Ácidos grasos, índices lipídicos de salud y actividades enzimáticas en el musculo longissimus thoracis, de seis razas de corderos producidos sobre pasturas en el norte de Uruguay
Resumen
Se determinó la composición en ácidos grasos de los glicerolípidos y glicerofosfolípidos del músculo longissimus thoracis de seis razas de corderos producidos con pasturas en Uruguay, mediante el uso de cromatografía de gases. También se cuantificaron los ácidos grasos de cadena ramificada monometiles iso y anteiso, y el contenido de ácidos grasos impares de la carne. Se determinaron índices lipídicos de salud y actividades de las enzimas del metabolismo de los ácidos grasos. Los corderos estudiados fueron machos de 11–12 meses de razas y biotipos Highlander® (H), Merino Dohne (MD), Corriedale (C), Corriedale Pro® (CPRO), un cruce entre Corriedale × Australian Merino (C×AM) y Romney Marsh (RM). Los animales fueron criados sobre pasturas en condiciones idénticas sin suplementos. El pastoreo fue rotativo basado en una avena de cultivos anuales de invierno (Avena sativa spp.), cocksfoot (Dactylis glomerata spp.) y trébol blanco (Trifolium repens spp.). Los resultados no mostraron diferencias sustanciales entre razas en la composición en ácidos grasos de la carne, excepto por ácidos grasos relevantes como C16:0 (MD>C), C18:3n3 (H<C) y CLA (H<CPRO, C×AM) para glicerolípidos. También C18:1 (H>CPRO y C×AM), C18:2n6 (H<C×AM) y C18:3n3 (H< C) para glicerofosfolípidos. Asimismo, hay otras diferencias como el contenido de ácidos grasos anteiso (RM>MD) y la relación del índice hipocolesterolémico/hipercolesterolémico (MD<C). Para las actividades enzimáticas del metabolismo de los ácidos grasos, el MD mostró una menor enzima desaturasa Δ–9 para C16:0 que C, CPRO y CxAM. Además, H mostró una menor actividad de la enzima Δ–6 desaturasa que C, y tanto MD como CxAM mostraron una menor actividad de la enzima elongasa que C. Los resultados mostraron que la carne de cordero de las diferentes razas presenta en general buenos indicadores nutricionales de lípidos, en comparación con los resultados de otras investigaciones en corderos. Esa información podría ayudar a los productores de corderos del Uruguay a promover sus productos sobre la base de datos científicos.
Descargas
Citas
Chessa B, Pereira F, Arnaud F, Amorim A, Goyache F, Mainland I, Kao RR, Pemberton JM, Beraldi D, Stear MJ, Alberti A, Pittau M, Iannuzzi L, Banabazi MH, Kazwala RR, Zhang YP, Arranz JJ, Ali BA, Wang Z, Uzun M, Dione MM, Olsaker I, Holm LE, Saarma U, Ahmad S, Marzanov N, Eythorsdottir E, Holland MJ, Ajmone– Marsan P, Bruford MW, Kantanen J, Spencer TE, Palmarini M. Revealing the history of sheep domestication using retrovirus integrations. Sci. [Internet]. 2009; 324(5926):532–536. doi: https://doi.org/fnzvw9
Papachristoforou C, Koumas A, Hadjipavlou G. Adding value to local breeds with particular reference to sheep and goats. Anim. Gen. Res. [Internet]. 2013; 53:157–162. doi: https://doi.org/mtz4
Wang X, Sun B, Wei L, Jian X, Shan K, He Q, Huang F, Ge X, Gao X, Feng N, Chen YQ. Cholesterol and saturated fatty acids synergistically promote the malignant progression of prostate cancer. Neoplasia. [Internet]. 2022; 24(2):86–97. doi: https://doi.org/gpscnc
Pereira V, Cartaxo De Lucena C, Facó O, Delmondes–Bomfim MA, Ferraz–Laranjeira F, Dubeuf JP. The future of small ruminants in Brazil: Lessons from the recent period and scenarios for the next decade. Small Rum. Res. [Internet]. 2022; 209:106651. doi: https://doi.org/mtz5
Lantinga EA, Neuteboom JH, Meijis JAC. Sward Methods. In: Penning PD, editor. Herbage Intake Handbook. Reading, England: British Grassland Society (BGS); 2004. p 24–52.
