
Rev. Téc. Ing. Univ. Zulia. Vol. 34, Nº 1, 77 - 85, 2011

On real-time velocity control of DC motors
by using computer-aided control system design

Marlen Meza-Sánchez1, Javier Moreno-Valenzuela2

1CICESE, Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, B.C., 22860,
Mexico. marmeza@cicese.mx.

2Instituto Politécnico Nacional-CITEDI, Ave. del Parque 1310, Mesa de Otay,
Tijuana, B.C., 22510, Mexico. Fax: +52 664 623 1388. moreno@citedi.mx

Abstract

In this paper, the advantages of a computer-aided control system design tool, specifically Matlab,
are addressed to achieve real-time velocity control of direct current (DC) motors. To this aim, an experi-
mental set-up is proposed, which avoids the use of a data acquisition board by employing the parallel port
and two microcontrollers to establish the data feedback between the computer and the DC motor. Atten-
tion to the concepts of fast computing and real-time computing is also paid. Experiments confirmed the
advantage of using a computer-aided control system design tool as well as the differences in the perfor-
mance of a control algorithm implemented using fast computing and real-time computing.

Key words: DC motor, velocity control, Matlab, fast computing, real-time computing.

Sobre control de velocidad en tiempo real de motores
de CD usando diseño de sistemas de control asistido

por computadora

Resumen

En este artículo, las ventajas de una herramienta de diseño de sistemas de control asistido por com-
putadora, específicamente Matlab, es discutida con el fin de lograr control de velocidad en tiempo real de
un motor de corriente directa (CD). Para lograr este fin, se propone una plataforma experimental la cual
evita de uso de una tarjeta de adquisición de datos al emplear el puerto paralelo y dos microcontroladores
para establecer la retroalimentación de datos entre la computadora y el motor de CD. Se presta especial
atención a los conceptos de computación rápida y computación en tiempo real. Los experimentos confir-
maron las ventajas de usar una herramienta para el diseño de sistemas de control así como las diferencias
entre las prestaciones de un algoritmo de control implementado usando computación rápida y
computación en tiempo real.

Palabras clave: motor de CD, control de velocidad, Matlab, computación rápida, computación en
tiempo real.

Introduction

A control designer must fulfill the following
steps in order to design a suitable control system
for a plant [1]: 1) design a controller, 2) analyze
and modify it if the specifications are not satis-
fied, 3) choose hardware and software and imple-

ment the controller, 4) test and validate the con-
trol system, and 5) tune the controller on line, if
necessary. To accomplish these steps, the use of
interactive multi-windowed computer-aids in in-
struction (interactive modules) is particularly
significant because it provides practical insight
into control system fundamentals. In essence, an

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

interactive module in real-time control systems is
a collection of graphical windows whose compo-
nents are active, dynamic and clickable. By using
a high-speed real-time computing platform it is
possible to implement many of the control algo-
rithms reported in papers that only consider the-
oretical aspects of modeling and control. More-
over, developments in automated code genera-
tion allow users to create real-time code from
graphical, control system simulation software
(e.g., Matlab/Simulink). These tools enable re-
searchers to focus on control system design, im-
plementation, and evaluation rather than on
time-consuming, low-level programming. In ad-
dition, a variety of educational/research plants
are now commercially available from different
vendors that capture the multidisciplinary na-
ture of the field (e.g., robot manipulator, inverted
pendulum, magnetic levitation, water tank, pH
control rig, helicopter, ball and beam, direct cur-
rent (DC) motor). However, despite the recent in-
terest in incorporating technological advance-
ments into control systems laboratory courses, a
control laboratory experience is not common-
place [2].

Frequently, many computer science and
electrical engineering students have the miscon-
ception about real-time computing is equivalent
to fast computing. The objective of fast comput-
ing is to minimize the average response of a given
set of tasks. However, the objective of real-time
computing is to meet the individual timing re-
quirement of each task. Rather than being fast,
the most important property of a real-time sys-
tem should be predictability; that is, its funda-
mental and timing behavior should be as deter-
ministic as necessary to satisfy the system speci-
fications. Fast computing is helpful in meeting
stringent timing specifications, but fast comput-
ing does not guarantee predictability [3]. There-
fore, if a controller is implemented believing that
fast computing can guarantee the achievement of
the control objective then the result can be com-
pletely different to the one expected.

