Caracterización filogenética y determinación de la susceptibilidad a los antibióticos de cepas patógenas de Escherichia coli aviar aisladas de órganos viscerales de pollos de engorde

  • Volkan Özavci Dokuz Eylül University, Faculty of Veterinary Medicine, Department of Microbiology. Kiraz, Izmir, Turkey https://orcid.org/0000-0003-3511-3008
  • Hafize Tuğba Yüksel-Dolgun Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Microbiology. Işıklı, Aydin, Turkey
  • Şükrü Kirkan Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Microbiology. Işıklı, Aydin, Turkey
Palabras clave: Pollos de engorde, biología molecular, Escherichia coli, genética, microbiología

Resumen

El estudio tuvo como objetivo identificar los grupos filogenéticos y la susceptibilidad a los antibióticos de los aislados de Escherichia coli de aves de corral (APEC). E. coli se caracterizó fenotípica y bioquímicamente a partir de hígado, 8/30 (26,66 %); corazón, 7/30 (23,33 %) y bazo, 4/30 (13,33 %) de pollos de engorde de 37-42 días de edad vacunados. Luego, los aislados de E. coli (19/90; 21,11 %) se filoagruparon mediante genotipado cuádruple en función de la presencia o ausencia de los genes arpA, chuA, yjaA y el fragmento de ADN TspE4.C2. La mayoría de las cepas APEC pertenecían al grupo filogenético C, seguido de los grupos A, E y F. El filogrupo C se observó en el hígado, el filogrupo A en las muestras de hígado y corazón, el filogrupo E en el corazón y el bazo y el filogrupo F en el hígado. La mayor resistencia antibiótica se observó en amoxicilina-ácido clavulánico y ampicilina (100 %) predominantemente en los grupos A y E según pruebas de susceptibilidad antibacteriana. También se encontró resistencia múltiple a antibióticos (MDR) para las cepas APEC en 68,42 % (13/19). De los 19 aislamientos probados, solo 13 (68 %) fueron susceptibles a niveles altos de gentamicina. Las cepas APEC pertenecientes a los filogrupos C, A y E son de importancia epidemiológica para los pollos de engorde. Sería beneficioso investigar nuevos filogrupos realizando análisis genotípicos más detallados en las cepas APEC.

Descargas

La descarga de datos todavía no está disponible.

Citas

AWAD, A.M.; EL-SHALL, N.A.; KHALIL, D.S.; EL-HACK, M.E.A.; SWELUM, A.A.; MAHMOUD, A.H.; EBAID, H.; KOMANY, A.; SAMMOUR, R.H.; SEDEIK, M.E. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks. Pathog. 9: 114. 2020.

BARBIERI, N.L.; OLIVEIRA, A.L.D.; TEJKOWSKI, T.M.; PAVANELO, D.B.; ROCHA, D.A.; MATTER, L.B.; HORN, F. Genotypes and pathogenicity of cellulitis isolates reveal traits that modulate APEC virulence. PLoS One. 8: e72322. 2013.

BAUER, A.W.; KIRBY, W.M.; SHERRIS, J.C.; TURCK, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493–496. 1966.

CHAUDHURI, R.R.; HENDERSON, I.R. The evolution of the Escherichia coli phylogeny. Infect. Genet. Evol. 12: 214–226. 2012.

CLERMONT, O.; BONACORSI, S.; BINGEN, E. Rapid and simple determination of the Escherichia coli phylogenetic group. App. Environ. Microbiol. 66: 4555–4558. 2000.

CLERMONT, O.; CHRISTENSON, J.K.; DENAMUR, E.; GORDON, D.M. The Clermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environ. Microbiol. Rep. 5: 58–65. 2013.

CLERMONT, O.; OLIER, M.; HOEDE, C.; DIANCOURT, L.; BRISSE, S.; KEROUDEAN, M. Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect. Genet. Evol. 1: 654–662. 2011.

CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Performance standards for antimicrobial susceptibility testing. 27th. Ed. M100, Wayne, USA. Pp 32–39. 2017.

COURA, F.M.; DINIZ, D.S.; SILVA, M.X.; MUSSI, J.M.S.; BARBOSA, S.M.; LAGE, A.P.; HEINEMANN, M.B. Phylogenetic group of Escherichia coli isolates from broilers in Brazilian poultry slaughterhouse. Sci. World J. 2017:1–7. 2017.

