. Gastroenterol. Res. [Internet]. 2012; 5(5):190–194. doi: https://doi.org/ggj5s7
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. [Internet]. 2012; 5(1):9–19. doi: https://doi.org/fzvnsw
El–Khawaga O. Role of selenium on antioxidant capacity in methomyl–treated mice. J. Physiol. Biochem. [Internet]. 2005; 61(4):501. doi: https://doi.org/c76czz
Mansour SA, Mossa A–TH, Heikal TM. Effects of methomyl on lipid peroxidation and antioxidant enzymes in rat erythrocytes: in vitro studies. Toxicol. Ind. Health. [Internet]. 2009; 25(8):557–563. doi: https://doi.org/bf6hms
Kaliwal B, Manawadi S. Methomyl induced alteration in mice hepatic–oxidative status. Int. J. Biotechnol. Appl. [Internet]. 2010; 2(2):11–19. doi: https://doi.org/m26j
Szymonik–Lesiuk S, Czechowska G, Stryjecka–Zimmer M, Słomka M, MĄldro A, CeliŃski K, Wielosz M. Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J. Hepato–biliary Pancreat. Surg. [Internet]. 2003; 10(4):309–315. doi: https://doi.org/dwjjpg
Süloğlu AK, Girgin G, Selmanoğlu G, Balcı S, Baydar T. Possible effects of lycopene and silymarin on rat liver functions and oxidative stress markers. Turk. J. Biochem. [Internet]. 2014; 39(3)344–350. doi: https://doi.org/m26k
Kocaman N, Dabak DÖ. A hepatoprotective agent: Silymarin. Firat Med. J. [Internet]. 2015 [cited 24 Oct. 2023]; 20(3):128–132. Turkish. Available in: https://goo.su/kQmLHh
Ighodaro O, Akinloye O. First line defence antioxidants–superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. [Internet]. 2018; 54(4):287–293. doi: https://doi.org/gfwf8f
Djeffal A, Messarah M, Boumendjel A, Kadeche L, Feki AE. Protective effects of vitamin C and selenium supplementation on methomyl–induced tissue oxidative stress in adult rats. Toxicol. Ind. Health. [Internet]. 2015; 31(1):31–43. doi: https://doi.org/f6zcvv
Mansour SA, Abbassy MA, Shaldam HA. Zinc ameliorate oxidative stress and hormonal disturbance induced by methomyl, abamectin, and their mixture in male rats. Toxics. [Internet]. 2017; 5(4):37. doi: https://doi.org/gmz86g
Debnath D, Mandal TK. Study of quinalphos (an environmental oestrogenic insecticide) formulation (Ekalux 25 EC)‐induced damage of the testicular tissues and antioxidant defence systems in Sprague‐Dawley albino rats. J. Applied. Toxicol. [Internet]. 2000; 20(3):197–204. doi: https://doi.org/bmc865
Mansour SA, Mohamed RI, Ali AR. Which exposure period to selenium is more protective against hepato–renal toxicity of methomyl in male rats. J. Biochem. Int. [Internet]. 2015 [cited 24 Oct. 2023]; 2(3):105–118. Available in: https://goo.su/OYZ7igc
Kumaş M, Eşrefoğlu M, Özer ÖF. Protective Effects of Silymarin against Cardiac Tissue Injury Caused By a High–dose Administration of Isotretinoin in Mice. Bezmialem Sci. [Internet]. 2016; 4(2):43–50. doi: https://doi.org/m26m
Derechos de autor 2024 Bahadır Kilinc, Ertan Oruc
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.