ppi 201502ZU4659
Esta publicación cientíca en formato digital es
continuidad de la revista impresa
ISSN 0254-0770 / Depósito legal pp 197802ZU38
UNIVERSIDAD DEL ZULIA
Una Revista Internacional Arbitrada
que está indizada en las publicaciones
de referencia y comentarios:
• SCOPUS
• Compendex
• Chemical Abstracts
• Metal Abstracts
• World Aluminium Abstracts
• Mathematical Reviews
• Petroleum Abstracts
• Current Mathematical Publications
• MathSci
• Revencyt
• Materials Information
• Periódica
• Actualidad Iberoamericana
DE LA FACULTAD DE INGENIERÍA
REVISTA TÉCNICAREVISTA TÉCNICA
“Buscar la verdad y aanzar
los valores transcendentales”,
misión de las universidades en
su artículo primero, inspirado
en los principios humanísticos.
Ley de Universidades 8 de
septiembre de 1970.
“Buscar la verdad y aanzar
los valores transcendentales”,
misión de las universidades en
su artículo primero, inspirado
en los principios humanísticos.
Ley de Universidades 8 de
septiembre de 1970.
VOLUMEN 43 MAYO - AGOSTO 2020 NÚMERO 2
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
Study of the leaching potential in a soil and its depuration
capacity: perspectives in a landfill selection
Jhon Fredy Narvaez* , Juan José García , Francisco Campillo-Machado, Anderson A.
Rodríguez; Alejandro Cardona; Diana Patricia Urrea
Grupo de Investigación Ingeniar. Facultad de ciencias básicas e Ingeniería, Corporación Universitaria
Remington, Calle 51 No. 51-27, Medellín, Colombia.
*Autor de Correspondencia: jhon.narvaez@uniremington.edu.co
https://doi.org/10.22209/rt.v43n2a04
Recepción: 28/06/2019 | Aceptación: 17/03/2020 | Publicación: 01/05/2020
Abstract

pollution implications. Complex fractions of organic pollutants may transfer from the soil with multiplex physicochemical



and silicates present, may reduce the dye by physicochemical interaction with log Koc


condition for neutralization, while conductivity was reduced even to values presented in tap water due to ionic exchange
    
of pollutants removal in soils and, therefore, low physicochemical interactions may lead to the leaching of pollutants to

Keywords:
Estudio del potencial de lixiviación de un suelo y su
capacidad de depuración: perspectivas en la selección de un
relleno sanitario
Resumen
Muchos residuos sólidos son depositados en rellenos sanitarios, lo que puede conducir a procesos de lixiviación






entre el colorante y el suelo debido a que, aunque una gran cantidad de agua atraviesa los limos, se presentan bajos niveles

condición básica para la neutralización, mientras que la conductividad se redujo incluso a los valores presentados en el
agua del grifo debido a la capacidad de intercambio iónico del suelo. Una conclusión preliminar muestra que la eliminación
del primer estrato en un relleno sanitario reduce la capacidad de eliminación del suelo y, por lo tanto, pocas interacciones

estudios en el futuro.
Palabras clave:            


Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
83

Introduction
A large amount of solid waste is produced
by the population growth, and thus, many cities build
      
    
and soil properties may play an important role in

natural bio-physicochemical reactor which degrades or
absorbs contaminants leaching from the solid phase and
thus more polar molecules may be transported cross the
soil to the groundwater due to solubility properties [3]. In
contrast, non-polar pollutants may interact with organic
fractions in soil by logkoc properties but low interactions
increase the transfer to water bodies from the soil [3].

humic and fulvic acids may be related to soil-pollutants
interactionsas well as minerals present in the soil.
        
important role in absorption/ retention of a wide range
of pollutants due to the molecular size and the soil
granulometry may have a relationship with the potential

fraction in soils may interact by size exclusion and even
by ionic interaction between organic pollutants and
aluminum and silicates into the layer and therefore
the removal of clay layer should not be done because

adequacy may lead to groundwater pollution by leaching
processes. For instance, the removal of silty and clay
layer reduces physicochemical interactions between
molecule structures of pollutants and alumina and
silicates minerals presents in those layers [6]. Although
      
        
absorption capacity are included to reduce soil- water
transport. In this paper, we focused on studying the soil
properties and leaching by trace marker and leaching
         
to purify simulated wastewater and,why does this type

management to decrease ecological impact and protect

Materials and methods
Reagents




Soil-layers samples
      

located at the coordinates 6° 23’13.8 “N 75° 35›50.8» W

layers were observed with different colors and physical


1.
Figure 1



Also, CP was built at similar percentages
        

Granulometry analysis of each layer
All granulometry test were carry out according
       
  methods  
      

performed in the Atterberg limits assay. All soil samples
were weighed on digital scales and stored in tares and
appropriate containers. Finally, to dry all the samples, a

