Antibacterial property of cancrinite-type zeolites exchanged with silver and copper cations.

  • Freddy Ocanto Unidad de Síntesis de Materiales y Metales de Transición, Departamento de Química, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, Apartado 3336, Valencia 2005, Venezuela.
  • Carlos F. Linares Unidad de Síntesis de Materiales y Metales de Transición, Departamento de Química, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, Apartado 3336, Valencia 2005, Venezuela
  • Edith Figueredo Unidad de Síntesis de Materiales y Metales de Transición, Departamento de Química, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, Apartado 3336, Valencia 2005, Venezuela
  • Caribay Urbina de Navarro Centro de Microscopía Electrónica Dr. MitsuoOgura, Escuela de Biología, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 0141-A,Caracas 1020-A, Venezuela.
Palabras clave: nitrate cancrinite, silver, antibacterial, E. coli, P. aeruginosa.

Resumen

Ag+, Cu2+ or Ag+-Cu2+ ion-exchanged nitrate-sodium cancrinite-type zeolites were tested as bactericidal agents against Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). Nitrated-sodium cancrinite was synthesized using solutions of NaOH and NaNO3, and using zeolite X as Al and Si sources under hydrothermal conditions at 80 ºC and autogenous pressure during 40 h. Solids were characterized by powder X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and chemical analysis. Then, different masses of these ion-exchanged zeolites were mixed with the microorganisms. Results showed that E. coli was more sensitive than P. aeruginosa, and 2.5 mg of Ag+ or Cu2+-Ag+ cancrinites were enough to inhibit the E. coli growth, while for P. aeruginosa larger amounts of Ag+ (5 mg) and Ag+-Cu2+ (20 mg) of the cancrinites were necessary. Cu-zeolites did not show bactericidal activity. Different treatments times between these microorganisms and the modified zeolites were also investigated. A 20 min treatment was enough to inhibit totally the bacterial growth. As a reference system zeolite A exchanged with these metals was used.

Descargas

La descarga de datos todavía no está disponible.

Citas

Barrer R.M and Cole J.F.: “Chemistry of soil minerals. Part VI. Salt entrainment by sodalite and cancrinite during their synthesis”. J. Chem. Soc. A., (1970) 1516-1523.

Lindner G., Massa W and Reinen D.J.: “Structure and Properties of Hydrothermally Synthesized Thiosulfate Cancrinite”. J. Solid State Chem., Vol. 117, Nº 2, (1995) 386-391.

Barrer R.M., Cole J.F. and Villiger H.: “Chemistry of soil minerals. Part VII. Synthesis, properties, and crystal structures of salt-filled cancrinites. J. Chem. Soc. A., (1970) 1523-1531.

Linares C. F., Simon C. and Weller M. T.: “Synthesis and characterization of the oxalate cancrinite-type zeolite”. Microporous Mesoporous Mater., Vol. 137, Nº 1-3, (2011) 32-35.

Linares C.F., Sánchez S., Urbina de Navarro C., Rodríguez K. and Goldwasser M.R.: “Study of cancrinite-type zeolites as possible antacid agents”. Microporous Mesoporous Mater., Vol. 77, Nº 2-4, (2005) 215-221.

Linares C.F., Colmenares M., Ocanto F. and Valbuena O.: “Human bile sorption by cancrinite-type zeolites”. Mater. Sci. Eng., C, Vol. 29, Nº 1, (2009) 350–355.

Ocanto F., Linares C.F., Rivero A., Hurtado D., Guanche R. y Cardozo X.: “Un posible uso de las zeolitas cancrinita modificadas como membranas de diálisis para la adsorción de creatinina, urea y p-cresol”. Observador del Conocimiento. Vol. 1, Nº 1, (2013) 38-45.

Rivera-Garza M., Olguín M.T., García-Sosa I., Alcántara D. and Rodríguez-Fuentes G. “Silver supported on natural Mexican zeolite as an antibacterial material”. Microporous Mesoporous Mater., Vol. 39, Nº 3, (2000) 431-444.

Milán Z., de Las Pozas C., Cruz M., Borja R., Sánchez E. Ilangovan K., Espinosa Y. and Luna B., “The removal of bacteria by modified natural zeolites”. J. Environ. Sci. Health., Part A, Vol. 36, Nº 6, (2001) 1073-1087.

Inoue Y., Hoshino M., Takahashi., H., Noguchi., T, Murata T., Kanzaki Y., Hamashima H. and Sasatsu M.: “Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions”. J. Inorg. Biochem., Vol. 92, Nº 1, (2002) 37–42.

Niira R, Yamamoto T., Uchida M. Antibiotic Zeolite-Containing Film. (1996). US Patent No: 5,556,699.

