Comparação de modelos geomecânicos obtidos do DInSAR com os registros de poços existentes para o reservatório Lower Lagunillas-07 no Lago Maracaibo, Venezuela

Palavras-chave: DINSAR, subsidência, compactação, caracterização geomecânica, geopressões

Resumo

 

O campo LGINF-07, localizado no campo Lagunillas Lago, na bacia do Lago Maracaibo, abrange aproximadamente 200 mil m². Este reservatório apresenta complexidade estratigráfica e contém petróleo bruto de 18° API, o que representa 73% do volume total de óleo original in place (POES). O mecanismo de produção predominante é a compactação da rocha, o que tem levado ao afundamento progressivo da superfície na área de interesse (subsidência). Para atualizar o monitoramento da subsidência superficial, a técnica DINSAR foi aplicada a todas as plataformas de petróleo. Os valores de subsidência foram comparados com os valores de produção nas zonas mais afetadas por este fenómeno. Um modelo geomecânico 1D atualizado foi gerado, combinando os resultados do DInSAR com o modelo de geopressão, os parâmetros mecânicos elásticos dinâmicos e as magnitudes de campo e tensão presentes no reservatório, utilizando perfis petrofísicos e sônicos recentes do poço LL-4034 e a caracterização geomecânica de amostras de núcleo do poço LL-3548. Os resultados mostraram que o reservatório LGINF-07 apresenta regime de tensões normais (σV > σH > σh). Este novo modelo foi cruzado com o modelo geomecânico existente, gerado a partir de correlações, resultando em um modelo mais preciso.

Downloads

Não há dados estatísticos.

Biografias Autor

Dario Antonio Gonzalez Freites

Asesor de datos geomáticos con sede en Houston, Estados Unidos, en Oxy.  Antes de ocupar su puesto actual, González fue especialista en topografía y geomática en The Bergaila Companies. Ingeniero geodésico con una maestría en Geología del Petróleo, que aporta una combinación única de habilidades técnicas y conocimiento de la industria a su trabajo. Su capacidad para traducir datos geoespaciales complejos en información procesable ha sido fundamental para ayudar a Oxy a tomar decisiones informadas y alcanzar sus objetivos operativos.

Orlando Zambrano Mendoza

PhD en Ingeniería de Petróleo por Texas A&M University, Magister Scientiarum en Ingeniería Petróleo por la Universidad del Zulia e Ingeniero de Petróleo por la Universidad del Zulia. Profesor Emérito Universidad del Zulia. Investigador A PEII

Jorge Luis Barrios

Dr. en Ciencias de la Universidad Rafael Belloso Chacín, MSc Eng Petroleum de la Universidad del Zulia. Se ha desempeñado como Ingeniero Geomecánico de la Gerencia de Estudios Integrados de Yacimientos de PDVSA Occidente y es instructor en el área deGeomecánica aplicada a estabilidad de Hoyos y yacimientos petroleros, adicionalmente es Profesor del departamento de postgrado de La Universidad del Zulia, ha sido tutor industrial de tesis de pregrado. 

Referências

Alhogaraty E., Gaber S., Hagag A. (2022). Surface deformation reveals dynamic reservoir behaviors. Oil & Gas Journal. 14280891. Volume 120.8, p. 35-40.

Angarita M., Graves E., Grapenthin R., Grigg J., Rinehart A. (2023). InSAR-observed surface deformation in New Mexico’s Permian Basin shows threats and opportunities presented by leaky injection Wells. Scientist report of Nature, 17308, p. 6-11.

Arenas I., (2018) Cuantificación de la subsidencia de la costa oriental del lago de Maracaibo a través de interferometría diferencial con radar de apertura sintética. Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado. Maracaibo, Venezuela, p. 46-47.

Barrios J. González D. Zambrano O. (2016). Comparación del modelo geomecánico del yacimiento Lagunillas Inferior 07 con el modelo petrofísico para explicar el fenómeno de subsidencia Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado. Maracaibo, Venezuela, p. 112-127.

Barrios J., Sanchez E. (2013). Manual de Geomecánica aplicada a la Industria Petrolera. PDVSA-Intevep, Venezuela. Sección 3, p. 1-34.

Briceño L. (2009). Modelo estructural y estratigráfico basado en la interpretación sísmica del yacimiento Lagunillas inferior LL07. Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado. Maracaibo, Venezuela, p. 13-14.

Bevc D., Mali G., Milliken W., Nihei K., Shabelansky A., Zhang Z. (2022). Geomechanical Interferometry: Theory and Application to Time-Lapse Interferometric Synthetic Aperture Radar Data for Separating Displacement Signal Between Overburden and Reservoir Sources. Journal of SPE-OnePetro. SPE J. 27 (06): 3773–3782.

Casu, F.; Manzo, M. y Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data Remote Sensing of Environment, p. 102, 195-210

Chrzanowski A. and Chen Y. Q. (1991). Use of the Global Positioning System (GPS) for Ground Subsidence Measurements in Western Venezuela Oil Fields, Proceedings of the Fourth
International Symposium on Land Subsidence, No. 200, p. 419- 431.

Ferretti, A.; Prati, C. y Rocca, F. (2001). “Permanent Scatterers in SAR Interferometry”, IEEE Transactions on Geoscience and Remote Sensing, 39, 8-20.

