Physicochemical and microbial characterization of an oil pit from Zulia state, Venezuela
Abstract
Oil pits are poorly designed soil excavations used to store hazardous wastes, which can leak into the environment causing serious damage to the ecosystem. They are considered a hostile environment for life due to the toxic compounds they possess, but there are microbial communities that adapt to this environment and can be used for their recovery. In this work, samples of water, sediment and oil from an oil well in the state of Zulia, Venezuela, were characterized physicochemically and microbiologically using standardized laboratory techniques. The water presented the following physicochemical characteristics: temperature: (30 ± 2)ºC, pH: 5.10-5.90, total alkalinity: 8.00 mg CaCO3 / L, Salinity: 0 UPS, BOD5.20: <0.10 mg/L, COD: 184.6-215.4 mg/L, dissolved oxygen: 8.00-8.97 mg/L, SST: 61-235 mg/L, SSV: 35-47 mg/L, nitrites: <0.0020, nitrates: <0.025 mg/L, NTK: 2.78-5.57 mg/L, orthophosphates: <0.15 mg/L, total phosphorus: 0.47-0.74 mg/L, HTP: 673.4- 821.7 mg/L, saturated: 86.73%, aromatics, resins and asphaltenes: <4.5%, Ni and V: <0.02 mg/L. The sediment presented organic matter: (4.09 ± 0.95)%, NTK: 728.33 ± 45.25 mg/Kg, total phosphorus: 40.37 ± 11.80 mg/Kg, crude in sediment: 13.05 ± 0.75%, saturated: 48.5%, aromatic: 33.5%, resins: 6.5% and asphaltenes: 11.5%. In crude oil, the following were determined: saturated: 48.1%, aromatic: 23.6%, resins: 19.4%, and asphaltenes: 8.9%. Microbial populations were quantified obtaining: (4.15 ± 1.43) x 106 org/mL of photosynthetic microorganisms (microalgae and cyanobacteria), (2.71 ± 0.49) x 107 CFU/mL of fungi in petrolized water and (2.25 ± 0.24) x 106 CFU/g in sediment, (2.09 ± 1.50) x 101 org/mL of rotifers in water and a bacterial population of (2.45 ± 0.34) x 105 CFU/mL in petrolized water and (2.83 ± 0.26) x 105 CFU/g in sediment. It is concluded that despite the fact that physicochemical conditions such as acidic pH in the water, low concentration of nutrients and organic matter, and high concentration of hydrocarbons were present in the oil well, microbial populations adapted to these conditions were found that could be used as biocatalysts for the bioremediation of the oil well.
Downloads
References
ABED R., SAFID N., KÖSTER J, EL-NAHHAL Y., RULLKÖTTER, J., GARCIA-PICHEL, F. Appl. Environ. Microb. 68 (4):1674-1683. 2002.
ITOPF. Muestreo y monitorización de derrames de hidrocarburos en el medio marino. Documento de información técnica 14. ITOPF Ltd. Londres (Reino Unido). 2-12. 2012. Disponible en: https://www.itopf.org/uploads/ translated/Final_TIP_14_2012_SP.pdf. Fecha de consulta: 15/10/2016.
MC FADDIN J. Pruebas Bioquímicas para la Identificación de Bacterias de importancia Clínica. Tercera Edición. Editorial Médica Panamericana. Buenos Aires (Argentina). 451-673. 2003.
GUILLARD R. R. L. Handbook of physiological methods. Culture methods and growth measurements. (Ed. Stein J. R.). Cambridge University Press, Cambridge, (USA). 1- 280. 1973.
AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for examination of water and wastewater. (Eds. Eaton A. D., Clesceri L. S., Franson M. H. A., Rice E. W., Greenberg, A. E.). 21th Edition. American Public Health Association. New York. (USA). 1- 1427. 2005.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method. Designation: D 2007-98. Annual Book of ASTM Standards, 14.02. Philadelphia (USA). 1-4. 1998.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). Standard test method for moisture, ash and organic matter of peat and other organic soils. Designation: D 2974-00. West Conshohocken, Pensilvania (USA). 2000.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). Standard test method for determination of nickel, vanadium, iron and sodium in crude oil and residual fuels by flame atomic absorption spectrometry. Designation: D 5863-00a. West Conshohocken, Pensilvania (USA). 2016.
