ppi 201502ZU4659
This scientific digital publication is
continuance of the printed journal
p-ISSN 0254-0770 / e-ISSN 2477-9377 / Legal Depositpp 197802ZU38
UNIVERSIDAD DEL ZULIA
An international refereed Journal
indexed by:
• SCOPUS
• SCIELO
• LATINDEX
• DOAJ
• MIAR
• REDIB
• AEROSPACE DATABASE
• CIVIL ENGINEERING ABTRACTS
• METADEX
• COMMUNICATION ABSTRACTS
• ZENTRALBLATT MATH, ZBMATH
• ACTUALIDAD IBEROAMERICANA
• BIBLAT
• PERIODICA
• REVENCYT
DE LA FACULTAD DE INGENIERÍA
REVIST
A TÉCNICAREVISTA TÉCNICA
Post nubila phoebus”
After the clouds, the sun”
Post nubila phoebus”
After the clouds, the sun”
LUZ in its 130th
anniversary
Established since
1891
LUZ in its 130th
anniversary
Established since
1891
VOLUME 44
JANUARY - APRIL 2021
NUMBER 1
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, January-April, 2021, 29-35
Concrete masonry blocks withscrap HDPE as aggregate
Derling Jose Mendoza Velazco
1*
, Maribel Cecilia Pérez Pirela
2
, Miguel Eduardo
Rodríguez Rodríguez
3
, Santiago Andrés Ortiz Montero
4
1
Facultad de Ciencias Experimentales, Universidad Nacional de Educacion UNAE, Azogues, C.P. 030154,
Ecuador.
2
Facultad de Ingeniería, Universidad Nacional de Chimborazo UNACH, Riobamba, C.P. 060150, Ecuador.
3
Facultad de Ciencias Humanísticas y Tecnológicas, Universidad Nacional de Chimborazo UNACH, Riobamba,
C.P. 060150, Ecuador.
4
Consultoría y Construcción O & B, Investigador independiente, Ambato, C.P. 180103, Ecuador.
*Corresponding author:
derling969@gmail.com
https://doi.org/10.22209/rt.v44n1a04
Received: 23 de junio de 2020 | Accepted: 06 de octubre de 2020 | Available: 01 de enero de 2021
Abstract
The present work aims to study the addition of plastic as a partial component of the coarse aggregate in concrete for
the design of ecological concrete blocks and to establish a linear equation, to estimate compressive strength for those block,
varying cement, sand, gravel, and plastic volume. For the design of blocks, volume in three proportions were considered

         
and 50% replacement to coarse stone ratios. The compressive strength - unit weight of the concrete was measured after
30 days of curing. The research methodology was of a quantitative type of descriptive experimental design. The results
were processed through a linear polynomial regression in the parameters analysis routine, using a statistical software SPSS
25 and their accuracy was assessed by INEN Ecuador 0858 and ASTM C39 parameters. The results revealed that 25 and
50% additions of plastic as a coarse aggregate reduced the unit weight of concrete to 9.7 and 12.02% respectively. But in
such cases, the reduction of compressive strength was up to 29.17 and 48.5% respectively for effectiveness improvement
reducing only the sample unit weight.
Keywords: 
Bloques de concreto con sustitución de residuos sólidos de
polietileno de alta densidad
Resumen
El presente estudio tuvo como objetivo analizar la adición de plástico como componente parcial del agregado
grueso en el concreto, para el diseño de bloques ecológicos, estableciendo una ecuación lineal que estima la resistencia
del bloque a la compresión , variando los volúmenes de cemento, arena, grava y plástico. Para el diseño de los bloques se