Folch J, Lees M, Sloane–Stanley GH. A simple method for isolation and purification of total lipides from animal tissues. J. Biol. Chem. [Internet]. 1957 [cited 28 Nov 2023]; 226(1):497–509. Available in https://goo.su/GCwj. Cited in: PubMed; PMID: 13428781.
Ichihara K, Shibahara A, Yamamoto K, Nakayama T. An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids. [Internet]. 1996; 31(5):535–539. doi: https://doi.org/cnw6cn
Ichihara K, Yamaguchi C, Araya Y, Sakamoto A, Yoneda, K. Preparation of fatty acid methyl esters by selective methanolysis of polar glycerolipids. Lipids. [Internet]. 2010; 45: 367–374. doi: https://doi.org/db668d
Ulbricht TLV, Southgate DAT. Coronary heart disease: seven dietary factors. Lancet. [Internet]. 1991; 338(8773):985–992. doi: https://doi.org/dghp85
Fernandez M, Ordonez JA, Cambero I, Santos C, Pin C, Hoz LDL. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. [Internet]. 2007; 101(1):107–112. doi: https://doi.org/bb9mvc
del Puerto M, Cabrera MC, Saadoun A. A note on fatty acids profile of meat from broiler chickens supplemented with inorganic or organic selenium. Int. J. Food Sci. [Internet]. 2017; 2017:7613069. doi: https://doi.org/gp37rc
Chikwanha OC, Vahmani P, Muchenje V, Dugan MER, Mapiye C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food. Res. Inter. [Internet]. 2017; 104:25–38. doi: https://doi.org/gc534m
Guimarães LJ, da Silva IG, Ambiel AC, Rego FCA, Castilho C, da Cunha Filho LFC, Sena GC, Giotto FM, Zundt M. Effects of different energy source diets, as corn substitutes, on carcass characteristics and meat quality of feedlot lambs. Rev. Fac. Cien. Agrar. UNCuyo [Internet]. 2021; 53(2):243–251. doi: https://doi.org/mtz7
Lucas JJ, Cabrera MC, Saadoun A. Fatty acids composition of meat of Corriedale lamb and its crossing with Merino Dohne lamb, reared exclusively on pasture in Uruguay. Proceeding of the 67th International Congress of Meat Science and Technology. Nutritional quality of meat, meat analogues, and the available alternatives; 2021 Aug 23–27; Cracow, Poland: University of Agriculture in Krakow; 2021. p. 231.