450 g of samples were dried for 24 hours in the oven.
      
of six sieves and, therefore, the amount retained was
weighed individually to estimate the percentage retained.
       
granulometry curve to estimate particle size distribution.
For Atterberg limits, a large number of samples were
passed through sieve No. 40 to obtain 300 g of sample.
       
estimation of natural humidity and, subsequently, the
          
estimated by the Casagrande cup method only to reach
more than 15 strokes and less than 35 strokes, while the

that the canes of 3 mm in diameter and 10 centimeters in
length were obtained.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
84 Narvaez y Col
Leaching study
For the leaching study, packed columns with
the soil layer described in the previous section were
       
     -1   

of the solution used was calculated by means of average

was passed, the changes between the initial condition
       
       
    
       
by the differences in the relationship between the initial
        

Physicochemical analysis



-1
1/200 and 1/400. Absorbance was measuredat 276 by 
r2 was estimated for linearity. For measuring
dye levels in leached samples, 1 ml was collected in a

in calibration curve and therefore absorvances were
interpolate in the linear equation. Finally, the initial and


Data treatment and analysis
All meassurements in leached samples were
       
     
     
       


   
parametric studies were applied for analyzing differences
between treatments.
Results and Discussion
Granulometry study





the Atterberg limit was carried out which is presented in
Figure 2.
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0.010.11
% Accumulate retained
Particle Size (mm)
L2 L1 L3 L4
Figure 2. Granulometric distribution for all soil-layers
analysis.
       


Table 1. Results for Atterberg limit study in each soil-
layer.
Soil Layer Natural
humidity NH
Liquid
limit LL
Plastic
limit PL
Plastic
index
L2 29% 55% 45% 10%
L3 8.9% 66% 57% 9%
L4 20% 58% 43% 15%

        



because their physical properties lead to classify it as an
organic layer.
Figure 3. Plasticity index chart for Casagrande test.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
85

Leaching study (dye removal)
     -
poses was plotted by the relationship between the absor-
-
gression shown a r2 greater than 0.98 and a nonzero slope,
so the percentage of dye removal was found using the cor-
responding equation. For more details, see the Figure 4.
Figure 4.Calibration curve for dye removal and quantity
purpose.

were analyzed by interpolation in linear equation, and,
there foreitthe removal percentages found were in the

details.
Figure 5. 
layers.
       
         



in Figure 5.
Physicochemical analysis in leaching water
Variability of pH in leaching fractions

fractions of each soil layers, including the complete soil
sample, the original dye solution and a deionized water

values of every soil layers are very similar to each other,

         
to neutrality, which indicates an improvement of this
parameter up to 2 units.
Figure 6. 
different soil-layers.


7.0 used as a blank.

Figure 7 shows the variability in the conductivity
in the leaching fractions of each of the soil layers, including
the complete soil sample, the original dye solution and a
 
of the original dye solution was reduced to values that

found in the leaching fractions were even lower than those

physicochemical interactions between the original dye
solution and the soil layers could reduce the electrolytes
present in the initial samples.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
86 Narvaez y Col
Figure 7. Conductivity in leaching fractions from the
different soil-layers.
Although, a reduction in conductivity was


compared to the rest of the soil layers.
     
estimated by the ratio between the volume of water


Table 2
layer.
Type of Volume Soil sample or soil layer
CP L1 L2 L3 L4
Volume of water inltrated
(mL) 20.0 30.5 48.5 19.0 12.0
Percentage of water
inltrated (%) 25.0 38,1 60.6 23.8 15.0






Although recycling and organic production are
       
   

complex pollutantsas well as thesoil properties are not
fully considered in the conventional design. Although
        
groundwater can be the destination of many substances
causing pollution[7]. In this article, the leaching potential

using the carminic acid dye as a trace marked in order to
establish some soil properties which should be considered
    

works have been carried out with a similar orientation to
the present study[8-9]
capacity, as well as its effects on leachate, are not fully
understood and, thus, more research and knowledge must
be obtained in order to improve the site selection process

    

       
due to the origin of the soils,which is related to volcanic

          
  
silicates,
aluminum and low amounts of iron which may take part
in physicochemical reactions for degradation of the dye

substances due to their particles are lower than 4.5 µm

silica gel which is applied for chromatography separation
includes particle size between 38 to 63 µm and thus
the retention by physical interaction is done [11-12].

which containsa particle sizes distribution smaller than
silica gel used in chromatography and, therefore, the
adsorption capacity may be higher in those layers. In
a research study, it was found that silty loam layer does
not lead to the volatilization of kerosene, because the
hydrocarbons are caught by the smaller pore sizes[10].
According the present study, the carminic acid is removed

is found in CP. Additionally, the conductivity is reduced


contain all the individual properties presented in layers
analyzed by separate and, thus the granulometry, silt,
plasticity and organic matter contained in each layer
may affect together the transport of the carminic acid.