50% de sustitución pétreo grueso. La resistencia a la compresión - peso unitario del concreto, se midió después de 30 días de
curado. La metodología de investigación fue de tipo cuantitativo, de diseño descriptivo experimental. Los resultados fueron
analizados mediante un análisis de regresión polinomica lineal en los parámetros, aplicando el paquete estadístico SPSS 25,
y su precisión fue juzgada por parámetros nacionales e internacionales, INEN Ecuador 0858 y ASTM C39. Los resultados
revelaron que las adiciones de 25 y 50% de plástico como agregado grueso, reducen el peso unitario del concreto hasta 9,7
y 12,02%, respectivamente. Pero en tal caso, la reducción de la resistencia a la compresión fue de hasta el 29,17 y 48,5%,
respectivamente, para su mejor efectividad, disminuyendo solo el peso unitario de las piezas.
Palabras clave: 
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
30
Mendoza et al.
Introduction

daily lives. The use of plastic has substantially increased in
the last decade, as it is lightweight, moisture and corrosion

replaced many traditional materials such as wood, stone,
bone, leather, paper, metal, glass and ceramics.Nowadays,
almost all the objects used by humans are designed of (or
       
       
production has increased from 15 to 311 million metric

to double in 20 years and almost quadruple by 2050 [3].

increasing exponentially.

          

 


        

was 4.15% in 2005 and 5.46% in 2014 [6], indicating the

potential resource if it can be recycled. One such attempt is

may reduce this kind of waste [7].
Several studies have been carried out to
        
for construction purposes. Jagdishet al.[8] evaluated the
         
         
prepared a total of 90 cylinders and 5 beams. Then, after
7, 14 and 28 days of curing, the specimens were evaluated
      
strength and dry density. The water/cement ratio was 0.5
and the mix ratio was 1/1.8/3 on a volume basis. According
to its result, the maximum reduction in compressive
strength was 44% for a 20% substitution of stone with

reduced with the increment of percentage in recycled

every 5% stone replacement. The authors concluded
their study by stating that up to 15% substitution of

structural application.
Another experiment was conducted Subramani
and Pugal [9] on the partial replacement of the coarse
      
         
        
and the water/cement ratio was 0.46. It was observed
that 20% of the aggregate can be replaced by plastic
waste without long-term detrimental effects and with
acceptable strength-building properties. Akilaet al. [11]
demonstrated the great applicability of plastic bags as
 
       
    


      
aggregate. After 28 days of curing, the specimens were
evaluated for handling, bulk density, ultrasonic pulse



       
aggregates in concrete.
According to Kamaruddinet al. [12] there are
       
Roni et al. [13] the production costs of the concrete
blocks vary considerably depending on the quality,
strength and utility purposes of the blocks, the standard
model of dimension 40x20x20cm
3
costs 14 US cents.
For this purpose, the cited authors prepared 12 cubes of
dimension 150x150x150 mm
3

      
           
       
the apparent density of the mixture is reduced with the

than in conventional concrete. Similarly, the reduction in
bulk density was directly related with plastic substitution.
This material bulk density diminished by 2.5, 6 and 13%
respectively, hence the reduction in density was due to the

In this study, compressive strength and unit

         

           
both structural and non-structural purposes [14, 15]. A
mathematical model was also proposed, the suitability
of which was evaluated using different statistical
       

from the government of Ecuador [14, 15].
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
31
Concrete masonry blocks withscrap HDPE as aggregate
Table 1. Nominal and real dimensions of concrete blocks by Ecuatorian regulations.
Nominal dimensions of the Ecuadorian Institute of
Normalization
Realsdimensions
Type
Lenght
(cm)
Width
(cm)
Height
(cm)
Lenght
(cm)
Width
(cm)
Height
(cm)
A, B 40 20,15,10 20 39 19,14, 09 19
C, D 40 10,15, 20 20 39 09,14,19 19
E 40 10,15,20,25 20 39 09,14,19,24 20
Materials and methods
To carry out the study, selected raw materials
were as follow, portland cement Type I ASTM C150, with
65% Chimborazo® cement which has 35% gypsum, in
         

      
        
density of 0.963 g/cm
3
, with a bending modulus of 15.396
Kg/cm
2
, a tensile strength of 155 Kg/cm
2
izod pendulum
impact resistance of 13 Kg.cm/cm and an elongation of

of 5.91mm, unit weight of 3.5 KN/m
3
, with respect to the
water/cement ratio by weight of 0.61 without air included.
To mix the materials, they were selected
        
       
      