Díaz MT, Álvarez I, De La Fuente J, Sañudo C, Campo MM, Oliver MA, Font I Furnols M, Montossi F, San Julián FR, Nute GR, Cañeque V. Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci. [Internet]. 2005; 71(2):256–263. doi: https://doi.org/dm56w2
Shramko VS, Polonskaya YV, Kashtanova EV, Stakhneva EM, Ragino YI. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolec. [Internet]. 2020; 10(8):1127. doi: https://doi.org/grk2dr
Agostoni C, Moreno L, Shamir R. Palmitic Acid and Health: Introduction. Crit. Rev. Food Sci. Nut. [Internet]. 2016; 56(12):1941–1942. https://doi.org/mtz9
Cadavez VAP, Popova T, Bermúdez R, Osoro K, Purriños L, Bodas R, Lorenzo JM, Gonzales–Barron U. Compositional attributes and fatty acid profile of lamb meat from Iberian local breeds. Small Rum. Res. [Internet]. 2020; 193:106244. doi: https://doi.org/mt2b
Realini CE, Pavan E, Purchas RW, Agnew M, Johnson PL, Bermingham EN, Moon, CD. Relationships between intramuscular fat percentage and fatty acid composition in M. longissimus lumborum of pasture–finished lambs in New Zealand. Meat Sci. [Internet]. 2021; 181:108618. doi: https://doi.org/grrz86
Vahmani P, Salazar V, Rolland DC, Gzyl KE, Dugan MER. Iso– but Not Anteiso–Branched Chain Fatty Acids Exert Growth–Inhibiting and Apoptosis–Inducing Effects in MCF‑7 Cells. J. Agric. Food Chem. [Internet]. 2019; 67(36):10042−10047. doi: https://doi.org/mt2c
Taormina VM, Unger AL, Schiksnis MR, Torres–Gonzalez M, Kraft J. Branched–Chain Fatty Acids—An Underexplored Class of Dairy–Derived Fatty Acids. Nutrients. [Internet]. 2020; 12(9):2875. doi: https://doi.org/mt2d
Ramos Z, De Barbieri I, Van Lier E, Montossi F. Carcass and meat quality traits of grazing lambs are affected by supplementation during early post–weaning. Small Rum. Res. [Internet]. 2020; 184:106047. doi: https://doi.org/mt2h
Praagman J, Vissers LET, Mulligan AA, Dam Laursen AS, Beulens JWJ, Van Der Schouw YT, Wareham NJ, Plambeck–Hansen C, Khaw KT, Jakobsen MU, Sluijs, I. Consumption of individual saturated fatty acids and the risk of myocardial infarction in a UK and a Danish cohort. Intern. J. Cardiol. [Internet]. 2019; 279:18–26. doi: https://doi.org/mt2f
Frigolet ME, Gutiérrez–Aguilar R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv. Nutr. [Internet]. 2017; 8(1):173S–181S. doi: https://doi.org/ghhtwf
den Hartigh LJ. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre–Clinical and Human Trials with Current Perspectives. Nutrients. [Internet]. 2019; 11(2):370. doi: https://doi.org/gnhvcc
Aurousseau B, Bauchart D, Calichon E, Micol D, Priolo A. Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci. [Internet]. 2004; 66(3):531–541. doi: https://doi.org/d75d2w
Popova T. Effect of the rearing system on the fatty acid composition and oxidative stability of the M. longissimus lumborum and M. semimembranosus in lambs. Small Rum. Res. [Internet]. 2007; 71(1–3):150–157. doi: https://doi.org/c6kcxx
Garcia PT, Casal JJ, Fianuchi S, Magaldi JJ, Rodríguez FJ, Ñancucheo JA. Conjugated linoleic acid (CLA) and polyunsaturated fatty acids in muscle lipids of lambs from the Patagonian area of Argentina. Meat Sci. [Internet]. 2008; 79: 541–548. doi: https://doi.org/dpb493
Mustonen AM, Nieminen P. Dihomo–γ–Linolenic Acid (20:3n–6)—Metabolism, Derivatives, and Potential Significance in Chronic Inflammation. Intern. J. Mol. Sci. [Internet]. 2023; 24(3):2116. doi: https://doi.org/mt2k
Zheng L, Fleith M, Giuffrida F, O’Neill BV, Schneider N. Dietary polar lipids and cognitive development: a narrative review. Adv. Nutr. [Internet]. 2019; 10(6):1163–1176. https://doi.org/mt2m
