ppi 201502ZU4659
This scientific digital publication is
continuance of the printed journal
p-ISSN 0254-0770 /e-ISSN 2477-9377 / Legal Deposit pp 197802ZU38
UNIVERSIDAD DEL ZULIA
An international refereed Journal
indexed by:
• SCOPUS
• SCIELO
• LATINDEX
• DOAJ
• MIAR
• REDIB
• AEROSPACE DATABASE
• CIVIL ENGINEERING ABTRACTS
• METADEX
• COMMUNICATION ABSTRACTS
• ZENTRALBLATT MATH, ZBMATH
• ACTUALIDAD IBEROAMERICANA
• BIBLAT
• PERIODICA
• REVENCYT
DE LA FACULTAD DE INGENIERÍA
REVIST
A TÉCNICAREVISTA TÉCNICA
Post nubila phoebus”
After the clouds, the sun”
Post nubila phoebus”
After the clouds, the sun”
LUZ in its 130th
anniversary
Established since
1891
LUZ in its 130th
anniversary
Established since
1891
VOLUME 44
JANUARY - APRIL 2021
NUMBER 1
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, January-April, 2021, 12-20

with citral microparticles
Ives Yoplac
1,2
, Patricio Córdova
3
, Luis Vargas
4
1
Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de
Mendoza de Amazonas. Chachapoyas, Perú.
2
Escuela de Postgrado, Programa Doctoral en Ciencia de Alimentos, Universidad Nacional Agraria La Molina.
Lima, Perú.
3
Facultad de Educación y Ciencias de la Comunicación, Universidad Nacional Toribio Rodríguez de Mendoza de
Amazonas. Chachapoyas, Perú.
4
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina. Lima, Perú.
*Corresponding author: ives.yoplac@untrm.edu.pe
https://doi.org/10.22209/rt.v44n1a01
Received: 06 January 2020 | Accepted: 02 Octuber 2020 | Available: 01 January 2021
Abstract
The effect of the sodium caseinate:sorbitol (CS:Sb) and CS:citral microparticle (CS:MC) ratio on the optical and


pouring the formulation solution into Petri dishes and dried 24 hours at 25 ± 0.5 °C and 55 ± 2.0% relative humidity. Optical




(7.6), less opacity (14.8%) and less transparency value (1.4 A
600

 
deformation (63%) and less tensile strength (1.9 MPa).
Keywords:
Propiedades ópticas y mecánicas de biopelículas activas
elaboradas con micropartículas de citral
Resumen
Se estudió el efecto de la relación caseinato de sodio: sorbitol (CS:Sb) y relación CS: micropartícula de citral

con tres relaciones de CS:Sb (1:0,5; 1:1,0 y 1:1,5) y tres relaciones CS:MC (1:0,5; 1:1,0 y 1:1,5). Se elaboraron mediante
método de casting, vertiendo la solución de formulación en placas de Petri y se secaron 24 horas a 25±0,5 °C y 55±2,0% de
humedad relativa. Se evaluaron las propiedades ópticas y mecánicas. Todas las variables evaluadas mostraron diferencias


observó que los mejores resultados, con respecto a las propiedades ópticas de las biopelículas activas, fueron encontradas
para formulaciones con menores niveles de relación CS:Sb y CS:MC, obteniendo menor diferencia de color (7,6), menor
opacidad (14,8%) y menor valor de transparencia (1,4 A
600
/mm). Respecto a las propiedades mecánicas de las biopelículas,
los mejores resultados se encontraron para formulaciones con altas concentraciones de sorbitol y bajas concentraciones de
MC, observándose mayor deformación (63%) y menor resistencia a la tracción (1,9 MPa).
Palabras clave: Deformación; envase activo; módulo elástico; opacidad; valor de transparencia.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
13

Introduction
 

in the various value chains. For this reason, this sector

[1].
      
different industrial sectors, such as the food industry. In
      
materials are paper, cardboard, plastics, metal and glass
       
        
         
     
    
     
hundred years for their degradation and, therefore,
cause environmental pollution; the main ones being
polyethylene, polystyrene and polypropylene [5,6].
     