1/1.5/3 and 1/2/4. For eachproportions, the coarse

standard percentage measurements recommended by
Olonadeet al. [16] for the design of concrete blocks with

A clean and dry cylindrical mould with a diameter
of 1000 mm and a height of 1000 mm was used to prepare
the proportion samples. Three proportion samples were
designed for each replacement. The concrete was mixed
by hand. The moulded material was placed in blocks of
rectangular dimension 40x20x20cm
3
, then it was rested
for a period of 24 hours at room temperature. The blocks
or prototypes were carefully removed from the rectangular
mould. Immediately after removal from the mould, the
blocks were completely immersed in a curing tank for
30 days, method recommended by Akinyele and Ajede
[17] when applying the UTC-0960 plastic curing tank
with amean control temperature between 38 and 40ºC
with ±2ºC accuracy. According to Shirish [18] the curing
of concrete blocks with supplementary materials such as

curing tank with dimensions of 800x1800x950 mm
3
, can
be developed within a prolonged time of between 28 and
30 days, which were used during this study.
The entire proportion preparation procedure
was carried out in accordance with the American Society

for cement and concrete, where the standardized test
for compressive strength of concrete block specimens
corresponds to various ASTM standards C39, C31, C150,
C617, C1077 and C1231 [19]. After 30 days of curing, the
blocks were removed from the curing tank. The blocks
were then measured for weight and compressive strength.
       
NTE INEN standards [20-28].
Results and Discussion
This section presents the results analysis of
the plastic addition as a partial component of the coarse
aggregate in concrete, for the design of ecological concrete
blocks. After 30 days of curing it was observed that
both the compressive strength and the unit weight were
        

and described by Shirish [18] and NTE INEN standards
[20, 21], the proposed use of the mix proportions is shown
in Figure 2.
Figure 1. Compressive strength and unit weight

proportion. with increasing plastic susbstitution for each
mix proportion.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
32
Mendoza et al.
Figure 2. Compressive strength applied to concrete

coarse aggregate
In Figure 2, the results of compressive strength
obtained with the blocks created, by replacing the coarse
stone aggregate in 3 mix proportions i.e., 1/1/1, 1/1.25/2.5

 
block. According to NTE INEN 0638 [29] type A blocks are
used in exterior,CMU block load-bearing walls and have
          

below the 16 MPa index.
The results of compressive strength obtained
with the concrete blocks of mix proportions 1/1/1,
       
substitution, demonstrated the strength of a type B block.
According to NTE INEN 0862[30] type B blocks are used in
exterior cladded load bearing walls and interior cladded



a MPa of 9.7 a value below the 11MPa index.
Empirical development of equation
From test result, the second objective is answered
by the proposal of a linear polynomial regression in the



      
        
correlation of a variable with itself is always equal to 1.

a perfect linear relationship. A correlation close to 0
indicates that there is no linear relationship between
the variables. The value obtained of 0.97 indicates an
acceptable value in the linear type covariation.
    
of determination was applied, according to Harel [32]
          
the dependent variable that can be explained by the
     
          
variable that it tries to explain. It is important to note that
R2ranges between 0 and 1. Our result of R2 was 0.94 as a

       
      
resulting a value of 0.93, allowing to determine the
measure of the differences in average between the
predicted and observed values [33].
      




substitution with a value of 0.94 and 0.77 both with an
        
according to Geethu and Santhoshkumar [34].
     
        
agreement with values of 0.99 and 0.88 were applied,
which represent a contribution to the linear equation,
basically by incorporating its correction formula that
excludes concordance due exclusively to randomness.This
correction is related to marginal distributions according
to Mohammad et al. [33]. It should be noted that Equation
1 is valid within the range of applicable parameters shown
in Table 4.
In this equation, the 30-day compressive

(in m
3
   
C
  
A
  
Pi
  
(V
Pl
     

Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
33
Concrete masonry blocks withscrap HDPE as aggregate
Table 2. Input variables (volume in m
3