In this paper, the problem of real time veloc-
ity control of DC motors is revisited. However,
novel ingredients are incorporated with a didac-
tic point of view. In first instance, state-of-the-art
PC technologies are combined to develop a sys-
tem-specific interactive real-time control system,

which are useful for enhancing both research
and education. Specifically, this paper describes
the velocity control of a DC motor by using a com-
puter-aided control system design tool consist-
ing in PC / WindowsXP / Matlab. Let us notice
that Matlab incorporates the Simulink and
Real-Time Workshop toolboxes, which permit to
the control system engineers and students to an-
alyze, design, and visualize the performance of
controllers via real-time. Through a user-friendly
graphical interface, users can modify the control-
ler and signal parameters on-the-fly contrary to
typical implementations where modifications are
code-based [4, 5]. Besides, one major feature of
the Matlab environment is the ability to access a
number of toolboxes (e.g., optimization, system
identification, signal processing, etc.). The pro-
posed set-up does not require a data acquisition
board. Instead, data feedback is accomplished
via parallel port and microcontrollers, which is
important from the didactic point of view, since
computer science and electrical engineering stu-
dents can practice number of microcontroller
routines and exploit the capability of the parallel
port to be used as a data acquisition system.

In addition, the problem of the misconcep-
tion about fast computing and real-time comput-
ing is also revisited. Let us notice that Simulink is
enabled with the so-called normal mode of com-
puting, which is based in a time vector that is not
connected to a hardware clock, then the calcula-
tions are done as fast as the computer can, which
is interpreted as a fast computing mode that de-
pends on the physical characteristics of the PC.
In addition, Simulink is also equipped with the
external mode of computing, which is available
via Real-Time Workshop toolbox, which allows
the real-time execution of the constructed code
[6]. In other words, a way in that the misconcep-
tion about fast computing and real-time comput-
ing can be understood under the light of velocity
control experiments in a DC motor is provided,
addressing fundamental issues that are of con-
cern to all control system designers.

PI velocity control of DC motors

A classical linear description of a direct cur-
rent (DC) motor considering the voltage as the in-
put is given by [7-9],

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

78 Meza-Sánchez y Moreno-Valenzuela

Jq F q k�� �� �� �, (1)

where �()q t denotes the motor shaft velocity, J � 0
is the motor shaft inertia, f � � 0 is the viscous
friction coefficient, k � 0 is the so-called motor
constant, and � is the voltage control input.

The velocity control problem consists in de-
signed a voltage control input � so that the veloc-
ity error �() � �()e t q q td� � , where �qd is a constant
that specifies the desired velocity and �()q t is the
motor shaft velocity, achieves the limit

� �lim () lim � �()
t t

de t q q t
	
 	

� � � 0. (2)

A proportional-integral velocity controller is
defined by [5, 6]

�() �() �()t k e t k e t dtp i
t

� � �0
, (3)

where ki and kp are constants that denote the in-
tegral and proportional gains of the controller, re-
spectively. In Figure 1, a block diagram of a DC
motor model (1) in closed-loop with the classical
PI velocity controller (3) is shown. By using the
Routh-Hurwitz criterion [7, 8], it is possible to
show that the velocity error �()e t satisfies the limit
(2) by using ki � 0 and kp � 0.

An experimental set-up

Existing work in this area have reported de-
signs of real-time control systems, as in [2, 10,
11]; nevertheless, the need for the use of data ac-
quisition (DAQ) boards for feedback between the
controller and the system to be controlled arises.
A variety of PC-based DAQ boards are available
from vendors as National instruments [12],
Quanser [13], Advantech [14], Data Translation
[15], among others. And it does not end here, in
order to provide programming environments to
support the implementation of measurement
and control algorithms, several vendors also pro-
vide support for DAQ boards solutions. Despite
the advantages of this model, many PC-based
DAQ boards tend to be expensive. Our experi-
mental set-up considers data acquisition via par-
allel port. Contrary to DAQ solutions, the use of
PC ports to implement data feedback is inexpen-
sive and enables the use of microcontrollers for
signal manipulation. Furthermore, total cost of

the proposed scheme is at least half the price of a
DAQ-based solution; i.e., a couple of hundreds
compared to $500 for a cheap DAQ board. Let us
remark that the use of DAQ boards for feedback
is independent of real-time execution and
clock-based software/hardware is necessary.
Moreover, DAQ-based implementations can per-
form non-real-time applications [16].