CASTRO, J. Manual de procedimientos para la preparación de soluciones en los laboratorios de caracterización y calidad del agua y operación plantas de tratamiento de aguas. Instituto Politécnico Nacional, Secretaría Académica, Dirección de Educación Media, Centro de Estudios Científicos y Tecnológicos “Miguel Othón De Mendizabal”. Ciudad de México (México). 6-8. 2013.
JOBSON A, COOK F. D., WESTLAKE D.W.S. Appl. Microb. 23 (6):1082-1089. 1972.
GARRITY G., BRENNER D. J., KRIEG N. R., STALEY, JAMES R. (Eds.) Bergey’s Manual of Systematic Bacteriology. Volume 2: The Proteobacteria Part B: The Gammaproteobacteria. Springer US. (USA). XXVIII, 1106. 2005.
CAMPBELL M. C., STEWART J. L. Identification of individual fungal isolates, (Eds. Tomasso, E., Zirken M.). The Medical Mycology Handbook. Jhong Wiley & Songs, New York, (USA). 1-436. 1980.
VALADEZ F., ROSILES-GONZÁLEZ G., CARMONA J. Cryptogamie. 31(3): 305-319. 2010.
MYERS P. R., ESPINOSA C. S., PARR T., JONES G. S., HAMMOND H., DEWEY T. A. The Animal Diversity Web (Online). Phylum Rotifera (rotifers). 2006. Disponible en: http://www.animaldiversity. Fecha de consulta: 16/12/2018).
EWEIS J. B., ERGAS S., CHANG D., SCHROEDER E. D. Principios de Biorrecuperación (Biorremediation). Mc Graw Hill. Madrid (España). 76-130.1999.
MADIGAN M., MARTINKO J., BENDER K., BUCKLEY D & STAHL D. Brock. Biología de los Microorganismos 14a Edición. Pearson Educación. Madrid (España). 77-183. 2015.
GACETA OFICIAL DE LA REPÚBLICA DE VENEZUELA, Año CXXIII-Mes III Nº 5.021 Extraordinario. Decreto, 883. Normas para la clasificación y el control de la calidad de los cuerpos de agua o efluentes líquidos. Caracas (Venezuela).1995.
ITAH, A.Y., ESSIEN, J.P. World J. Microb. Biot. 21: 1317-1322.2005.
LEONY.,DESISTOA.,INOJOSAY.,MALAVERN., NARANJO-BRICEÑO L. Rev. Est. Transdisciplin. 1(2): 12-25. 2009.
ABALDE J., CID A., FIDALGO P., TORRES E., HERRERO C. Microalgas: cultivo y aplicaciones Primera Edición. Editorial Universidade da Coruña. Coruña. (España). 20-278.1995.
SULBARÁN S. Microalgas presentes en fosas de desechos petrolizados del estado Zulia. (Trabajo Especial de Grado para obtener el título de Licenciada en Biología). Facultad Experimental de Ciencias. Universidad del Zulia. Maracaibo (Venezuela). 34-98. 2005.
PATEL J. G., KUMAR N., KUMAR R. N, KHAN S. M. Polycycl. Arom. Comp. 36 (1):72-87, 2016.
ALBERT E., TANEE FBG, J. Microb. Biot.. 1(3): 140-147. 2011.
EL-SHEEK M. M., HAMOUDA R. A., NIZAM A. A. Int. Biodeter. Biodegr. 2: 67-72. 2013.
AKSMANN A., POKORA W., BASCIK- REMISIEWICZ, A., DETTLAFF A. Ecotox. Environ. Safe. 110: 31-40. 2014.
SUBASHCHANDRABOSE S. R., MEGHARAJ M., VENKATESWARLU K., NAIDU R. Environ. Sci. Pollut. R. 22: 8876–8889. 2015.
BÁCSI I., GONDA S., B-BÉRES, V. Ecotoxicology 24: 823–834. 2015. Disponible en: https:// doi.org/10.1007/s10646-015-1427-7. Fecha de consulta 14/10/2016.
PENG C., WHALEE J., TEIMOURI H., NG J. C. J. Hazard. Mater 284 (2): 10-18. 2015.
MARUTHI, Y., HOSSAIN, K., THAKRE, S. Eur. J. Sust. Devel. 2(1): 42-57. 2013.
