Efecto de celulasas y xilanasas sobre la digestibilidad in vitro de la broza de espárrago (Asparagus officinalis), panca de maíz (Zea mays) y cáscara de maní (Arachis hypogaea) en rumiantes

  • Edis Geovanny Macías-Rodríguez Universidad Técnica de Manabí, Facultad de Ciencias Veterinarias, Departamento de Veterinaria. Portoviejo, Manabi, Ecuador
  • Carlos Alfredo Gómez-Bravo Universidad Nacional Agraria La Molina, Facultad de Zootecnia. Lima, Perú
  • Jimmy Roberto Álava-Moreira Universidad Técnica de Manabí, Facultad de Ciencias Veterinarias, Departamento de Veterinaria. Portoviejo, Manabi, Ecuador
  • Ernesto Antonio Hurtado Escuela Superior Politécnica Agropecuaria de Manabí, Carrera de Medicina Veterinaria. Calceta, Manabi, Ecuador
Palabras clave: Enzimas, digestibilidad, ácidos grasos volátiles, residuos de cosecha

Resumen

Los residuos de cosecha juegan un papel importante en la producción animal a nivel mundial. Aumentar el potencial nutricional de opciones de baja calidad con enzimas fibrolíticas mejoraría la digestibilidad y la utilización del forraje. Utilizando un método in vitro se evaluó el efecto de celulasas (EC:3.2.1.4) y xilanasas (EC:3.2.1.8) aplicados a cuatro niveles: 0 (control); 2.000; 4.000 y 8.000 UI·kg-1 MS en panca de maíz (PM), broza de espárrago (BE) y cáscara de maní (CM). Al aplicar celulasas a la PM, la digestibilidad de la materia seca (DIVMS) y fibra detergente neutra (DIVFDN) fueron mayores (P<0,001) que el grupo de control (63,7 vs. 61,8 % y 51,9 vs. 50,1 %); efectos similares se encontraron con xilanasas (64,1 vs. 61,8 % y 53,0 vs. 51,6 %). La DIVMS y DIVFDN de la BE no fueron afectadas por la aplicación de celulasas o xilanasas (P<0,05). En el caso de la CM, la aplicación de celulasas o xilanasas mejoró la DIVMS (24,9 vs. 22,3 % y 24,6 vs. 22,3 %, respectivamente), pero no la DIVFDN. Además, la producción de gas in vitro a las 48 horas no fue influenciada por el tipo de enzimas ni por sus niveles de aplicación a los residuos evaluados. Las celulasas o xilanasas aplicadas sobre la PM y la BE no influyeron sobre la concentración de AGVt (acético + propiónico + butírico). En el caso de la CM, la concentración de AGVt fue similar entre el control y el aplicado con celulasas, mientras que la aplicación de xilanasas resultó en menor concentración de AGVt que el control. Las celulasas y xilanasas influencian la DIVMS, DIVFDN y la concentración de AGVt dependiendo del sustrato utilizado.

Descargas

La descarga de datos todavía no está disponible.

Citas

ADESOGAN, A; MA, Z; ROMERO, J; ARRIOLA, K. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes. J. Anim. Sci. 92(4): 1317–1330. 2014.

ASSOCIATION OF OFFICIAL AGRICULTURE CHEMIST (AOAC). Molecular biology methods. Official Methods of Analysis. Washington, D.C. 125 pp. 2005.

ARANDA, E; MENDOZA, G; RAMOS, J; DA SILVA, I; VITTI, A. Effect of fibrolytic enzymes on rumen microbial degradation of sugarcane fiber. J. Sci. Anim. Brasilian. Goiania. 11(3): 488–495. 2010.

ARRIOLA, K; KIM, S; STAPLES, C; ADESOGAN, A. Effect of fibrolytic enzyme application to low-and high-concentrate diets on the performance of lactating dairy cattle. J. Dairy Sci. 94: 832–841. 2011.

AVELLANEDA, J; GONZALES, S; PINOS-RODRÍGUEZ, J; HERNÁNDEZ, A; MONTANEZ, O; SEGUERA, J. Enzimas fibrolíticas exógenas en la digestibilidad in vitro de cinco ecotipos de Brachiaria. Agron. Mesoamer. 18(1): 11–17. 2007.

BAILEY, M; BIELY, P; POUTANEN, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotech. 23: 257–270. 1992.

BEAUCHEMIN, K; RODE, L; MAEKAWA, M; MORGAVI, D; KAMPEN, R. Evaluation of a nonstarch polysaccharidase feed enzyme in dairy cow diets. J. Dairy Sc. 83: 543–553. 2003.