The experimental set-up, shown in Fig-
ure 2, has the following main components: An ar-
mature-controlled DC motor, a 14207S008
LOCG Pittman DC servo motor [17], two Basic
Stamp 2 (BS2) microcontrollers from Parallax
[18], an H-bridge HB25 Motor Controller from
Parallax [19], and a dual positive-edge triggered
D flip-flop [20].

The BS2 microcontrollers are used to inter-
pret and apply the controller output to the DC
motor. One microcontroller allows receiving data
from the parallel port corresponding to the con-
troller’s output and generating the correspond-
ing pulse for the H-Bridge. The H-Bridge is in
charge of regulating voltage supplied for the DC
motor. The D Flip-flop receives the signals for the
motor encoder and determines the shaft direc-
tion and it is connected to the second micro-
controller. This microcontroller is in charge also
of reading the encoder output of the DC motor
and determines the speed of the DC motor. DAQ
boards function in typical designs is emulated by
the combination of parallel port and BS2
microcontrollers in the proposed set-up; the par-
allel port allows communication and BS2 micro-
controllers acquire/generate and process signals
in order to enforce appropriate feedback.

Let us observe that each microcontroller is
dedicated to one only task; either to receive data
and convert to PWM or to read encoder signal and
measure the number of counts. This characteris-
tic avoids the need to program a scheduler or ker-
nel in order to guaranteed hardware real-time ex-

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

On real-time velocity control of DC motors by using computer-aided control system design 79

Figure 1. Block diagram of a DC motor
in closed-loop with a PI velocity controller.

ecution as in typical microcontrollers set-ups
[21, 22]. Each BS2 microcontroller performs its
task in the necessary rate in order to fulfill
real-time execution requirements of the software.
BS2 microcontrollers use clock-based functions
in order to guarantee timing and HB25 controller
operates with frequency of 0.01[s] which is the
minimum supported; i.e., lower sampling-time is
supported by BS2 microcontrollers but it is nec-
essary to replace the HB25 controller.

By using the proposed hardware, the main
idea is that the PI velocity controller (3) should be
programmed in a PC equipped with Windows
XP/Matlab/Simulink/Real-Time Workshop, as
illustrated in Figure 2. Thus, a proper Simulink
stateflow, able to get communicated with the par-
allel port, should be designed.

Simulink executing modes

Simulink can execute the stateflow model
in two modes, which are mostly used: normal and
external. The calculations in normal mode are
based in a time vector that is not connected to a
hardware clock, then the calculations are done
as fast as the computer can. On the other hand,
the external mode concerns applications in
real-time and, depending on the specified sam-
pling time, interruptions are generated so that
the calculations of the program model can be
done in the specified time.

The parallel port data feedback should be
incorporated in the Simulink stateflow model in
different ways for each execution model. Figure 3
shows the Simulink stateflow of the implementa-

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

80 Meza-Sánchez y Moreno-Valenzuela

Figure 2 Block diagram of the proposed experimental set-up.

tion of the PI velocity controller with fast comput-
ing (normal mode) while Figure 4 describes the
stateflow of the PI velocity controller with
real-time computing (external mode). In both
stateflows, Validate data and Scale blocks re-
marks the Simulink blocks corresponding to the
necessary process in order to adequate re-
ceived/send data through parallel port. In the
case of normal mode, the Matlab Function blocks
correspond to m-file functions which allow paral-
lel port communication; for external mode,
rec_motor and motor_send correspond to C func-
tions embedded into S-Function Builder blocks.
Let us notice that S-functions allow incorporat-
ing used-defined blocks in the Simulink stateflow
model and can be converted along with the
stateflow model in real-time application blocks,
contrary to Matlab’s built-in application func-
tions, which can only be used in the normal exe-
cution mode [6]. In the proposed design, S-func-

tion Builder block for external mode allows in-
cluding C programming language for parallel port
communication; by double-clicking in it and pro-
viding the header and C files that will be used in
each block, the embedded function can be gener-
ated. Furthermore, Matlab Function blocks for
normal mode only need to specify the corre-
sponding m-file function. The described Matlab
functions for normal mode, C functions for exter-
nal mode and Basic Stamp 2 programs are pro-
vided in Appendix A.