CUMMINS, M.L., REID, C.J.; CHOWDHURY, P.R.; BUSHELL, R.N.; ESBERT, N.; TIVENDALE, K.A.; DJORDJEVIC, S.P. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb. Genom. 5: e000250. 2019.

EWERS, C.; JANßEN, T.; KIEßLING, S.; PHILIPP, H.C.; WIELER, L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 104: 91–101. 2004.

GUABIRABA, R.; SCHOULER, C. Avian colibacillosis: still many black holes. FEMS Microbiol. Lett. 362: fnv118. 2015.

GYLES, C.L.; FAIRBROTHER, J.M. Escherichia coli. In: Pathogenesis of Bacterial Infections in Animals. 4th. Ed. Blackwell Publishing, New Jersey, USA. Pp 267–379. 2010.

IBRAHIM, R.A.; CRYER, T.L.; LAFI, S.Q.; BASHA, E.A; GOOD, L.; TARAZI, Y.H. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet. Res. 15: 159. 2019.

IEVY, S.; ISLAM, M.; SOBUR, M.; TALUKDER, M.; RAHMAN, M.; KHAN, M.F.R. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorganis. 8: 1021. 2020.

IRANPOUR, D.; HASSANPOUR, M.; ANSARI, H.; TAJBAKHSH, S.; KHAMISIPOUR, G.; NAJAFİ, A. Phylogenetic groups of Escherichia coli strains from patients with urinary tract infection in Iran based on the new Clermont phylotyping method. Biomed. Res. Int. 2015: 846219. 2015.

JOHNSON, J.R.; STELL, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181: 261–272. 2000.

KABIR, S.M. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns, Int. J. Environ. Res.Public Health. 7: 89–114. 2010.

KAPER, J.; NATARO, J.; MOBLEY, H. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2:123–140. 2004.

KATHAYAT, D.; LOKESH, D.; RANJIT, S.; RAJASHEKARA, G. Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathog. 10: 467. 2021.

KOGA, V.L.; RODRIGUES, G.R.; SCANDORIEIRO, S.; VESPERO, E.C.; OBA, A.; DE BRITO, B.G.; DE BRITO, K.C.; NAKAZATO, G.; KOBAYASHI, R.K. Evaluation of the Antibiotic Resistance and Virulence of Escherichia coli Strains Isolated from Chicken Carcasses in 2007 and 2013 from Paraná, Brazil. Foodborne Pathog. Dis. 12: 479–485. 2015.

KRISHNEGOWDA, D.N., SINGH, B.R.; MARIAPPAN, A.K.; MUNUSWAMY, P.; SINGH, K.P.; SAMINATHAN, M.; REDDY, M.R. Molecular epidemiological studies on avian pathogenic Escherichia coli associated with septicemia in chickens in India. Microb. Pathog. 162: 105313. 2022.

LEVY, S. Reduced antibiotic use in livestock: how Denmark tackled resistance. Environ. Health Perspect. 122: A160–A165. 2014.

LOGUE, C.M.; WANNEMUEHLER, Y.; NICHOLSON, B.A.; DOETKOTT, C.; BARBIERI, N.L.; NOLAN, L.K. Comparative analysis of phylogenetic assignment of human and avian ExPEC and fecal commensal Escherichia coli using the (previous and revised) Clermont phylogenetic typing methods and its impact on avian pathogenic Escherichia coli (APEC) classification. Front. Microbiol. 8: 283. 2017.

MALUTA, R.P.; LOGUE, C.M.; CASAS, M.R.T.; MENG, T.; GUASTALLI, E.A.L.; ROJAS, T.C.G.; DA SILVEIRA, W.D. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS One. 9: e105016. 2014.

MANGES, A.R. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin. Microbiol. Infect. 22: 122–129. 2016.

MEHAT, J.W.; VAN VLIET, A.H.; LA RAGIONE, R.M. The avian pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathol. 50: 402–416. 2021.

MICENKOVÁ, L.; BOSÁK, J.; ŠTAUDOVÁ, B.; KOHOUTOVÁ, D.; ČEJKOVÁ, D.; WOZNICOVÁ, V.; VRBA, M.; ŠEVČIKOVÁ, A.; BUREŠ, J.; ŠMAJS, D. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. Microbiol. 5: 490–498. 2016.

