Estabilidad de la cromatina espermática y su relación con la tasa de fecundación en ovejas de la raza Junín
Resumen
El objetivo de esta investigación fue evaluar el efecto de los espermatozoides sobre la estabilidad de la cromatina y su relación con la integridad de la membrana estructural – fisiológica y la tasa de fertilización de las ovejas hembras. Las eyaculaciones de espermatozoides (2 × 109 espermatozoides·ml-1) con un 70 % de motilidad se recogieron mediante una vagina artificial (n=5, 2 años). Para ello, cada carnero se servía con quince ovejas hembra (n=75), generando así cinco grupos diferentes (A, B, C, D y E). También se consideró un grupo de control. La estabilidad de la cromatina nuclear (NCS) de los espermatozoides se evaluó utilizando el tampón de borato (BB), el dodecil sulfato de sodio (SDS) y la mezcla de ácido etilendiaminotetraacético (EDTA) + SDS. La tasa de fertilización se evaluó después de 16-18 horas después de la inyección de espermatozoides. La concentración de espermatozoides mostró diferencias significativas (P<0,05) entre los grupos. Por el contrario, el volumen seminal y la motilidad de los espermatozoides no mostraron diferencias significativas (P>0,05). Se observó una alta correlación (r2=0,52) entre morfología y motilidad, y la tasa de fecundación fue del 74,6% (n=56). Se concluyó en general que las técnicas para evaluar los valores de condensación nuclear tienen una alta probabilidad de dar un diagnóstico sobre el potencial futuro de las poblaciones de espermatozoides en carneros de Junín.
Descargas
Citas
BALHORN, R.; STEGER, K.; BERGMANN, M.; SCHUPPE, H.C.; NEUHAUSER, S.; BALHORN, M.C. New Monoclonal Antibodies Specific for Mammalian Protamines P1 and P2. Syst. Biol. Reprod. Med. 4(6): 424–447. 2018. https://doi.org/jctc.
BINDARI, Y.R.; SHRESTHA, S.; SHRESTHA, N.; GAIRE, T.N. Effects of Nutrition on Reproduction- A Review. Pelagia Res. Libr. 4(1): 421–429. 2013.
BJÖRNDAHL, L.; KVIST, U. Human Sperm Chromatin Stabilization: A Proposed Model Including Zinc Bridges. Mol. Hum. Reprod. 16(1): 23–29. 2009. https://doi.org/djrrvx.
BUCCI, D.; SPINACI, M.; GALEATI, G.; TAMANINI, C. Different Approaches for Assessing Sperm Function. Anim. Reprod. 16(1): 72–80. 2018. https://doi.org/jctd.
CARVALHO, L.E.; SILVA-FILHO, J.M.; PALHARES, M.S.; SALES, A.L.R.; GONCZAROWSKA, A.T.; OLIVEIRA, H.N.; RESENDE, M.; ROSSI, R. Physical and Morphological Characteristics of the First Three Jets of Pêga Jackasses Sperm-Rich Fraction. Arq. Bras. Med. Vet. Zoot. 68(4): 845–852. 2016. https://doi.org/jctf.
COOPER, T.G. The Epididymis, Cytoplasmic Droplets and Male Fertility. Asian J. Androl. 13(1): 130–138. 2011. https://doi.org/dfv5ww.
EVENSON, D.; JOST, L. Sperm Chromatin Structure Assay Is Useful for Fertility Assessment. Springer. 22(2): 169–189. 2000.
GALIOTO, F.; PAFFARINI, C.; CHIORRI, M.; TORQUATI, B.; CECCHINI, L. Economic, Environmental, and Animal Welfare Performance on Livestock Farms: Conceptual Model and Application to Some Case Studies in Italy. Sustain. 9(9): 1–22. 2017. https://doi.org/gb4rb6.
GARCÍA, J.; NORIEGA-HOCES, L.; GONZALES, G.F. Sperm Chromatin Stability and Its Relationship with Fertilization Rate after Intracytoplasmic Sperm Injection (ICSI) in an Assisted Reproduction Program. J. Assist. Reprod. Genet. 24(12): 587–593. 2007. https://doi.org/d3v9pf.