Fjær E., Holt R.M., Horsrud P., Raaen A.M. (2008). Petroleum Related Rock Mechanics, 2nd Edition. Elsevier. Amsterdam, The Netherlands, p. 391-426.

Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 1989;94 (B7):9183–91.

Geertsma J. (1973). Land Subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology. No. 03730, p. 734-744.

He J., Li H., Misra S. (2019). Data-Driven In-Situ Sonic-Log Synthesis in Shale Reservoirs for Geomechanical Characterization. Journal of SPE – OnePetro. Res Eval & Eng 22 (04):. SPE-191400-PA, p. 1225–1239.

Leal J. (1989). Integration of GPS and Leveling for Subsidence Monitoring Studies at Costa Bolivar Oil Fields, Venezuela. Technical Report No. 144, University of New Brunswick, p. 18-89.

Li B. Khoshmanesh M. Avouac Jean-Philippe. (2021). Surface Deformation and Seismicity Induced by Poroelastic Stress at the Raft River Geothermal Field, Idaho, USA. Geophysical Research Letters, 48, e2021GL095108. https://doi.org/10.1029/2021GL095108, p. 4-9.

Liu G., Tong J., Wang X., Xiang W., Yuan H., Zhang C., Zhang R., Zhang X., Zhang Y. (2023). Geodetic imaging of ground deformation and reservoir parameters at the Yangbajing Geothermal Field, Tibet, China. Geophysical Journal International, p. 279-394.

Lundgren, P.; Usai, S.; Sansosti, R.; Lanari, R.; Tesauro, M.; Fornaro, G. y Berardino, P. (2001). “Modeling surface deformation observed with SAR Interferometry at Campei Flegrei Caldera”, J. Geophysical. Res., 106, 19355-19367.

Ju X., Yang J., Yang Y., Xu L. (2023) “Influence of geological factors on surface deformation due to hydrocarbon exploitation using time-series InSAR: A case study of Karamay Oilfield, China”, Journal of Frontiers in Earth Sciences. 10.3389/feart.2022.983155, p. 6-12.

Murria J. (1991). Subsidence Due to Oil Production in Western Venezuela: Engineering Problems and Solutions. Proceedings of the Fourth International Symposium on Land Subsidence, No. 200, p. 129-139.

Murria J. (2007). Ground Subsidence Measuring, Monitoring and Modeling in the Costa Oriental Oilfields in Western Venezuela: The Last Fifty Years, 8th International Conference “Waste Management, Environment Geotechnology and Global Sustainable Development (ICWMEGGSD’07-GzO’07)”, p. 337-372.

Teatini P., Comola, F., Janna C. (2013). Reservoir uncertainties resolved via Global Optimization Strategies coupling SAR interferometry and geomechanical modelling - The Tengiz case study. Offshore Mediterranean Conference & Exhibition 2013, p. 4-10.

Torres L. (2009). Construcción del Modelo Geomecánico del Yacimiento Lagunillas Inferior 07. Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado. Maracaibo, Venezuela, p. 78-88.

Pepe, A., Callo, F. (2017). A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth's surface displacements. Appl. Sci. 7 (12), 1264, p. 2-13.

Quintana, G. (2021). La interferometría SAR (Synthetic Aperture Radar) para el estudio de las deformaciones de la corteza, derivadas de la geodinámica. Ejemplos de aplicación: Kumamoto (Japón), Valencia y Costa Oriental del Lago de Maracaibo (Venezuela). Trabajo Final de Grado de Magister Scientiarum mención Ciencias Geológicas. Postgrado en Ciencias Geológicas, Universidad Central de Venezuela, p. 24-36.

Raspini F. Caleca F, Festa D., Confuorto P., Bianchini F. (2022). Review of satellite radar interferometry for subsidence análisis. Earth Science Reviews. 10.1016/j.earscirev.2022.104239, p 2-5.

Shirzaei m., Mang M., Zha G. (2019). Hydraulic properties of injection formations constrained by surface deformation. Earth and Planetary Science Letters Vol 515, p. 125-134.

Usai, S. (2001). A new approach for long term monitoring of deformation by differential SAR interferometry”, Tesis Doctoral, Delft Univ. Press, Delft, Países Bajos, p. 7-22.

Vasco D., Dixon T., Ferreti A., Samdonov S. (2020) Monitoring the fate of injected CO2 using geodetic techniques. The Leading Edge Journal, Vol 39, #1. https://doi.org/10.1190/tle39010029.1, p. 30-36.

Walford J. (1995). GPS Subsidence Study of The Costa Bolivar Oil Fields, Venezuela. Technical Report No. 174, University of New Brunswick, p. 1-11.

Zoback, M.D. (2010). Reservoirs Geomechanics. Cambridge University Press, p. 167-196.
Publicado
2024-12-21
Como Citar
Gonzalez Freites, D. A., Zambrano Mendoza, O. e Barrios, J. L. (2024) «Comparação de modelos geomecânicos obtidos do DInSAR com os registros de poços existentes para o reservatório Lower Lagunillas-07 no Lago Maracaibo, Venezuela», Revista Técnica da Faculdade de Engenharia da de Zulia, 47, p. e244709. doi: 10.22209/rt.v47a09.
Secção
Artículos de Investigación