CP, can retain the dye by organic interactions including

Log Koc

organic mattermay affect the adsorption/desorption
       
in hydrophilic and hydrophobic sites which increase
the interactions between this fraction and the organic
      
         
         
for log Koc interaction between xenobiotic substances and
soil [14-15]. Additionally, the organic pollutants may be
caught and degraded by microbiota and physicochemical
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
87

    

        

the adsorption is improved slightly due to particle size or
silica-aluminium interaction with carminic acid as was
presented before. In individual layers no differences were

adsorption may be related to complex interactions such as
     

      

         
the medium may change the chemical dissociation and
      
           
value for a non-ionized form of carminic acid and thus
the maximum adsorption may occur in soil. In Figure 8,an
ionic grup in the molecular structure of carminic acid is

variability in medium.
Figure 8. Molecular structure of carminic acid.
According to Figure 8, the carboxylic and even
the hydroxyl group affect the ionic form in carminic acid.
Additionally, the surface area and the high molecular
weight may be related to adsorption due to the thin pore
       
      

        
reduced, because hypothetically the absorbed carminic
acid may interact with ions which pass through the soil
        
        
transport of pollutants, which is the reason why although,

          
        
        


ionizablepollutants. Major pharmaceutical products are
weak acids and bases and thus, those products may be

       

Finally, the carminic acid is a degradable
substance by biological and physical processes and their
        
the carminic acid adsorbed in the porous soil may be
degraded by allocthonous microbiota and the delay
      

into the soil is unknown and, therefore, further studies



-1 from electric waste and electronic

waterbodies [21]. For this preliminary study, we may
say that soil with similar properties may be prepared as
          

soils and leached produced should be considered in the
pollutanttransport prediction and the water pollution.

studied in more details. For example, electronic waste
          

      
after their leaching.
Conclusions

properties of the soil and the physicochemical interactions
with the possible contaminants deposited there must be
       

layer removal from soil and low silty properties may
increase the passage of pollutants through the soil to reach
      

the presence of aluminum-silicates present may take an


bases soil-borne because ionic fractions can be easily
       
adsorbs weak acids and therefore, similar substances may

In this research, a natural biodegradable dye was used
       
physicochemical properties should be tested and their
possible impact on aquatic species due to pollutants soil-

Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 2, 2020, Mayo-Agosto, pp. 58-110
88 Narvaez y Col
Acknowledgments
Authors thanks the project Colciencias entitled
“Potencial de bioacumulación de agroquímicos y
contaminantes persistentes en una cuenca del oriente


Also, the authors would like to express their thanks to
       
internacionalización, lenguas y Culturas extranjeras –

References
[1] 
   
 Waste Manag.,

[2] 

     
Water Manag

[3] 
applications, and environmental considerations.
Amberst Massachusetts: Elsevier, 1998.
[4] 
prediction of the leaching behavior of pollutants
    Environ. Res  

[5]        

     
J. Non-Equilibrium Thermodyn.

[6] 
Isr. J. Chem

[7]             
       
groundwater contamination near municipal solid

[8]      
Journal (Water Pollution
Control Federation).,
2716.
[9]          

     
 
Sci. Total Environ
[10]       
       
characterized by low viscosity and medium
volatility in comparison with heavy and residual
fuels. It is used for wick-fed illumination, spark
     
J. Contam. Hydrol.,

[11]         
determination of organochlorine pollutants and
the enantiomers in oil seeds based on matrix solid-
phase dispersion A simple, rapid and effective
method was developed based on matrix solid-
FOOD Chem
[12]      
Anal.
Chem
[13] 
organic pollutants in soils with emphasis on
adsorption/desorption processes of endocrine
  Pure Appl. Chem  

[14]       
Improvements and systematics of log Koc vs log
  Chemosphere    

[15]        
xenobiotics to dissolved organic macromolecules:
    Sci. Total
Environ
[16]          
    
their ecotoxicity: A review of natural degradation
 Gestion y Ambiente.    

[17]         
degradation in soils of veterinary ionophore
    Environ.
Toxicol. Chem
[18] 
equilibria of carminic acid and stability constants
of its complexes with some divalent metal ions in
J. Solution Chem

[19]            
      

J. Contam. Hydrol
[20]        
pigments based on carminic acid and smectites: A
  Dye. Pigment  

[21] 

Chemosphere
1571–1579.
REVISTA TECNICA
DE LA FACULTAD DE INGENIERIA
UNIVERSIDAD DEL ZULIA
www.luz.edu.ve
www.serbi.luz.edu.ve
www.produccioncientica.luz.edu.ve
Esta revista fue editada en formato digital y publicada
en Abril de 2020, por el Fondo Editorial Serbiluz,
Universidad del Zulia. Maracaibo-Venezuela
Vol. 43. N°2, Mayo - Agosto 2020, pp. 58 - 110__________________