Lordan R, Blesso CN. Editorial: Phospholipids and sphingolipids in nutrition, metabolism, and health. Front. Nutr. [Internet]. 2023; 10:1153138. doi ; https://doi.org/mt2p
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int. J. Mol. Sci. [Internet]. 2018; 19(11):3285. doi: https://doi.org/gjmqj6
Ponnampalam EN, Butler KL, Pearce KM, Mortimer SI, Pethick DW, Ball AJ, Hopkins DL. Sources of variation of health claimable long chain omega–3 fatty acids in meat from Australian lamb slaughtered at similar weights. Meat Sci. [Internet]. 2014; 96(2 part. B): 1095–1103. doi: https://doi.org/gjq5p4
Sinclair AJ, Attar–Bashia NM, Li D. What Is the Role of α–Linolenic Acid for Mammals? Lipids. [Internet]. 2002; 37(12):1113–1123. doi: https://doi.org/bthm3j
Gómez–Cortés P, Requena–Domenech F, Correro–Rueda M, De La Fuente MÁ, Schiavone A, Martínez–Marín AL. Odd– and branched–chain fatty acids in lamb meat as potential indicators of fattening diet characteristics. Foods. [Internet]. 2021; 10(1):77. doi: https://doi.org/mt2q
Pena–Bermudez YA, Lobo RR, De Amorim TR, Rojas–Moreno DA, Rodriguez–Aguilar D, Poleti MD, Pereira ASC, Pinheiro RSB, Bueno ICB. Effect of yerba mate (Ilex paraguariensis) in lamb diets on fatty acid profile, physical and sensory characteristics of the Longissimus muscle. Livest. Sci. [Internet]. 2022; 265:105095. doi: https://doi.org/mt2s
Mele M, Serra A, Pauselli M, Luciano G, Lanza M, Pennisi P, Conte G, Taticchi A, Esposto S, Morbidini L. The use of stoned olive cake and rolled linseed in the diet of intensively reared lambs: effect on the intramuscular fatty–acid composition. Anim. [Internet]. 2014; 8(1):152–162. doi: https://doi.org/f5qczp
Vahmani P, Ponnampalam EN, Kraft J, Mapiye C, Bermingham EN, Watkins PJ, Proctor SD, Dugan MER. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. [Internet]. 2020; 165:108114. doi: https://doi.org/mt2v
Rossatti, JA, Vargas Junior FM, Retore M, Britez GDV, Silva MC, Fernandes T, Fernandes ARM, Mele M. Effects of pasture type and level of concentrate supplementation on quality and fatty acid profile of lamb meat. South African J. Anim. Sci. [Internet]. 2019; 49(6):985–996. doi : https://doi.org/mt2w
Or–Rashid MM, Odongo NE, McBride BW. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd–chain and branched chain fatty acids. J. Anim. Sci. [Internet]. 2007; 85(5):1228–1234. doi: https://doi.org/d76rjc
Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca, AJM, Dewhurst RJ. Factors affecting odd– and branched–chain fatty acids in milk: A review. Anim. Feed Sci. Tech. [Internet]. 2006; 131(3–4):389–417. doi: https://doi.org/fbcwzv
Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, Samsudin AA. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet Res. [Internet]. 2018; 14:344. doi: https://doi.org/mt2x
Penkov D, Pavlov D, Mihovsky T. Comparative study of the aminoacid’s true digestibility of different clover (trifolium) varieties in experiments with gander. J. Central Europ. Agri. [Internet]. 2003 [cited 25 Nov 2023]; 4(2):191–197. Available in: https://goo.su/zQpvc
Liu K, Mahmood K. Nutrient Composition and Protein Extractability of Oat Forage Harvested at Different Maturity Stages as Compared to Grain. J. Agri. Sci. [Internet]. 2015; (12):50–58. doi : https://doi.org/mt2z
Elaffifi M, Bouderoua K, Mourot J, Daoudi–Zerrouki N. Interest of poly–unsaturated fatty acids n–3 of grazing Herbs on phospholipids, triglycerides, cholesterol and fatty acids of Rumbi Lamb meat. Adv. Biores. [Internet]. 2020 [cited 25 Nov 2023]; 11(2):61–67. Available in: https://goo.su/MPEesH