Results

For convenience, we have decided to mea-
sure the motor shaft velocity in units of
[pulses/10ms]. Then, 1 [pulses/10ms] = 100
[pulses/s] = 1.26 [rad/s], since the encoder has a
resolution of 500 [pulses/rev]. In the experi-
ments the PI velocity controller (3) was imple-

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

On real-time velocity control of DC motors by using computer-aided control system design 81

Figure 3. Simulink stateflow for the normal mode implementation of the PI velocity control,
which includes the Matlab function blocks for the communication with the parallel port.

Figure 4. Simulink stateflow for the external mode implementation of the PI velocity control,
which includes S-functions for the real-time communication with the parallel port.

mented with gains kp � 05. and ki � 50. . Gains
values were selected accordingly to observed ex-
perimental behavior for smooth system re-
sponse. The desired velocity was

�qd � 50 [pulses/10ms] = 63 [rad/s]. (4)

The first set of experiments consisted in im-
plementing the normal mode Simulink stateflow
in Figure 3. Three runs of the model were done
using the sampling times ts = 0.01, 0.03, and
0.05 [s]. Secondly, we implemented the PI veloc-
ity controller in external mode Simulink state-
flow in Figure 4 using the same sampling times.
The results are presented in Figure 5 and 6. In
Figure 5, it is easy to observe that some “jumps”
in the time response are presented in the imple-
mentation of the normal mode, which are non
typical in linear systems. On the other hand, in
despite of the different sampling times, the differ-
ent implementations in the external mode pre-
sented a behavior of the time response consistent
with linear system theory, i.e., exponential con-
vergence of the actual �()q t velocity to the desired
one, �qd, see Figure 6.

Discussions

The fast computing implementation of the
PI velocity controller (3) through the normal
mode Simulink stateflow shown in Figure 3
showed unsatisfactory results. The reason of the
``jumps" in the time responses illustrated in Fig-
ure 3 when implementing the normal mode is
that the calculations are done without using any
physical clock and no especial priority to control
process is given when the computer is executing
the model.

With the external mode Simulink stateflow
shown in Figure 4, we were able to implement the
PI velocity controller (3) using real-time comput-
ing. The experiments presented excellent repeat-
ability, contrary to the case of the fast computing
implementation. The reason is that the con-
structed stateflow model is compiled and con-
verted into an executable file to be run in real-
time by the operating system kernel.

In the normal mode setting (fast comput-
ing), the Matlab functions for the parallel port
cannot be used in real-time execution due inter-

action with Windows’s Scheduler which operates
accordingly to hierarchical execution policies
[23]. Moreover, the fast computing implementa-
tion increases the duration of the experiment
when increasing sampling-time in the model. For
example, the following approximated results
were obtained by timing a 5[sec] normal mode ex-
ecution for the PI velocity controller using a Win-
dows XP Pro SP2 Intel Pentium IV 3.00 GHz with
512Mb of RAM: a) sampling-time of 0.05[s] gives
a 77.5[s] of duration, b) sampling-time of 0.03[s]
results in 155.1[s], and finally, c) sampling-time
of 0.01[s] gives a measured 467.3[s] of duration.
On the other hand, external mode (real-time exe-
cution) the duration of execution is guaranteed

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

82 Meza-Sánchez y Moreno-Valenzuela

--+--+--+ 0.01 [s]

--o--o--o 0.03 [s]

--*--*--* 0.05 [s]

Figure 5. Normal execution mode:
Experimental results using different sampling

times.

--+--+--+ 0.01 [s]

--o--o--o 0.03 [s]

--*--*--* 0.05 [s]

Figure 6. External execution mode:
Experimental results using different sampling

times.

regardless sampling-time provided PC character-
istics can handle the operation weight; other-
wise, model will not be loaded and executed by
Simulink in this mode.

Thus, we have shown that implementing a
control algorithm with a fast computing focus
can lead to a result not necessarily useful in prac-
tical applications. Furthermore, the importance
of guaranteeing the timing requirement of each
task was confirmed.