     
       
and biological compatibility; moreover, they constitute a

The main biopolymers used for this purpose are obtained
      

materials such as lipids, plasticizers, active agents and
solvents are added [7–10]. Among the biopolymers from
protein sources, those obtained from dairy products such
as casein stand out [11,12].

       

     
       
      
      


dairy, meat, fruit and vegetables, among others processed
        
     
     
microbial count reduction and, in general, the
improvement of foodstuff shelf life from the interaction of

     
     

       
secondary metabolites) from essential oils (EA), in free
or microencapsulated form [18–21]. Of the active agents
(AA), menthol, geraniol, thymol, eugenol, carvacrol, citral,
among others, stand out [22–25]. From the formers, citral
(3,7-Dimethyl-2,6-octadienal) is an acyclic monoterpene
     
(citral A in its cis form) and neral (citral B in its trans form)
    
[28].
     
     

 
       
microbial reduction from thein vitro tests. On the other


of AA in free form, such as carvacrol [14,15], maize germ
EA [29]ortung oil EA [30]. Most of the aforementioned
         



      

Therefore, the present study aimed to
evaluate the effect of sodium caseinate, sorbitol and
citralmicroparticles on the optical and mechanical

Experimental
Reagents
       
require: sodium caseinate, sorbitol (Sigma-Aldrich,
Germany) and citralmicroparticles (average size of 7.08

citral and soy lecithin (Sigma-Aldrich, Germany) and


     
methodology proposed by Arrieta et al. [15 

        
       

continuous stirring at 1000 rpm on a magnetic stirrer
     
°C,and then cooled to room temperature. The average
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
14
Yoplac et al.

      
         
          
    
       
intensity for 10 minutes and room temperature, to
eliminate foam and air bubbles.
 
9 mL of these solutions in Petri dishes of 9 cm diameter
(EULab, Germany); and casting a total of four petri dishes

conditioned for 24 hours at 25 ± 0.5 °C and 55 ± 2.0%
        

    
       
temperature, inside duly labeled polyethylene bags, for





a) Thickness
 
a micrometer Digimatic IP-65, series 293-240 (Mitutoyo,


b) Optical properties
• Color
     
          
     L* = 93.11; a* = -0.63
and b* = 3.82). Color parameters (L*, a* and b* 
     


        
difference(E*) calculated through equation (2) [33].
L*, a*, b*
      
        
(1)
(2)
       
treatment.
• Opacity
For the measurement of opacity, the Hunterlab
Method [34] and the methodology proposed by Pires et al.

       
       
       
 Y
blackbackground,
L* = 21.84; a* = 0.29 and b* =
Y
whitebackground,
L* = 93.12,
a* = -0.65 and b* = 3.99).
 Y is the tristimulus value; considering that the
concept of tristimulus values (X, Y, Z) is based on the
        
establishes that the eye has receptors for the three
primary colors (red, green, blue) and that all the other
        
        
       
performed at four different positions of three different

• Transparency value (VT)

       

     

     
        

A
600
x

     
       
       
         

treatment.
c) Mechanical Properties
• Elastic Modulus (E)
      
temperature and 50% RH employing a3365 Instron
(3)
(4)
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
15

    
      

      
strips (10×80 mm
2
), initial grip separation of 40 mm
and crosshead speed of 25 mm/min. The average elastic
        
resulting stress (N) - strain (mm) curves resulting as the

• Elongation at break
B
) andTensilestrenght (RT)
    
       
calculated from stress (N) - strain (mm) curves, resulting

according to the methodologies proposed by Arrieta et al.
[15] and ASTM D882-01 [39].
In the present study, for the selection of the best
       E*, opacity
value and VT
        

