Actividades antioxidantes y antiinflamatorias del ácido gálico en codornices japonesas inducidas por estrés oxidativo

  • Mehmet Mustafa İşgör Hatay Mustafa Kemal University, Faculty of Veterinary, Department of Biochemistry. Antakya, Turkey
  • Altuğ Küçükgül Hatay Mustafa Kemal University, Faculty of Veterinary, Department of Biochemistry. Antakya, Turkey
  • Sema Alaşahan Hatay Mustafa Kemal University, Faculty of Veterinary, Zootechnical department. Antakya, Turkey
Palabras clave: Acido gálico, desempeño del crecimiento, estrés oxidativo, inflamación, codornices

Resumen

El ácido gálico es un compuesto fenólico que se encuentra en muchas fuentes vegetales con fuerte actividad antioxidante. En este estudio, se investigó la bioactividad del ácido gálico en codornices japonesas inducidas por estrés oxidativo. El estudio se realizó en cuatro grupos de codornices japonesas macho (Coturnix japonica) de 40 días de edad. Se creó estrés oxidativo durante 1 semana mediante la adición de peróxido de hidrógeno al 0,5 %. El estudio finalizó con la administración de 100 mg·kg-1 de peso corporal de ácido gálico por vía intraperitoneal. Los análisis del nivel de antioxidante total y oxidante total de homogeneizados de tejido hepático se realizaron utilizando un kit comercial ya preparado. Los niveles de TNF–α de muestras de sangre tomadas para determinar la actividad antiinflamatoria se investigaron mediante el método ELISA. No hubo resultados estadísticamente significativos sobre la ganancia de peso vivo entre los grupos experimentales y el grupo control. Sin embargo, el ácido gálico en homogeneizados de hígado junto con H2O2 aumentó el estado antioxidante total (TAS) en comparación con la aplicación de H2O2, mientras que disminuyó el estado oxidante total (TOS) en los mismos grupos. Además, mientras que el índice de estrés oxidativo aumentó en el grupo H2O2, disminuyó significativamente, tanto en el grupo de ácido gálico como en el de ácido gálico + H2O2. La aplicación de ácido gálico también provocó una regresión en los niveles de expresión de TNF–α en sangre, que aumentaron con H2O2. En codornices, el ácido gálico mostró actividad antioxidante al aumentar los niveles de TAS y disminuir los niveles de TOS, proporcionando una disminución significativa en el índice de estrés oxidativo. También proporcionó actividad antiinflamatoria al suprimir los niveles de TNF–a. Sin embargo, se necesitan análisis moleculares avanzados para obtener información más detallada sobre el tema.

Descargas

La descarga de datos todavía no está disponible.

Citas

Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev. 2017; 18(1):26–45.

Lee MT, Lin WC, Lee TT. Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals – A review. Asian–Australasian J. Anim. Sci. 2019; 32(3):309–19.

Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst). 2019; 24:e00370.

Siah M, Farzaei MH, Ashrafi–Kooshk MR, Adibi H, Arab SS, Rashidi MR, Khodarahmi R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study. Bioorganic. Chem. 2016; 64:74–84.

Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iranian J. Basic Med. Sci. 2019; 22(3):225–237. doi: https://doi.org/gng34z

Fernandes FHA, Salgado HRN. Gallic acid: review of the methods of determination and quantification. Critic. Rev. Analytical Chem. 2016; 46(3):257–65.

Hsieh HM, Ju YM. Medicinal components in Termitomyces mushrooms. Appl. Microbiol. Biotechnol. 2018; 102(12):4987–94.

Zhang T, Ma L, Wu P, Li W, Li T, Gu R, Dan X, Li Z, Fan X, Xiao Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non‑small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol. Rep. 2019; 41(3):1779–1788.

Rivero–Buceta E, Carrero P, Doyagüez EG, Madrona A, Quesada E, Camarasa MJ, Peréz–Pérez MJ, Leyssen P, Paeshuyse J, Balzarini J, Neyts J, San–Félix A. Linear and branched alkyl–esters and amides of gallic acid and other (mono–, di– and tri–) hydroxy benzoyl derivatives as promising anti–HCV inhibitors. Europ. J. Med. Chem. 2015; 92:656–71.

Jung J, Bae KH, Jeong CS. Anti–Helicobacter pylori and antiulcerogenic activities of the root cortex of Paeonia suffruticosa. Biol. Pharmac. Bull. 2013; 36(10):1535–9.

Couto AG, Kassuya CAL, Calixto JB, Petrovick PR. Anti–inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant. Rev. Brasileira Farmacognosia. 2013; 23(1):124–31.

Sarjit A, Wang Y, Dykes GA. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol. 2015; 46:227–33.

Li ZJ, Liu M, Dawuti G, Dou Q, Ma Y, Liu HG, Aibai S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res. 2017; 31(7):1039–45.

Badavi M, Sadeghi N, Dianat M, Samarbafzadeh A. Effects of gallic acid and cyclosporine a on antioxidant capacity and cardiac markers of rat isolated heart after ischemia/reperfusion. Iranian Red Crescent Med. J. 2014; 16(6):1–7.

Estévez M. Oxidative damage to poultry: from farm to fork. Poult. Sci. 2015; 94(6):1368–78.

Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015; 20(12):21138–56.

Hu R, He Y, Arowolo M, Wu S, He J. Polyphenols as potential attenuators of heat stress in poultry production. Antioxid. 2019; 8(3):67.