Summary

In this paper, a control scheme in real-time
without using a data acquisition board has been
proposed. The proposed scheme is based on us-
ing the PC parallel port and two microcontrollers
to achieve data feedback and compared to com-
mon microcontrollers developments provides
several advantages: a) no need to learn languages
for low-level programming, b) no clock-based
schedulers experience or knowledge for design is
necessary, c) any control algorithm can be imple-
mented providing correct use of toolboxes, d) no
need to download data to microcontrollers when
changing control algorithm, and e) friendly
block-based interface for complex control algo-
rithms design. By implementing a PI velocity reg-
ulator in a DC motor, comparison between fast
and real-time computing have been carried out.
The results showed that real-time computing is
crucial in the implementation of control algo-
rithms, while the fast computing can be used for
simple monitoring of data. Due simplicity and
control algorithm independence, we expect that
the proposed experimental set-up can be useful
in control systems education and research.

Acknowledgements

This work was partially supported by
SNI-CONACyT, and SIP-IPN.

References

1. Sanchez, J., Dormido S. and Esquembre F.,
“The learning of control concepts using inter-
active tools”, Computer Applications in Engi-
neering Education, Vol. 13 (2005) 84-98.

2. Dixon W.E., Dawson D.M., Costic B.T., and
de Queiroz M.S., “A Matlab-based control
system laboratory experience for undergrad-
uate students: toward standardization and
shared resources”, IEEE Trans. on Educa-
tion, Vol. 45 (2002) 218-226.

3. Stankovic J.A., “Misconceptions about
real-time computing: A Serious Problem for
Next-Generation Systems”, Journal Com-
puter, Vol. 21 (1988) 10-19.

4. Y. Tipsuwan and M. Chow, “Fuzzy logic
microcontroller implementation for DC mo-
tor speed control”, Proc. of 25th annual con-
ference of the IEEE Industrial Electronics
Society IECON’99, Vol. 3 (1999) 1271-1276.

5. Tang J., “PID controller using the
TMS320C31 DSK with online parameter ad-
justment for real-time DC motor speed and
position control”, Proc. of the IEEE Interna-
tional Symposium on Industrial Electronics,
Vol. 2 (2001) 786-791.

6. The MathWorks, Inc., “Real-Time Work-
shop© User’s Guide”, available at: http://
www.mathworks.com/help/pdf_doc/rtw/rt
w_ug.pdf accessed November, 2010.

7. Kuo B.C.: “Automatic Control Systems”, 4th
Ed., Prentice Hall, Englewood Cliffs, 1982.

8. Dorf R.D. and Bishop R.H.: “Modern Control
Systems”, 8th Ed., Addison-Wesley, Menlo
Park, 1998.

9. Spong M.W. and Vidyasagar M.: “Robot Dy-
namics and Control”, John Wiley, New York,
1989.

10. Monroy C., Kelly R., Arteaga M. and Bugarin
E., “Remote Visual Servoing of a Robot Ma-
nipulator via Internet2”, Journal of Intelli-
gent and Robotic Systems, Vol. 49 (2007)
171-187.

11. Yao Z., Costescu N.P., Nagarkatti S.P., and
Dawson D.M., “Real-Time Linux Target: A
MATLAB-Based Graphical Control Environ-
ment”, Proc. of the 2000 IEEE International
Symposium on Computer- Aided Control
System Design, (2000) 173-178.

12. National Instruments Corporation, Official
Website. http://www.ni.com/ accessed No-
vember, 2010.

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

On real-time velocity control of DC motors by using computer-aided control system design 83

13. Quanser Inc., Official Website. http://www.
quanser.com/ accessed November, 2010.

14. Advantech Corporation, Official Website.
http://www.advantech.com/ accessed No-
vember, 2010.

15. Data Translation, Inc., Official Website.
http://www.datx.com/ accessed November,
2010.

16. Kim B.K., “Control engineering education
with experiments on real-time control sys-
tem implementation”, Proc. of the 17th world
congress of the International Federation of
Automatic Control, Vol. 17, Part 1 (2008)
9105-9110.

17. ClickAutomation, “PITTMAN LOCG 14000
series”, available at: http://www. click auto-
mation.com/products/index.php?func=
show&pid=361&cid=144 accessed Novem-
ber, 2010.

18. Parallax, Inc., “Basic Stamp 2 Module”,
available at: http://www.parallax.com/ de-
tail.asp?product_id=BS2-IC accessed No-
vember, 2010.

19. Parallax, Inc., “HB25 Motor Controller”,
available at: http://www.parallax.com/ dl/
docs/prod/motors/HB-25MotorController-
V1.2.pdf accessed November, 2010.