BEAUCHEMIN, K; HOLTSHAUSEN, L. Developments in Enzyme Usage in Ruminants. Enzymes in Farm Animal Nutrition. 2nd. Ed. CABI Pub. Cambridge. Pp 206–225. 2010.

CARREÓN, L; PINOS-RODRÍGUEZ, J; BÁRCENA, R; GONZALES, S; MENDOZA, G. Influence of fibrolytic enzymes on ruminal disappearance and fermentation in steers fed diets with short and long particle length of forage. Italian J. Anim. Sci. 9 (e17): 83–87. 2010.

COLOMBATTO, D; HERVÁS, G; YANG, W; BEAUCHEMIN, K. Effects of enzyme supplementation of a total mixed ration on microbial fermentation in continuous culture, maintained at high and low pH. J. Anim. Sci. 81: 2617–2627. 2003.

DEAN, D; ADESOGAN, A; KRUEGER, N; LITTELL, R. Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of Bermuda grass silage. J. Dairy Sci. 88: 994–1003. 2005.

ELWAKEEL, E; TITGEMEYER, E; JOHNSON, B; ARMENDARIZ, C; SHIRLEY, J. Fibrolytic enzymes to increase the nutritive value of dairy feed stuffs. J. Dairy Sci. 90: 5226–5236. 2007.

ERWIN, E; MARCO, G; EMERY, E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768–1771. 1961.

EUN, J; BEAUCHEMIN, K. Enhancing in vitro degradation of Alfalfa hay and corn silage using feed enzymes. J. Dairy Sci. 90: 2839–2851. 2007.

EUN, J; BEAUCHEMIN, K; SCHULZE, H. Use of an in vitro fermentation biosssay to evaluate improvements in degradation of alfalfa hay due to exogenous feed enzymes. J. Anim. Feed Sci. 135: 315–328. 2007a.

EUN, J; BEAUCHEMIN, K; SCHULZE, H. Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of Alfalfa hay and corn silage. J. Dairy Sci. 90: 1440–1451. 2007b.

FLACHOWSKY, G. Carbon-footprints for food of animal origin, reduction potentials and research need. J. Appl. Anim. Res. 39(1): 2–14. 2011.

GIRALDO, L; TEJIDO, M; RANILLAAND, M; CARRO, M. Effects on exogenous fibrolytic enzymes on in vitroruminal fermentation of substrates ratios. J. Anim. Feed Technol. 141: 306–325. 2008a.

GIRALDO, L; TEJIDO, M; RANILLAAND, M; CARRO, M. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci. 86: 1617–1623. 2008b.

GOERING, H; VAN SOEST, P. Forage fiber analisis (apparatus, reagents, procedures and some applications). Agric. Handbook. Nº 379. ARS–USDA. Washington, DC, USA. 20 pp. 1970.

GÓMEZ, A; MENDOZA, G; PINOS, J. Comparison of in vitro degradation of elephant grass and sugarcane by exogenous fibrolytic enzymes. African J. Microbiol. Res. 5 (19): 3051–3053. 2011.

HOLTSHAUSEN, L; CHUNG, Y; GERARDO, H; OBA, M; BEAUCHEMIN, K. Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive. J. Dairy Sci. 94: 899–907. 2011.

JALILVAND, G; ODONGO, N; LÓPEZ, S; NASERIA, A; VALIZADEH, R; EFTEKHAR, F; KEBREAB, E; FRANCE, J. Effects of different level of an enzyme mixture on in vitro gas production parameter of contrasting forage. J. Anim. Feed Sci. Technol. 146: 289–301. 2008.

KHATTAB, M; TAWAB, A. In vitro evaluation of palm fronds as feedstuff on ruminal digestibility and gas production. Acta Scientif. Anim. Sci. 40: e39586. 2018.

MALIK, R; BANDLA, S. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency and growth of male buffalo (Bubalus bubalis) calves. Tropic. Anim. Health Prod. 42(6): 1263–1269. 2010.

MAURICIO, R; MOULD, F; DHANOA, M; OWEN, E; CHANNA, K; THEODOROU, M. Asemi-automated in vitro gas production technique for ruminant feedstuff evaluation. Feed Sci. Technol. 79(4): 321–330.1999.

MCALLISTER, T; HRISTOV, A; BEAUCHEMIN, K; RODE, L: CHENG, K. Enzymes in ruminants diets. In: Bedford, M.R.; Partridge, G.G. (Eds.). Enzymes in Farm Animal Nutrition. CAB International, Wiltshire. Pp 273–298. 2001.

