REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 14, N° 40, 2023
Héctor Méndez-Gómez et al. // The Relationships Between Discrete Dynamical Systems … 43-83
DOI: https://doi.org/10.46925//rdluz.40.04
82
Banks, John (2005). Chaos for induced hyperspace maps. Chaos Solitons Fractals Vol. 25, no. 3,
págs. 681-685.
Barnsley, Michael (1993). Fractals everywhere. Second. Boston: Academic Press Professional,
1993. ISBN: 0-12-079061-0.
Bauer, W y Sigmund, K. (1975). Topological dynamics of transformations induced on the
space of probability measures. 1975, Monatsh. Math., Vol. 79, págs. 81-92
Bauer, Walter y Sigmund, Karl (1975). Topological dynamics of transformations induced on
the space of probability measures. 1975, Monatshefte für Mathematik, Vol. 79, págs. 81-92.
Bermúdez, A, y otros (2011). Li-Yorke and distributionally chaotic operators. 1, 2011, J. Math.
Anal. Appl., Vol. 373, págs. 83-93.
Bernardes, N, Peris, A y Rodenas, F. (2017). Set-valued chaos in linear dynamics. 4, 2017,
Integral Equations Operator Theory, Vol. 87, págs. 451-463.
Bernardes, N, y otros (2015). Li-Yorke chaos in linear dynamics. 6, 2015, Ergodic Theory Dynam.
Systems, Vol. 35, págs. 1723-1745.
De la Rosa, Manuel y Read, Charles (2009). A Hypercyclic Operator Whose Direct Sum T
T is not Hypercyclic.. 2, 2009, Journal Operator Theory, Vol. 61, págs. 369-380.
Delgadillo, Gerardo y López, Miguel (2009). Espacios de Fréchet Urysohn. No 1, 2009, Vol. 8,
págs. 29-56.
Edgar, Gerald (2008). Measure, topology, and fractal geometry. Second. New York : Springer,
2008. ISBN: 978-0-387-74748-4.
Furstenberg, Harry (1967). Disjointness in Ergodic Theory, Minimal Sets, and a Problem in
Diophantine Approximation. 1, 1967, Mathematical Systems Theory, Vol. 1, págs. 1-49.
Grosse-Erdmann, Karl y Peris-Manguillot, Alfred (2011). Linear chaos. London : Universitext
Springer, 2011. ISBN: 978-1-4471-2170-1.
Guirao, J, y otros (2009). Chaos on hyperspaces. 1-2, 2009, Nonlinear Anal, Vol. 71, págs. 1-8.
Lampart, Marek (2003). Two kinds of chaos and relations between them. 1, 2003, Acta Math.
Univ. Comenian, Vol. 339, págs. 119-127.
Li, Shihai (1993). ω-Chaos and Topological Entropy. 1, 1993, Transactions of the American
Mathematical Society, Vol. 3389, págs. 243-249.
Li, Shoumei; Ogura, Yukio y Kreinovich, Vladik (2022). Limit Theorems and Applications of
Set-Valued and Fuzzy Set-Valued Random Variables. Dordrecht : Springer-
Science+Bussiness media, B.V., 2022. Vol. 43. ISBN: 978-94-015-9932-0.
Li, Tien y Yorke, James (1975). Period three implies chaos. 10, 1975, The American