Faria PB, Bressan MC, Vieira JO, Vicente–Neto J, Ferrão SPB, Rosa FC, Monteiro M, Cardoso MG, Gama LT. Meat quality and lipid profiles in crossbred lambs finished on clover–rich pastures. Meat Sci. [Internet]. 2012; 90(3):733–738. doi: https://doi.org/bw7k3f
Simopoulos AP. The importance of the ratio of omega–6/omega–3 essential fatty acids. Biomed. Pharmacother. [Internet]. 2002; 56(8):365–379. doi: https://doi.org/crkhrz
Simopoulos AP. The omega–6/omega–3 fatty acid ratio: health implications. OCL [Internet]. 2010; 17(5):267–275. doi : https://doi.org/mt23
Harris WS. The Omega–6:Omega–3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot. Essen. Fatty Acids. [Internet]. 2018; 132:34–40. doi : https://doi.org/gdn8cw
Saadoun A, Cabrera MC. A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Sci. [Internet]. 2008; 80(3):570–581. doi: https://doi.org/fsq2ws
Chen J, Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini–Review. Int. J. Mol. Sci. [Internet]. 2020; 21(16):5695. doi: https://doi.org/gphv7w
Belhaj K, Mansouri F, Benmoumen A, Sindic M, Fauconnier ML, Boukharta M, Serghini CH, Elamrani A. Fatty acids, health lipid indices, and cholesterol content of sheep meat of three breeds from Moroccan pastures. Arch. Anim. Breed. [Internet]. 2020; 63(2):471–482. doi: https://doi.org/gtd7qt
Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur (PROCISUR –IICA). Caracterización del valor nutricional de los alimentos [Internet]. Montevideo: PROCISUR, IICA; 2015 [cited 18 Nov 2023]. 208 p. Available in: https://goo.su/TFdb
Bozbas E, Zhou R, Allen–Redpath K, Yaqoob P. Effects of n–3 polyunsaturated fatty acids on thrombogenic risk markers in subjects with moderate risk for CVD. Proc. Nut. Soc. [Internet]. 2021; 80(OCE5):E161. doi: https://doi.org/mt27
Moussavi–Javardi MS, Madani Z, Movahedi A, Karandish M, Abbasi B. The correlation between dietary fat quality indices and lipid profile with atherogenic index of plasma in obese and non–obese volunteers: a cross–sectional descriptive analytic case–control study. Lipids Health Dis. [Internet]. 2020; 19:213. doi: https://doi.org/mt28
Murariu OC, Murariu F, Frunză G, Ciobanu MM, Boisteanu PC. Fatty Acid Indices and the Nutritional Properties of Karakul Sheep Meat. Nutrients. [Internet]. 2023; 15(4):1061. doi: https://doi.org/mt29
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients. [Internet]. 2020; 12(2):356. doi: https://doi.org/mt3b
Ntambi JM, Miyazaki M. Recent insights into stearoyl–CoA desaturase–1. Curr. Opin. Lipidol. [Internet]. 2003; 14(3):255–261. doi: https://doi.org/fghwxb
Santa–María C, López–Enríquez S, Montserrat–de la Paz S, Geniz I, Reyes–Quiroz ME, Moreno M, Palomares F, Sobrino F, Alba G. Update on Anti–Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients. [Internet]. 2023; 15(1):224. doi: https://doi.org/grtqfr
Raes K, De Smet S, Demeyer D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim. Feed Sci. Tech. [Internet]. 2004; 113(1–4):199–221. doi: https://doi.org/bhbnm3
Lara EC, Bragiato UC, Rabelo CHS, Messana JD, Sobrinho AGS, Reis RA. Inoculation of corn silage with Lactobacillus plantarum and Bacillus subtilis associated with amylolytic enzyme supply at feeding. 2. Growth performance and carcass and meat traits of lambs. Anim. Feed Sci. Tech. [Internet]. 2018; 243:112–124. doi: https://doi.org/gd6xpj
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau–Aduli AEO. Genetics of Omega–3 Long–Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes [Internet]. 2020; 11(5):587. doi: https://doi.org/mt3c
Derechos de autor 2024 Maria Cristina Cabrera, Maria Helena Guerra, Juan Franco, Oscar Bentancur, Ali Saadoun
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.