NAKAZATO, G.; CAMPOS, T.A.D.; STEHLING, E.G.; BROCCHI, M.; SİLVEİRA, W.D.D. Virulence factors of avian pathogenic Escherichia coli (APEC). Pesqui. Vet. Bras. 29: 479–486. 2009.

NOLAN, L.K.; BARNES, H.J.; VAILLANCOURT, J.P.; ABDUL-AZIZ, T.; LOGUE, C.M. Colibacillosis. Dis. Poult. 13: 751–805. 2019.

OSMAN, K.M.; KAPPELL, A.D.; ELHADIDY, M.; EL MOUGY, F.; EL-GHANY, W.A.A.; ORABI, A.; YOUSEF, H.M. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: a risk to public health and food safetyi. Sci. Rep. 8: 1–14. 2018.

OZAWA, M.; HARADA, K.; KOJIMA, A.; ASAI, T.; SAMESHIMA, T. Antimicrobial susceptibilities, serogroups, and molecular characterization of avian pathogenic Escherichia coli isolates in Japan. Avian Dis. 52: 392–397. 2008.

PASQUALI, F.; LUCCHI, A.; BRAGGIO, S.; GIOVANARDI, D.; FRANCHINI, A.; STONFER, M.; MANFREDA, G. Genetic diversity of Escherichia coli isolates of animal and environmental origins from an integrated poultry production chain. Vet. Microbiol. 178: 230–237. 2015.

RAMADAN, H.; AWAD, A.; ATEYA, A. Detection of Phenotypes, Virulence Genes and Phylotypes of Avian Pathogenic and Human Diarrheagenic Escherichia coli in Egypt. JIDC. 10: 584–591. 2016.

RODRIGUEZ-SIEK, K.E.; GIDDINGS, C.W.; DOETKOTT, C.; JOHNSON, T.J.; FAKHR, M.K.; NOLAN, L.K. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiol. 151: 2097–2110. 2005.

RUŽAUSKAS, M.; ŠIUGŽDINIENĖ, R.; KRIKŠTOLAITIS, R.; VIRGAILIS, M.; ZIENIUS, D. Prevalence and antimicrobial resistance of E. coli isolated from chicken liver sold in retail markets. Vet. ir Zoot. .52: 67–72. 2010.

SARBA, E.J.; KELBESA, K.A.; BAYU, M.D.; GEBREMEDHIN, E.Z.; BORENA, B. M.; TESHALE, A. Identification and antimicrobial susceptibility profile of Escherichia coli isolated from backyard chicken in and around ambo. Central Ethiopia. BMC Vet. Res. 15: 85. 2019.

SAROWSKA, J.; FUTOMA-KOLOCH, B.; JAMA-KMIECIK, A.; FREJ-MADRZAK, M.; KSIAZCZYK, M.; BUGLA-PLOSKONSKA G.; CHOROSZY-KROL, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog. 11: 10. 2019.

SKYBERG, J.A.; JOHNSON, T.J.; JOHNSON, J.R.; CLABOTS, C.; LOGUE, C.M.; NOLAN, L.K. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect. Immun. 74: 6287–6292. 2006.

TENAILLON, O.; SKURNIK, D.; PICARD, B.; DENAMUR, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8: 207–217.2010.

WANG, X.M.; LIAO, X.P.; ZHANG, W.J.; JIANG, H.X.; SUN, J.; ZHANG, M. J.; LIU, Y.H. Prevalence of serogroups, virulence genotypes, antimicrobial resistance, and phylogenetic background of avian pathogenic Escherichia coli in south of China. Foodborne Pathog. Dis. 7: 1099–1106.

Publicado
2022-08-28
Cómo citar
1.
Özavci V, Yüksel-Dolgun HT, Kirkan Şükrü. Caracterización filogenética y determinación de la susceptibilidad a los antibióticos de cepas patógenas de Escherichia coli aviar aisladas de órganos viscerales de pollos de engorde. Rev. Cient. FCV-LUZ [Internet]. 28 de agosto de 2022 [citado 20 de abril de 2024];32:1-. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/38633
Sección
Medicina Veterinaria