20. University of Colorado at Boulder.
“DM74LS74A- dual positive-edge-triggered
D flip-flops with preset, clear and comple-
mentary outputs”, available at:
http://ece-www.colorado.edu/ ~mcclurel/
dm74ls74a.pdf accessed April, 2010.

21. Lara-Rojo F., Sánchez E.N. and Zaldívar-
Navarro D., “Minimal fuzzy microcontroller
implementation for didactic applications”,
Journal of Applied Research and Technol-
ogy, Vol. 1, No. 2 (2003) 137-147.

22. Marau R., Leite P., Velasco M., Martí P.,
Almeida L., Pedreiras P. and Fuertes J. M.,
“Performing flexible control on low-cost
microcontrollers using a minimal real-time
kernel”, IEEE Trans. on Industrial Informa-
tics, Vol. 4, No. 2 (2008) 125-133.

23. Christensen P., “The truth about Windows
real-time architectures”, Website, 2007.
Available at: http://www.ardence.com/as-

sets/9b4bbe2c6b644403bdff09f60c415e16.
pdf accessed November, 2010.

Recibido el 13 de Abril de 2010

En forma revisada el 17 de Enero de 2011

Appendix A. Experimental
platform source code

pport fcn.c: Function developed in C
for sending and receiving data through
parallel port in external mode.

#include “conio.h”
double read_motor ()
{
unsigned int in_val;
outp(0x37a, inp(0x37a) | 0x01);
in_val = ((inp(0x379)^0x80) > 4);
outp(0x37a, inp(0x37a) & 0xFE);
in_val = in_val | ((inp(0x379)^0x80)>4) < 4 ;
return (double) in_val;
}
double send_motor(double dato)
{
if (dato < 0)
{dato = 0;}
if (dato > 255)
{dato = 255;}
outp(0x378,(unsigned int) dato);
return dato;
}

pport_fcn.h: Header file for pport_fcn.c

double send_motor(double dato);
double read_motor ();

PBasic program for the Basic Stamp
microcontroller which allows sending
data to parallel port. It determines
speed and direction of the CD motor.

’ {$STAMP BS2}
’ {$PBASIC 2.5}
’ {$PORT COM4}
cha PIN 14
dirlect VAR Word
cycles VAR Word

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

84 Meza-Sánchez y Moreno-Valenzuela

DIRL = %11111111
DIRH = %10000000
Main:
COUNT cha,10, cycles
IF (cycles > 127) THEN cycles = 127
IF (dirlect = 1) THEN DIR = 128 ELSE dir = 0
IF (cycles = 0) THEN dir = 0
OUTL = cycles + dir
GOTO Main END

PBasic program for the Basic Stamp
microcontroller for receiving data
through the parallel port. It provides
the length of the pulse to be generated
by the HB25 microcontroller.

’ {$STAMP BS2}
’ {$PBASIC 2.5}
’ {$PORT COM4}
HB25 PIN 15
pulsos VAR Byte
Main1:
PULSOUT HB25,750
GOTO Main
END
Main:
pulsos = INL
PULSOUT HB25, pulsos * 2 + 500
PAUSE 8
GOTO Main

read_par.m: Matlab function for
receiving data through parallel port
in the normal mode execution.

function y = read_par(t)
DIO = digitalio(’parallel’,’LPT1’);
Status=addline(DIO,1:4,1,’in’);
Control.Strobe=addline(DIO,0,2,’out’);
putvalue(Control.Strobe,1)
tmp1 = xor(getvalue(Status),[0 0 0 1]);
tmp1 = [tmp1(1) tmp1(2) tmp1(3) tmp1(4) 0 0 0 0];
putvalue(Control.Strobe,0);
tmp2 = xor(getvalue(Status),[0 0 0 1]);
tmp2 = [0 0 0 0 tmp2(1) tmp2(2) tmp2(3) tmp2(4)];
binary = tmp2 + tmp1;
y = binvec2dec(binary);

write_par.m: Matlab function for
sending data through parallel port
in the normal mode execution.

function write_par(x)
parport=digitalio(’parallel’,’LPT1’);
out_lines=addline(parport,0:7,0,’Out’);
if x < 0
x = 0
end if x > 255
x = 255
end
putvalue(out_lines,x);

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 1, 2011

On real-time velocity control of DC motors by using computer-aided control system design 85