Kaali P., Pérez-Madrigal M. M., Strömberg E., Aune R. E., Czel Gy. and Karlsson S.: “The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane”. eXPRESS Polym. Lett., Vol. 5, Nº 12, (2011) 1028-1040.

Krishnani K.K., Zhang Y., Xiong L., Yan Y., Boopathy. and Mulchandani A.: “Bactericidal and ammonia removal activity of silver ion-exchanged zeolite”. Bioresour. Technol., Vol.117, (2012) 86-91.

Zavareh S., Farrokhzad Z. and Darvishi F.: “Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water”. Ecotoxicol. Environ. Saf., Vol. 155, Nº 1-8, (2018).

Yan H., Zeng X., Guo L., Lan J., Zhang L. and Cao D.: “Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks”. Sep. Purif. Technol. Vol. 194, (2018) 462-469.

Moneim M., Abdelmoneim A., Geies A. and Farghaly S.: “Synthesis, characterization and application of cancrinite in ground water treatment from Wadi El-Assiuti area, Assiut-Egypt”. Ass. Univ. Bull. Environ. Res., Vol. 21, Nº 1, (2018) 23-40).

Peng X., Wang C., Ma B. and Chen Y.: “Removal of Pb(II) from aqueous solution using a new zeolite-type absorbent: Potassium ore leaching residue”. J. Environ. Chem. Eng., Vol. 6, Nº 6, (2018) 7138-7143.

Ocanto F., Álvarez R., Urbina de Navarro C., Lieb A. and Linares C.F.: “Influence of the alkalinity and NO3- /Cl- anionic composition on the synthesis of the cancrinite–sodalite system”. Microporous Mesoporous Mater., Vol. 116, Nº 1-3, (2008) 318-322.

Madigan M.T., Martinko J.M., Stahl D.A., Bender S., and Buckley D.: “Brock. Biología de los microorganismos”. Pearson Prentice Hall. Madrid. Decimocuarta Edición 2015.

Baerlocher Ch., McCusker| LB. and Olson D.H.: “Atlas of zeolites framework types” Ed. Elsevier, Amsterdam. Sixth Revised Edition 2007.

Treacy M.M. and Higgins J.B.: “Collection of Simulated XRD Powder Patterns for Zeolites” Ed. Elsevier, Amsterdam. Fourth Revised 2001.

Mintova S. and Barrier N.: “Verified Synthesis of Zeolitic Materials” Ed. Elsevier, Amsterdam. Third Revised Edition 2016.

Buhl J-Ch., Stief F., Fechtelkord M., Gesing T.M., Taphorn U. and Taake C.: “Synthesis, X-ray diffraction and MAS NMR characteristics of nitrate cancrinite Na7.6[AlSiO4]6(NO3)1.6(H2O)2”. J. Alloys Compd., Vol. 305, Nº 1-2, (2000) 93-102.

Flanigen E., H. Khatami, H. and Syzmansky, H.: “Infrared Structural Studies of Zeolite Frameworks”. Adv. Chem. Ser., Vol 101, (1971) 201-229

Barnes MC., Addai-Mensah J. and Gerson AR.: “The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor”. Microporous Mesoporous Mater., Vol. 31, Nº 3, (1999) 287-302.

Kwakye-Awuah B., Williams M., Kenward M. and Radecka I.: “Antimicrobial action and efficiency of silver-loaded zeolite X”. J. Appl. Microbiol., Vol. 104, (2008)1516-1524.

Feng Q., Wu J., Chen G., Cui F., Kim T. and Kim J.: “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus”. J. Biomed. Mater. Res., Vol. 52, Nº 4, (2000) 662-668.

Stewart L.; Thaqi D., Kobe B., McEwan A., Waldron K. and Djoko.: “Handling of nutrient copper in the bacterial envelope”. Metallmics ., Vol. 11, (2019) 50-63.

Nies D.: “The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans”. Metallmics., Vol. 8, (2016) 481-507.

Demirci S., Ustaoğlu Z., Yılmazer G., Sahin F. and Baç N.: “Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms” Appl. Biochem. Biotechnol., Vol. 172, Nº 3, (2014) 1652-1662

Gaceta Oficial Extraordinaria de la República de Venezuela Nº 5.021 Decreto N° 883. “Normas para la Clasificación y el Control de la Calidad de los Cuerpos de Agua y Vertidos o Efluentes Líquidos” (1995).

Publicado
2019-09-01
Cómo citar
Ocanto, F., Linares, C. F., Figueredo, E. y Urbina de Navarro, C. (2019) «Antibacterial property of cancrinite-type zeolites exchanged with silver and copper cations.», Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 42(3), pp. 143-151. Disponible en: https://produccioncientificaluz.org/index.php/tecnica/article/view/27424 (Accedido: 16abril2024).
Sección
Artículos de Investigación