GARCÍA-VÁZQUEZ, F.; GADEA, J.; MATÁS, C.; HOLT, W. Importance of Sperm Morphology during Sperm Transport and Fertilization in Mammals. Asian J. Androl. 18(6): 844–850. 2016. https://doi.org/jctg.
GONZALES, G.F.; SÁNCHEZ, A. High Sperm Chromatin Stability in Semen with High Viscosity. Syst. Biol. Reprod. Med. 32(1): 31–35. 1994. https://doi.org/bkbvpb.
GU, N.H.; ZHAO, W.L.; WANG, G.S.; SUN, F. Comparative Analysis of Mammalian Sperm Ultrastructure Reveals Relationships between Sperm Morphology, Mitochondrial Functions and Motility. Reprod. Biol. Endocrinol. 17(1): 1–12. 2019. https://doi.org/jcth.
HAMILTON, J.A.M.; CISSEN, M.; BRANDES, M.; SMEENK, J.M.J.; DE BRUIN, J.P.; KREMER, J.A.M.; NELEN, W.L.D.M.; HAMILTON, C.J.C.M. Total Motile Sperm Count: A Better Indicator for the Severity of Male Factor Infertility than the WHO Sperm Classification System. Hum. Reprod. 30(5): 1110–1121. 2015. https://doi.org/f7c9q8.
HEKMATDOOST, A.; LAKPOUR, N.; SADEGHI, M.R. Sperm Chromatin Integrity: Etiologies and Mechanisms of Abnormality, Assays, Clinical Importance, Preventing and Repairing Damage. Avicenna J. Med. Biotechnol. 1(3): 147–160. 2009.
HOLMES, E.; BJÖRNDAHL, L.; KVIST, U. Hypotonic Challenge Reduces Human Sperm Motility through Coiling and Folding of the Tail. Androl. 52(11): 1–7. 2020. https://doi.org/gjhxjr.
KURYKIN, J.; HALLAP, T.; JALAKAS, M.; PADRIK, P.; KAART, T.; JOHANNISSON, A.; JAAKMA, Ü. Effect of Insemination-Related Factors on Pregnancy Rate Using Sexed Semen in Holstein Heifers. Czech J. Anim. Sci. 61(12): 568–577. 2016. https://doi.org/f9r8jm.
MAARES, M.; HAASE, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of in Vitro Intestinal Models. Nutrients. 12(3): 1–45. 2020. https://doi.org/gqfrs7.
MULLER, C.J.C.; CLOETE, S.W.P.; BOTHA, J.A. Fertility in Dairy Cows and Ways to Improve It. S. Afr. J. Anim. Sci. 48(5): 858–868. 2018. https://doi.org/jctj.
MUNUCE, M.J.; CAILLE, A.M.; BERTA, C.L.; PERFUMO, P.; MORISOLI, L. Does the Hypoosmotic Swelling Test Predict Human Sperm Viability? Arch. Androl. 44(3): 207–212. 2000. https://doi.org/d8bx6g.
NUR, Z.; SEVEN-CAKMAK, S.; USTUNER, B.; CAKMAK, I.; ERTURK, M.; ABRAMSON, C.I.; SAĞIRKAYA, H.; SOYLU, M.K. The Use of the Hypo-Osmotic Swelling Test, Water Test, and Supravital Staining in the Evaluation of Drone Sperm. Apidologie. 43(1): 31–38. 2012. https://doi.org/bkt786.
RAMÓN, M.; SALCES-ORTIZ, J.; GONZÁLEZ, C.; PÉREZ-GUZMÁN, M.D.; GARDE, J.J.; GARCÍA-ÁLVAREZ, O.; MAROTO-MORALES, A.; CALVO, J.H.; SERRANO, M.M. Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams. PLoS One. 9(1): 1–9. 2014. https://doi.org/jctk.