E and RT, and greater percentage of
B.
Experimental design and data analysis
In this study, a completely randomized design
        
evaluated corresponded to three levels of CS:Sbratios
(1:0.5, 1:1.0 and 1:1.5) and also to three levels of CS:MC
ratios(1:0.5; 1:1.0 and 1:1.5).From this combination, nine


of 9 cm in diameter. The residuals obtained from the
data of the evaluated variables (optical and mechanical
        
homogeneity of variance. After verifying the assumptions,


Table 1. Distribution of factors and treatments for the

Factor A
CS:Sb ratio
Factor B
CS:MC ratio
Treatment
1: 0.5 1: 0.5 T1: 0.5 + 0.5
1: 0.5 1: 1.0 T2: 0.5 + 1.0
1: 0.5 1: 1.5 T3: 0.5 + 1.5
1: 1.0 1: 0.5 T4: 1.0 + 0.5
1: 1.0 1: 1.0 T5: 1.0 + 1.0
1: 1.0 1: 1.5 T6: 1.0 + 1.5
1: 1.5 1: 0.5 T7: 1.5 + 0.5
1: 1.5 1: 1.0 T8: 1.5 + 1.0
1: 1.5 1: 1.5 T9: 1.5 + 1.5
*/ CS: Sodium caseinate; Sb: Sorbitol; MC:
Citralmicroparticles.
    

test (

       

     
the Minitab
     

Results and Discussion
The results for all the variables evaluated

among factors, but also in their levels.
Thickness
       
       
orted by Arrieta et al.
        



increment.

     
        
        

        
    m, respectively.
       
plasticizer and MC. These results are similar to those



Optical Properties

         
      
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
16
Yoplac et al.
Table 2.
treatments
Treatment (T)
Thickness (µm)
X ± SD
T1: 0.5 + 0.5 121.271 ± 6.20 a
T2: 0.5 + 1.0 154.53 ± 10.63 bc
T3: 0.5 + 1.5 159.47 ± 1.21 bc
T4: 1.0 + 0.5 143.80 ± 12.93 ab
T5: 1.0 + 1.0 164.78 ± 3.38 bcd
T6: 1.0 + 1.5 170.73 ± 22.15 bcd
T7: 1.5 + 0.5 179.07 ± 1.75 cd
T8: 1.5 + 1.0 189.93 ± 0.99 d
T9: 1.5 + 1.5 192.00 ± 8.34 d
1
Values indicate average (n=3). X: average; SD: standard
deviation.
Different letters in the column, indicate statistically
     
difference test (p<0.05), for each treatment (T).
        
and 1:1.0) and CS:MC ratio (1:1.0), i.e. T1 and T4, had the

       
       





observed that the different concentrations of thyme oil EA,


        
       
    

biochemical, physical and optical characteristics could be

The difference of color E*
and 20.6 (Table 3), values higher than those reported by

       

E* values.
       

E*.


Table 3.
Treatment (T)
Optical Properties
Whiteness
X ± SD
ΔE*
2
X ± SD
Opacity (%)
X ± SD
VT
3
- 14 days (A
600
/mm)
X ± SD
T1: 0.5 + 0.5 85.371 ± 0.56 f 7.61 ± 0.58 a 14.82 ± 0.90 a 2.40 ± 0.40 ab
T2: 0.5 + 1.0 78.32 ± 0.29 c 15.09 ± 0.30 c 17.38 ± 0.60 abc 1.36 ± 0.42 a
T3: 0.5 + 1.5 73.05 ± 0.85 a 20.59
±
0.86 e 19.99 ± 1.11 c 1.99 ± 0.10 ab
T4: 1.0 + 0.5 84.88 ± 0.49 ef 8.03 ± 0.50 a 16.34 ± 0.90 abc 5.80 ± 1.14 c
T5: 1.0 + 1.0 79.72 ± 0.70 cd 13.61 ± 0.69 bc 15.71 ± 0.31 ab 2.63 ± 0.22 ab
T6: 1.0 + 1.5 75.54 ± 1.71 ab 18.11 ± 1.68 de 16.20 ± 0.90 abc 3.32 ± 0.57 b
T7: 1.5 + 0.5 82.20 ± 0.68 de 11.07 ± 0.75 b 33.66 ± 2.57 e 8.29 ± 0.69 d
T8: 1.5 + 1.0 77.26 ± 1.06 bc 16.16 ± 1.09 cd 25.37 ± 2.64 d 7.11 ± 0.80 cd
T9: 1.5 + 1.5 75.01 ± 1.44 ab 18.64 ± 1.25 de 19.21 ± 0.11 bc 6.83 ± 0.72 cd
1
Values indicate average (n = 3). X: average; SD: standard deviation.
2
Total color differences.
3
Transparency value.