MEALE, S; BEAUCHEMIN, K; HRISTOV, A; CHAVES, A; MCALLISTER, T. Board-Invited review: Opportunities and challenges in using exogenous enzymes to improve ruminant production. J. Anim. Sci. 92: 427–442. 2013.

MEDINA, M; TIRADO, G; MEJÍA, I; CAMARILLO, I; CRUZ, C. Digestibilidad in situ de dietas con harina de nopal deshidratado conteniendo un preparado de enzimas fibrolíticas exógenas. Pesquisa Agrop. Brasil. 41(7): 1173–1177. 2006.

MENDOZA, G; LOERA, O; PLATA, F; HERNÁNDEZ, P; RAMÍREZ, M. Considerations on the use of exogenous fibrolytic enzymes to improve forage utilization. The Scientif. World J. 2014: e247437. 2014.

MORENO, R; PINOS, J; GONZÁLES, S; ÁLVAREZ, G; GARCÍA, J; MENDOZA, G; BÁRCENA, R. Efecto de enzimas fibrolíticas exógenas en la degradación ruminal in vitro de dietas para vacas lecheras. J. Inter. 32(12) 850–853. 2007.

RAN, T; SALEEM, A; SHEN, Y; RIBEIRO, G; BEAUCHEMIN, K; TSANG, A; MCALLISTER, T. Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet. J. Anim. Sci. 97(8): 3578–3587. 2019.

RIBEIRO, G; BADHAN, A; HUANG, J; BEAUCHEMIN, K; YANG, Z; WANG, Y; TSANG, A; MCALLISTER, T. New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw. J. Anim. Sci. 96: 3928–3942. 2018. https://doi.org/jb4w.

ROMERO, J; ZARATE, M; QUEIROZ, O; HAN, J; SHIN, J; STAPLES, C; BROWN, W; ADESOGAN, A. Fibrolytic enzyme and ammonia application effects on the nutritive value, intake, and digestion kinetics of bermuda grass hay in beef cattle. J. Anim. Sci. 91: 4345–4356. 2013.

ROMERO, J; ZARATE, M; ADESOGAN, A. Effect of the dose of exogenous fibrolytic enzyme preparation on preingestive fiber hydrolysis, ruminal fermentation, and in vitro digestibility of Bermuda grass haylage. J. Dairy Sci. 98: 406–417. 2015.

STATISTICAL ANALYSIS SYSTEM INSTITUTE (SAS). The SAS System for Microsoft Windows, release 8.2. SAS. 2001.

SELZER, K; HASSEN, A; AKANMU, A; SALEM, A. Digestibility and rumen fermentation of a high forage diet pre-treated with a mixture of cellulase and xylanase enzymes. South Afric. J. Anim. Sci. 51(3): 399–406. 2021.

SUTTON, J; PHIPPS, R; BEEVER, D; HUMPHRIES, D; HARTNELL, G; VICINI, J; HARD, D. Effect of method of application of a fibrolytic enzyme product on digestive processes and milk production in Holstein-Friesian cows. J. Dairy Sci. 86: 546–556. 2003.

TANG, S; TAYO, G; TAN, Z; SUN, Z; SHEN, L; SHOW, C; XIAO, C; REN, G; HAN, X; SHEN, S. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J. Anim Sci. 86: 1164–1172. 2008.

TITI, H; TABBAA, M. Efficacy of exogenous cellulase on digestibility in lambs and growth of dairy calve. J. Livest. Prod. Sci. J. 87: 207–214. 2004.

VAN SOEST, P; ROBERTSON, J; LEWIS, B. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597. 1991.

WANG, Y; SPRATLING, B; ZOBELL, D; WIEDMEIER, R; MCALLISTER, T. Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci. 82: 198–208. 2004.

WOOD, T; BHAT, K. Methods for measuring cellulase activities. En: Methods in Enzymology. Academic Press. Pp 87–112. 1988.

Publicado
2022-09-12
Cómo citar
Macías-Rodríguez, E. G., Gómez-Bravo, C. A., Álava-Moreira, J. R., & Hurtado, E. A. (2022). Efecto de celulasas y xilanasas sobre la digestibilidad in vitro de la broza de espárrago (Asparagus officinalis), panca de maíz (Zea mays) y cáscara de maní (Arachis hypogaea) en rumiantes. Revista Científica De La Facultad De Ciencias Veterinarias De La Universidad Del Zulia, 32, 1-7. https://doi.org/10.52973/rcfcv-e32182
Sección
Producción Animal