Mixingproportion
ratio
HDPEcontent
(%)
Cement
(m
3
)10-4
Sand
(m
3
)10-4
Stone
(m
3
)10-4
HDPE
(m
3
)10-4
Compressivestrength(MPa)
Experimental
data
Equation
data
1/1/1
0 HDPE 8.3 8.3 8.3 0.0 26.40 23.81
25 HDPE 8.3 8.3 6.3 2.0 19.01 20.62
50 HDPE 8.3 8.3 4.2 4.2 15.57 16.56
1/1.25/2.5
0 HDPE 5.0 6.7 13.3 0.0 24.57 23.68
25 HDPE 5.0 6.7 9.7 3.4 17.55 18.25
50 HDPE 5.0 6.7 6.65 6.65 13.50 13.06
1/1.5/3
0 HDPE 4.5 6.8 13.6 0.0 22.73 22.80
25 HDPE 4.5 6.8 10.1 3.5 16.23 17.22
50 HDPE 4.5 6.8 6.8 6.8 12.02 11.95
1/2/4
0 HDPE 3.6 7.0 14.4 0.0 18.83 19.59
25 HDPE 3.6 7.0 10.8 3.6 13.35 13.85
50 HDPE 3.6 7.0 7.2 7.2 9.70 8.10
It should be noted that all volumetric values in
Table 2 correspond to specimens of hollow concrete block
of 40x20x20 cm
3
. The accuracy of the proposed linear


the experimental data.
Table 3
measurement.
Efciencycriterion Values
Pearson’scoefcient, R 0.97
Coefcient of determination, R
2
0.94
Mean absolute error, MAE 0.93
Efciency coefcient, E 0.94
Modied efciency coefcient 0.77
Index of agreement, D 0.99
Modied index of agreement 0.88
Table 4. Range of applicable parameters for Equation 1
(for 40x20x20 cm
3

Parámetro
Rango de volumen en una muestra
(m
3
) x 10
-4
Cemento 3,6 ≤ V
C
≤ 8,3
Arena 6,7 ≤ V
A
≤ 8,3
Piedra 4,2 ≤ V
pi
≤ 14,4
Plástico 0 ≤ V
Pl
≤ 7,2
Among the results it can be shown that the

         
than ordinary or standard concrete.It is much clearer
          
partial substitute increases, the compressive strength of
concrete decreases.In terms of bulk density for ordinary

has a lower weight compared to ordinary concrete as it

a good platform to produce lightweight concrete, yielding
compressive strength within standards.
Although researchers like Edmund et al. [35],
manage to obtain a satisfactory compressive strength, it



harder and stronger than others like polypropylene. Apart

      
        


concrete, producing a much better result compared to the
substitution of coarse aggregate.
Conclusions
The study provides an opportunity to reduce

waste in the Republic of Ecuador. Therefore, recycling


Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
34
Mendoza et al.
can greatly reduce environmental pollution and produce
an environmentally categorized concrete, named as green
concrete.

of the concrete, can be used to produce lightweight
       
      

non-structural purposes, such as single-story or level

Finally, it can be mentioned that the production
       
       
conventional CMU, which have a value of 14 cents, while
the blocks of this work have a value of 11 cents each.
The production value decreases by 3 US cents, but the
        

binding plastic to cement.
References
[1] Chalmin, P.: “The history of plastic: from the Capitol
to the Tarpeian. Field Actions Science Reports, Vol.

[2] Chuanxiu, J., Zhang, M. and Lu, P.: “Preparation
and characterization of polyurethane-/MMT
nanocomposite-coated urea as controlled-release
fertilizers”.Polymer-PlasticsTechnology and

 

and Vanthournout, H.: “The New Plastics Economy


[4] Van Emmerik, T. and Schwarz, A.: “Plastic debris in

[5] Gourmelon, G.: “Global Plastic Production Rises”.