(p<0.05), for each treatment (T).
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
17

         
         
higher than those reported by García and Sobral [40] in

 
This could be mainly due to the addition of an active agent
(AA) in the formulation; similarly as in other studies,
  

        

On the other hand, the transparency value

        

         
          

and E*
solutes in the formulation, such as Sb and MC.
       

       
protein [43] and soy protein [44]. These differences
could be due to the type of protein, origin and form of EA
      
      

        
properties.
Mechanical Properties
Mechanical properties are considered one of the
      
     
        
   
B
) is a mechanical property
that provides information on the capacity of materials to
       

foods from deterioration due to mechanical damage and
to maintain their integrity during storage in logistics
processes [46]. The mechanical properties of the active

Table 4
Treatment (T)
Mechanical Properties
Elongationat Break - ε
B
(%)
X ± SD
ElasticModulus– E
(MPa)
X ± SD
Tensile strength - RT (MPa)
X ± SD
T1: 0.5 + 0.5 41.221 ± 4.18 b 239.47 ± 24.56 c 8.42 ± 0.96 e
T2: 0.5 + 1.0 2.42 ± 0.41 e 407.46 ± 42.19 d 5.65 ± 1.10 d
T3: 0.5 + 1.5 0.55 ± 0.13 e 492.96 ± 62.49 e 4.43 ± 1.14 bcd
T4: 1.0 + 0.5 62.97 ± 11.23 a 72.91 ± 7.09 a 5.99 ± 0.72 d
T5: 1.0 + 1.0 33.50 ± 2.14 bc 100.24 ± 8.50 ab 4.64 ± 0.22 bcd
T6: 1.0 + 1.5 15.58 ± 1.45 de 163.24 ± 12.05 bc 4.85 ± 0.58 bcd
T7: 1.5 + 0.5 61.14 ± 9.91 a 52.72 ± 2.85 a 2.88 ± 0.08 abc
T8: 1.5 + 1.0 39.09 ± 5.96 b 55.32 ± 2.57 a 1.90 ± 0.18 a
T9: 1.5 + 1.5 22.70 ± 1.06 cd 68.04 ± 4.32 a 2.76 ± 0.23 ab
1
Values indicate average (n = 3). X: average; SD: standard deviation.
             
difference test (p<0.05), for each treatment (T).

B

      

increased the% of
B,
on the contrary, the increase in MC
in formulations reduced this parameter. The treatments


B. Similar
       
carvacrol [14,15], CS, glycerol and maize germ oil EA[29],
        
plasticizer and 
in 
The elastic modulus (E   
and 493 MPa. The incrementof sorbitol in the formulation
reducesEE

Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
18
Yoplac et al.
   
E values. On the other
        


      
sorbitol content. Both E
noticing that sorbitol plasticizer is the main responsible
for the reduction of these mechanical properties, the same

or microencapsulated are included. These results 


On the other hand, previous studies report
that AAs, such as citral, carvacrol, thymoloilamong


      
CS and AA due to the different charge distributions in
proteic chains. It can be stated that caseinates act as
        
AAs such as citral, could be a carrier of protons, because
        
      
         

      
         
      

        

microencapsulated[16].

and lipophilic AAs are evaluated, coincide in that the

    
have high EB; the opposite
E and RT, and higher B) is reported for
      

      
       




From the results obtained for both the optical
and mechanical properties, it could be stated that the



Figure 1. 


after of its processing.
Conclusions
The levels of CS:Sb and CS:MC used in the present



      


increase in MC.
       
best mechanical properties (i.e. higher %
B,

 E      
and optical properties, among all the formulations tested,

         
This formulation could ensure the conditions for the
       
        
      
future use in preserving fresh food. Moreover, further
studies on functional properties related to food contact
materials (i.e. microstructure, antimicrobial properties,

should be needed.
Acknowledgment

National Council of Science and Technology (CONCYTEC)
       

program of the Universidad NacionalAgraria La Molina -
Lima, under the grant agreement 179-2015-FONDECYT.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
19

