DFT study of non-linear optical properties of derivatives of diphosphaferrocene
Abstract
In this work, a preliminary study of the non-linear optical properties (NLO) of diphosphaferrocene derivatives was carried out at the DFT level. These properties were determined with the BLYP method and the DNP base set, implementing the finite field formalism based on the Kurtz equations. In general, the results obtained show that the effects of substituents on the phospholyl ring of diphosphaferrocene generate favorable increases in optical properties. Likewise, by generating a push-pull effect in a phospholyl ring of diphosphaferrocene, a high increase in NLO properties is observed. On the other hand, when the -NO2 group is introduced to the 2-styryl-diphosphaferrocene complex to form the push-pull system: (E)-2-(4-nitrophenyl)-2-ethenyl-diphosphaferrocene, it is observed that the properties are increase considerably, being the complex with the highest optical responses, which can be attributed to the strong attractor character of the nitro group, since the intramolecular charge transfer coincides with the orientation of the dipole moment, as has been reported in p -nitroaniline. Finally, diphosphaferrocene derivatives could be considered as molecular candidates for the design and creation of new materials in NLO.
Downloads
References
SHEN Y.R. Encyclopedia of Materials: Science and Technology, Nonlinear Optical Susceptibilities, ScienceDirect, California, (USA). 6249-6255. 2008.
VALENTE A., ROYER S., NARENDRA M., SILVA T.J.L., MENDES P.J.G., ROBALO M.P., ABREU M., HECK J., GARCIA M.H. J. Organomet Chem 736(0): 42-49. 2013.
MATA J.A., PERIS E., ASSELBERGHS I., VAN BOXEL R., PERSOONS A. New J Chem 25(2): 299-304. 2001.
MATA J.A., PERIS E., ASSELBERGHS I., VAN BOXEL R., PERSOONS A. New J Chem 25(8): 1043-1046. 2001.
JIA J., CUI Y., HAN L., SHENG W., LI Y., GAO J. Dyes Pigm 104(0): 137-145. 2014.
MORRALL J.P., DALTON G.T., HUMPHREY M.G., SAMOC M., WEST A.F.H., MARK J.F. Adv Organomet Chem 61-136. 2007.
KAUR S., KAUR M., KAUR P., CLAYS K., SINGH K. Coord Chem Rev 343(0):185-219. 2017.
URDANETA J., SOSCÚN H., OCANDO A., CAMPOS A. Rev Bases de la Ciencia 3(3): 11-18. 2018.
FLOCH P.L. Coord Chem Rev 250(5–6): 627-681. 2006.
RÉAU R., DYER P.W. Phospholes. Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, London (England). 1029- 1147. 2008.
LIYANAGE P.S., DE SILVA R.M., DE SILVA K.M.N. J Mol Struc-THEOCHEM 639(1–3): 195-201. 2003.
BABGI B.A., AL-HINDAWI A., MOXEY G.J., ABDUL RAZAK F.I., CIFUENTES M.P., KULASEKERA E., STRANGER R., TESHOME A., ASSELBERGHS I., CLAYS K., HUMPHREY M.G. J Organomet Chem 730(0): 108-115. 2013.
KURTZ H.A., STEWART J.J.P., DIETER K.M. J Comput Chem 11(1): 82-87. 1990.
CLAYS K., PERSOONS A. Rev Sci Instrum 63(6): 3285-3289. 1992.
BECKE A.D. Phys Rev A 38(6): 3098-3100. 1988.
LEE C., YANG W., PARR R.G. Phys Rev B 37(2): 785-789. 1988.
BOCCIA A., MARRANI A.G., STRANGES S., ZANONI R., ALAGIA M., COSSI M., IOZZI M.F. J Chem Phys 128(15): 154315(1-9). 2008.
MATSUZAWA N., SETO J.E., DIXON D.A. J Phys Chem A 101(49): 9391-9398. 1997.
DELLEY, B. J Chem Phys 92(1): 508-517. 1990.
DELLEY, B. J Chem Phys 113(18): 7756-7764. 2000.
MILLEFIORI S., ALPARONE A. Chem Phys Lett 332(1–2): 175-180. 2000.
OUDAR J.L., CHEMLA D.S. J Chem Phys 66(6): 2664-2668. 1977.