RIBAS-MAYNOU, J.; GARCIA-BONILLA, E.; HIDALGO, C.O.; CATALÁN, J.; MIRÓ, J.; YESTE, M. Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements. Front. Cell Dev. Biol. 9(4): 1–11. 2021. https://doi.org/jctm.
RODRIGUEZ, H.; OHANIAN, C.; BUSTOS‐OBREGON, E. Nuclear Chromatin Decondensation of Spermatozoa in vitro: A Method for Evaluating the Fertilizing Ability of Ovine Semen. Int. J. Androl. 8(2): 147–158. 1985. https://doi.org/cnt9dq.
R TEAM CORE. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria. R Foundation for Statistical Computing: Vienna, Austria. Version 3.6.2. Pp 3879. 2019.
SILVA, S.F.M.; OLIVEIRA, L.C.A.; DIAS, F.C.R.; CORDERO-SCHMIDT, E.; VARGAS-MENA, J.C.; SILVA, I.G.M.; BÁO, S.N.; LUNA, J.L.S.; LIMA, R.R.M.; JÚNIOR, R.F.A.; FARIAS, N.B.S.; MOURA, C.E.B.; MATTA, S.L.P.; MORAIS, D.B. Seasonal Evaluation of Spermatogenesis of the Hematophagous Bat Desmodus Rotundus in the Caatinga Biome. PLoS One. 15(12): 1–19. 2020. https://doi.org/jctn.
TAYLOR, M.A.; GUZMÁN-NOVOA, E.; MORFIN, N.; BUHR, M.M. Improving Viability of Cryopreserved Honey Bee (Apis Mellifera L.) Sperm with Selected Diluents, Cryoprotectants, and Semen Dilution Ratios. Theriogenol. 72(2): 149–159. 2009.
UGUR, M.R.; SABER ABDELRAHMAN, A.; EVANS, H.C.; GILMORE, A.A.; HITIT, M.; ARIFIANTINI, R.I.; PURWANTARA, B.; KAYA, A.; MEMILI, E. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci., 6(6): 1–15. 2019. https://doi.org/gg8vj5.
WATHES, D.C.; OGUEJIOFOR, C.F.; THOMAS, C.; CHENG, Z. Importance of Viral Disease in Dairy Cow Fertility. Engineering. 6(1): 26–33. 2020. https://doi.org/jctp.
WETTERE, W.H.E.V.; KIND, K.L.; GATFORD, K.L.; SWINBOURNE, A.M.; LEU, S.T.; HAYMAN, P.T.; KELLY, J.M.; WEAVER, A.C.; KLEEMANN, D.O.; WALKER, S.K. Review of the Impact of Heat Stress on Reproductive Performance of Sheep. J. Anim. Sci. Biotechnol. 12(1): 1–18. 2021. https://doi.org/jctq.
WOLD HEALTH ORGANIZATION (WHO). WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th. Ed.; World Health Organization. Pp 271. 2010.
WU, T.F.; CHU, D.S. Sperm Chromatin: Fertile Grounds for Proteomic Discovery of Clinical Tools. Mol. Cell. Proteomics. 7(10): 1876–1886. 2008. https://doi.org/dt79p3.
ZHENG, W.W.; SONG, G.; WANG, Q.L.; LIU, S.W.; ZHU, X.L.; DENG, S.M.; ZHONG, A.; TAN, Y.M.; TAN, Y. Sperm DNA Damage Has a Negative Effect on Early Embryonic Development Following in Vitro Fertilization. Asian J. Androl. 20(7): 75–79. 2018. https://doi.org/gbkh4x.
Derechos de autor 2022 Ide Unchupaico-Payano, Alberto Alponte-Sierra, Carlos Quispe-Eulogio, Edith Ancco-Goméz, Alex Huamán-De La Cruz, Julio Mariño-Alfaro, Alberto Patiño-Rivera, Carmencita Lavado-Meza, Lupe Huanca-Rojas, Luis Bazán-Alonso
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.