References
[1] García C.J.: “Conozca las oportunidades para el
sector envases y embalajes en Latinoamérica”
 
 
pdf. (2018). (Retreaved: Decembre. 2019)
[2] Aguirre-Joya J.A. Leon-Zapata M.A.D. Alvarez-Perez
O.B. Torres-León C. Nieto-Oropeza D.E. Ventura-
Sobrevilla J.M. Aguilar. M.A. Ruelas-Chacón. X. Rojas.
R. Ramos-Aguiñaga. M.E. and Aguilar.C.N: “Chapter
      
for foods”. In: A.M. Grumezescu and A.M. Holban


[3]          
     
System”. In: J.H. Han (ed). Innovations in Food

th.
    
13-35.
[4] Byun Y. Zhang Y. and Geng X.“Chapter 5 -
Plasticization and Polymer Morphology. In: J.H. Han


[5] 
for the storage of food products”. Polym. Test. Vol. 24.
No. 5 (2005). 564–571.
[6] MINAM.“Menos plástico más vida: Cifras del mundo y
el Perú” [Internet]. Ministerio del Ambiente-MINAM.

vida/cifras-del-mundo-y-el-peru (2019) [Retrieved:
January 2019].
[7] Sengupta T. and Han J.H.“Chapter 4 - Surface
     
Materials”. In: J.H. Han (ed). Innovations in Food

51–86.
[8] Salgado P.R. Ortiz C.M. Musso Y.S. Giorgio L.D. and
      
bioactives”. Food Sci.. Vol. 5 (2015). 86–92.
[9] Falguera V. Quintero J.P. Jiménez A. Muñoz J.A. and

functions and trends in their use”. Trends Food Sci.
Technol. Vol. 22. No. 6 (2011). 292–303.
[10] 



[11] Pereda M. Aranguren M.I. and Marcovich
N.E.“Characterization of Chitosan/Caseinate Films”.
J. Appl. Polym. Sci. Vol. 107 (2008). 1080–1090.
[12] Barreto P.L.M. Pires A.T.N. and Soldi V.“Thermal
     
and gelatin in inert atmosphere”. Polym. Degrad.
Stab. Vol. 79. No. 1 (2003). 147–152.
[13]       
      

[14] Arrieta M.P. Peltzer M.A. López J. Garrigós M.D.C.
Valente A.J.M. and Jiménez A.“Functional properties
of sodium and calcium caseinate antimicrobial active

1 (2014). 94–101.
[15] Arrieta M.P. Peltzer M.A. Garrigós M.D.C. and Jiménez
A.“Structure and mechanical properties of sodium
      
carvacrol”. J. Food Eng. Vol. 114. No. 4 (2013). 486–
494.
[16]       
    
microencapsulated lemongrass oil or citral: effect
of encapsulating agent and storage time on physical
and antimicrobial properties”. J. Food Sci. Technol.
Vol. 54.No. 9 (2017). 2878–1889.
[17] Bustos C.R.O. Alberti F.V. and Matiacevich S.B.“Edible
    
lemongrass oil”. J. Food Sci. Technol. Vol. 53. No. 1
(2016). 832–839.
[18] Atarés L. and Chiralt A.“Essential oils as additives
    

51–62.
[19] Corrales M. Fernández A. and Han J.H.“Chapter 7 -



[20] 


[21] Ribeiro-Santos R. Andrade M. and Sanches-Silva
A.Application of encapsulated essential oils as
     
Food Sci. Vol. 14 (2017). 78–84.
[22]     
Publicaciones UIS. (2009). 180 p.
[23] Bonilla J. Poloni T. Lourenço R.V. and Sobral
     
     
Biosci. Vol. 23 (2018). 107–114.
[24]       
A. Rodrigues E. Flôres S.H. and Cladera-
Olivera.F.“Characterization of active biodegradable
      

138–147.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
20
Yoplac et al.
[25]     
        