PERERA M., WIJAYARATHNA, D., WIJESUNDERA, S. BMC Microb. 19: 78-84. 2019.
GOVARTHANAN M., FUZISAWA S., HOSOGAI T., CHANG Y. RSD. Adv. 7:20716-20723. 2017.
ARAUJO J., YEGRES C. F., BARRETO C. G., ANTEQUERA A., DE POOL B., ROJAS Y. Rev. Cubana Quím. 28 (2): 703-735. 2016.
PERNÍA B., DEMEY J. R., INOJOSA Y., NARANJO-BRICEÑO L. Rev. Latinoam. Biotecnol. Amb. Algal. 3(1):1-39. 2012.
IKENAKA Y., SAKAMOTO M., NAGATA T., TAKAHASHI H., MIYABARA Y., HANAZATO T., ISHIZUKA M., ISOBE T., KIM J. W., CHANG K. H. J. Toxicol. Sci. (38): 131-136.2013.
PARK C., HAGIWARA A., GIPARK H., LEE J. S. Comp. Biochem. Phys. B. 29: 185-192. 2019.
RODRÍGUEZ-RODRÍGUEZ C. E., RODRÍGUEZ- CAVALLINI E., BLANCO R. Rev. Biol. Trop. 57(3): 489-504. 2009.
ARAUJO I., MONTILLA M., CÁRDENAS C., HERRERA L., ANGULO N., MORILLO G. Interciencia. 31(4): 268-275. 2006.
HOŠKOVÁ M., JEŽDÍK R, SCHREIBEROVÁ O., CHUDOBA J., ŠÍR M., ČEJKOVÁ A., MASÁK J., JIRKŮ V., ŘEZANKA T. J. Biotechnol. 193 (10): 45-51. 2015.
AHAMED F., HASIBULLAH M., ANWAR M.N. Bangladesh J. Microbiol. 27(1):10-13. 2010.
VASILEVA-TONKOVA E., GESHEVA Y. V. Curr. Microbiol. 54 (2):136-41. 2007.
HITOSHITO I., HOSOKAWA R., MORIKAWA M., OKUYAMA H. Int. Biodeter. Biodegr. 61 (3):223- 232. 2008.
MIJAYLOVA P., MOELLER, G., BUSTOS, C. Water Sci.Technol. 58(1): 29-36. 2008.
HARWATI T., KASAI Y., KODAMA Y., SUSILLANINGSIH D., WATANABE K. Microbes Environment. 22 (4), 412-415.2007.
BHASHEER S. K., UMAVATHI, S., BANUPRIYA D., THANGAVEL M., THANGAM Y. Int.J. Curr. Microb. Appl. Sci.3 (11):363-369. 2014.
MOHANTY S., MUKHERJI S. Appl. Microbiol. Biot. 94:193–204.2012.
BAYOUMI R. A. J. Appl. Sci. Res. 5(2):197- 211.2009. PASUMARTHI R., CHANDRASEKARAN S., MUTNURI S. Mar. Pollut. Bull. 76 (1–2): 276-282. 2013.
VARJANI S. J., UPASANI V.Bioresource Technol. 222:195-201. 2016.
KACZOREK E., SAŁEK K., GUZIK U., JESIONOWSKI T., CYBULSKI Z. Chemosphere. 90(2): 471-478.2013.
SINGH P., TIWARY B. N. Biocatal. Agr. Biotechnol.10: 20-29. 2017.
POI G., SHAHSAVARI E., ABURTO-MEDINA A., MOK P. C., BALL A. S. J. Environ. Manage. 214: 157-163. 2018.
LIU R., LI J., GE Z. Procedia Environ. Sci. 31: 947- 953. 2016.
YU J., CAI W., ZHAO S., WANG W., CHEN J. Chinese J. Chem. Eng. 21 (7): 781-786. 2013.
LU M., ZHANG Z., WEI S., SUN S. J. Petrol. Sci. Technol. 27: 1895-1905. 2011.
ESKANDARIS.,HOODAIM.,TAHMOURESPOUR A., ABDOLLAHL A., BAGHI T. M., ESLAMIAN S., ALI-ASKARI K. O. J. Geograp. Environ. Eart. Sci. 11 (2): 1-11. 2017.