[6] Veletanga, F.: “Estudio de la huella ecológica de

Nueva Aurora en la Parroquia de Guamaní en el
distrito metropolitano de Quito”. Universidad

      
to construction products: Status, limitations
and future perspective”.Case Studies in
ConstructionMaterials, Vol. 12, No. e00330,

[8] Jagdish, K., Gohil, G and Patel, N.: “Experimental
study on the use of plastic waste as a partial

International Journal for Research in Applied


[9] Subramani, T. andPugal, V.: “Experimental study on
plastic waste as a coarse aggregate for structural
concrete”.International Journal of Application or
Innovation in Engineering & Management, Vol. 4,

[10] Chávez- Romero, S., Aulestia-Viscarra, Sh., Cando,

propiedades mecánicas de una mezcla asfáltica en

   
de Ingenieria, Vol. 42, Nº 3, 2019, 104-151.
       
P. andSenthilkumari, T.: “Use of plastic waste as
 
mixture”. International Journal of Advanced
Science and Engineering Research, Vol. 3, Issue: 1

[12] Kamaruddin, M., Abdullah, M., Zawawi, M
andZainol, M.: “Potential use of plastic waste as
construction materials: recent progress and future
prospect”. IOP Conference Series: MaterialsScience
      
1-10.
         

Taylor & Francis Group, Londres, 2013.
       
NEC-SE-HM Estructuras de Concreto Armado.
     
  
in: https://www.habitatyvivienda.gob.ec/wp-
content/uploads/downloads/2014/08/NEC-SE-
HM.pdf.
[15] Instituto Ecuatoriano de Normalización, INEN,
    
   
en: https://www.compraspublicas.gob.ec/
ProcesoContratacion/compras/PC/bajarArchivo.
cpe?Archivo=HKyt7OeS6AGvSpdetlVqXsIX2kvla
To-prEqTB-tPRc.
[16] Olonade, K., Jaji, M. &Adekitan, O.: “Experimental
comparison of selected pozzolanic materials”.
African Journal of Science, Technology, Innovation

[17] Akinyele, J. &Ajede, A.: “The use of granulated
plastic waste in structural concrete”. African
Journal of Science, Technology, Innovation and

        
    
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
35
Concrete masonry blocks withscrap HDPE as aggregate
ash concrete”. Road Materials and Pavement
       
10.1080/14680629.2015.1026381
[19] American Society for Testing and Materials


[20] Servicio Ecuatoriano de Normalizacion, Norma
     
    
consistencia normal”. Método de Vicat. Ecuador,

[21] Servicio Ecuatoriano de Normalizacion, Norma
     


[22] Servicio Ecuatoriano de Normalizacion, Norma
    
      
compresión de morteros en cubos de 50 mm de

[23] Servicio Ecuatoriano de Normalizacion, Norma


[24] Servicio Ecuatoriano de Normalizacion, Norma
    


[25] Servicio Ecuatoriano de Normalizacion, Norma
    
     
   

[26] Servicio Ecuatoriano de Normalizacion, Norma
    
     


[27] Servicio Ecuatoriano de Normalizacion, Norma
    
     
    

[28] Servicio Ecuatoriano de Normalizacion, Norma
    
      
árido grueso de partículas menores a 37,5 mm
        

[29] Servicio Ecuatoriano de Normalización, Norma
     
    

[30] Servicio Ecuatoriano de Normalizacion, Norma
    


 


[32] Harel, O.: “The estimation of R2 and adjusted R2
in incomplete data sets using multiple imputation.

1109-1118.
[33] Mohammad, K., Nopiah, Z.M., Ahmad Basri, N.E.,
Basri, H., Abushammala, M.F.M., and Maulud,
     
       
      
1229-1238.
      
FPGA realization of seizure detection from EEG
signal using wavelet transform and statistical
features”. IETE Journal of Research, Vol. 66, No. 3

[35] Edmund, T.S.J., Jun Hon, C., Hejazi, F., and Jaafar,
      
aggregates-a review”. IOP Conf. Series: Earth
and EnvironmentalScience, Vol. 357, No. 012018

REVISTA TECNICA
www.luz.edu.ve
www.serbi.luz.edu.ve
www.produccioncientica.luz.edu.ve
OF THE FACULTY OF ENGINEERING
UNIVERSIDAD DEL ZULIA
Vol. 44. N°1, January - April 2021, pp. 04 - 56__________________
This Journal was edited and published in digital format
on December 2020 by Serbiluz Editorial Foundation