    
    
life of fresh beef. Meat Sci. Vol. 145 (2018). 9–15.
[26] López P. Gándara J. and Losada P.“Infrared
spectrophotometric determination of citral
corrected for limonene interference in lemon and
orange essential oils”. Food Chem. Vol. 46. No. 2.
(1993). 193–197.
[27]       
encapsulation and delivery of citral for improved
food quality”. Food Hydrocoll. Vol. 37 (2014). 182–
195.
[28]      
antimicrobial studies of monoterpene: Citral. Pestic”.
Biochem Physiol. Vol. 98. No. 1 (2010). 89–93.
[29]      
    
incorporating maize germ oil bodies”. Food Res. Int.
Vol. 116 (2019). 1031–1040.
[30] Pereda M. Aranguren M.I. and Marcovich
      
Hydrocoll. Vol. 24. No. 8 (2010). 800–808.
[31] Yoplac I. Avila-George H. Vargas L. Robert P. and
     
content on microparticles: An application of NIR
    
Heliyon. Vol. 5 (2019). e02122.
[32] Yoplac I. Avila-George H. Vargas L. Robert P. and

microparticles by NIR spectroscopy and partial least
square regression”. Rev. Técnica Ing. la Univ. Zulia.
Vol. 42. No. 2 (2019). 76–85.
[33]         
R. Nunes L. and Marques.A.“Characterization of
     
and thyme oil”. J. Food Eng. Vol. 105. No. 3 (2011).
422–428.
[34] HunterLab Method: “Applications Note: Opacity”
 
uploads/2012/11/Opacity.pdf. (2008) (Retrieved:
July 2019).
[35] Alonso J.V.“Taller sobre el color y su medición
[Internet]. http://oa.upm.es/42855/1/Taller _
color_JVAlonsoFelipe.pdf. (2016). (Retrieved: August
2019).
[36]        

methods”. Color Res. Appl. Vol. 26. No. S1 (2001).
S222–S224.
[37]        
 
      
Food Chem. Vol. 100. No. 3 (2007). 914–920.
[38]   
        

1032.
[39] ASTM“Standard Test Method for Tensile Properties of
Thin Plastic Sheeting”. Standards Designation: D882-
      
USA. (2001). 10.
[40] García F.T. and Sobral P.J.“Effect of the thermal
      
      


[41]      
R.A.“Storage-induced changes in functional
properties of glycerol plasticized e Soybean protein
     
Hydrocoll. Vol. 45 (2015). 247–255.
[42] Atarés L. Bonilla J. and Chiralt A.“Characterization of
    

Vol. 100. No. 4 (2010). 678–687.
[43] Irissin-mangata J. Bauduin G. Boutevin B. and

Eur. Polym J. Vol. 37 (2001). 1533–1541.
[44] Jensen A. Lim L.T. Barbut S. and Marcone
M.“Development and characterization of soy protein


Vol. 60. No. 1 (2015). 162–170.
[45] Quintavalla S. and Vicini L.Antimicrobial food

373–380.
[46]        
S.A.“Functional characterization of biopolymer
     
essential oils and antimicrobial agents”. Int. J. Biol.
Macromol. Vol. 137 (2019). 1245–1255.
[47] Montero P. Mosquera M. Marín-peñalver D. Alemán A.
Martínez-álvarez Ó. And Gómez-guillén M.C.“Changes
   
the addition of nanoliposomes encapsulating an
active shrimp peptide fraction. J. Food Eng. Vol. 244
(2019). 47–54.
[48] Tapia-Blácido D.R. do Amaral Sobral P.J. and
 
      

No. 8 (2011). 1731–1738.
[49] 
and mechanical characterization of plasticized poly

Therm. Anal. Calorim. Vol. 3 (2006). 707–712.
REVISTA TECNICA
www.luz.edu.ve
www.serbi.luz.edu.ve
www.produccioncientica.luz.edu.ve
OF THE FACULTY OF ENGINEERING
UNIVERSIDAD DEL ZULIA
Vol. 44. N°1, January - April 2021, pp. 04 - 56__________________
This Journal was edited and published in digital format
on December 2020 by Serbiluz Editorial Foundation