Kucukgul A, Erdogan S. Caffeic acid phenethyl ester (CAPE) protects lung epithelial cells against H2O2–induced inflammation and oxidative stress. Health Med. 2014; 8(3):329–338.

Abdel–Wahab A, Abdel–Kader I, Ahmad E. Effect of dietary grape seed supplementation as a natural growth promoter on the growth performance of japanese quail. Egypt. J. Nutr. Feeds. 2018; 21(2):537–48.

Silici S, Güçlü BK, Kara K. Yumurtacı damızlık bıldırcın (Coturnix coturnix japonica) yemlerine öğütülmüş üzüm çekirdeği ilavesinin verim ve kuluçka performansı ile yumurta kalitesine etkisi. ERU Sağlık Bilimleri Dergisi. 2011; 20(1):68–76.

Abu Hafsa SH, Ibrahim SA. Effect of dietary polyphenol–rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. J. Anim. Physiol. Anim. Nutr. 2018; 102(1):268–75.

Ao X, Kim IH. Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci. 2020; 99(4):2078–86.

Surai PF, Kochish II, Fisinin VI, Kidd MT. Aantioxidant defence systems and oxidative stress in poultry biology: an update. Antioxid. 2019; 8(7):235.

Lee MT, Lin WC, Yu B, Lee TT. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals — A review. Asian–Australasian J. Anim. Sci. 2017; 30(3):299–308.

Surai PF, Kochish II. Nutritional modulation of the antioxidant capacities in poultry: the case of selenium. Poult. Sci. 2019; 98(10):4231–9.

Saibabu V, Fatima Z, Khan LA, Hameed S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci. 2015; 2015:823539.

Makihara H, Koike Y, Ohta M, Horiguchi–Babamoto E, Tsubata M, Kinoshita K, Akase T, Goshima Y, Aburada M, Shimada T. Gallic acid, the active ingredient of Terminalia bellirica, enhances adipocyte differentiation and adiponectin secretion. Biol. Pharmac. Bull. 2016; 39(7):1137–43.

Gandhi GR, Jothi G, Antony PJ, Balakrishna K, Paulraj MG, Ignacimuthu S, Stalin A, Al–Dhabi NA. Gallic acid attenuates high–fat diet fed–streptozotocin–induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p–Akt signaling pathway. Europ. J. Pharmacol. 2014; 745:201–16.

Totani N, Tateishi S, Takimoto T, Maeda Y, Sasaki H. Gallic acid glycerol ester promotes weight–loss in rats. J. Oleo Sci. 2011; 60(9):457–62.

Locatelli C, Filippin–Monteiro FB, Creczynski–Pasa TB. Alkyl esters of gallic acid as anticancer agents: A review. Europ. J. Med. Chem. 2013; 60:233–9.

Choubey S, Varughese LR, Kumar V, Beniwal V. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharmac. Patent Analyst. 2015; 4(4):305–15.

Samuel KG, Wang J, Yue HY, Wu SG, Zhang HJ, Duan ZY, Qi GH. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poult. Sci. 2017; 96(8):2768–75.

Nouri A, Heibati F, Heidarian E. Gallic acid exerts anti–inflammatory, anti–oxidative stress, and nephroprotective effects against paraquat–induced renal injury in male rats. Naunyn Schmiedebergs Arch Pharmacol. 2021; 394(1):1–9.

Ahmadvand H, Yalameha B, Adibhesami G, Nasri M, Naderi N, Babaeenezhad E, Nouryazdan N. The Protective Role of Gallic Acid Pretreatment On Renal Ischemia–reperfusion Injury in Rats. Rep. Biochem. Mol. Biol. 2019;8(1):42–48.

Ignea C, Dorobanţu CM, Mintoff CP, Branza–Nichita N, Ladomery MR, Kefalas P, Chedea VS. Modulation of the antioxidant/pro–oxidant balance, cytotoxicity and antiviral actions of grape seed extracts. Food Chem. 2013; 141(4):3967–76

Jung S, Choe JH, Kim B, Yun H, Kruk ZA, Jo C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010; 86(2):520–6.

Lee KH, Jung S, Kim HJ, Kim IS, Lee JH, Jo C. Effect of dietary supplementation of the combination of gallic and linoleic acid in thigh meat of broilers. Asian–Australasian J. Anim. Sci. 2012; 25(11):1641–8.

Jung S, Han BH, Nam K, Ahn DU, Lee JH, Jo C. Effect of dietary supplementation of gallic acid and linoleic acid mixture or their synthetic salt on egg quality. Food Chem. 2011; 129(3):822–9.

Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. 2010; 140(6):771–6.

Pantano C, Reynaert NL, Vliet AVD, Janssen–Heininger YMW. Redox–sensitive kinases of the nuclear factor–κB signaling pathway. Antioxid. Redox Signaling. 2006; 8(9–10):1791–806.

Li HL, Li ZJ, Wei ZS, Liu T, Zou XZ, Liao Y, Luo Y. Long–term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers. J. Zhejiang University–Science B. 2015; 16(12):1019–26.

Publicado
2023-06-21
Cómo citar
1.
İşgör MM, Küçükgül A, Alaşahan S. Actividades antioxidantes y antiinflamatorias del ácido gálico en codornices japonesas inducidas por estrés oxidativo. Rev. Cient. FCV-LUZ [Internet]. 21 de junio de 2023 [citado 22 de diciembre de 2024];33(2):1-. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/40417
Sección
Medicina Veterinaria