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ABSTRACT 

Several studies have been carried out related to the analysis of the relationship with respect 
to the dynamic properties of f and its hyperextension ¯f. However, the literature regarding 
the analysis of the effects of individual and collective chaos on their behaviour is scarce. 
Therefore, in this article several conjectures and questions are established according to the 
affectation of individual chaos in an ecosystem and its chaotic behaviour within the dynamics 
of this ecosystem, but as a whole. Thus, in the first instance, an introduction to the 
conceptualization of topological transitivity, chaos in the Devaney sense and how they are 
specified in continuous linear operators arranged in a Fréchet space (hypercyclic operators) 
will be established. In addition, the different notions of chaos that can occur depending on 
the relationship of the function, and its hyperextension will be described, to finally 
corroborate the present chaos with greater force than Devaney’s according to the strong 
periodic specification property, the same one that applies to both f and a ¯f with the purpose 

of verifying the directionality in which individual and collective chaos can occur. 

KEYWORDS: Function, hyperextension, dynamic system, individual chaos, collective chaos. 

 

*Matemático, Universidad de Costa Rica, Máster Universitario Investigación Matemática, Universitat 
Politècnica de Vàlencia, España. Docente en matemática de la Universidad de Costa Rica, sede regional del 
Pacífico – Costa Rica. ORCID: https://orcid.org/0000-0002-0925-8310. E-mail: hector.mendez@ucr.ac.cr 

** Ingeniero Electrónico, Universidad Politécnica Salesiana, Máster Universitario en Investigación 
Matemática – Universidad de Valencia. Docente en la Escuela Superior Politécnica del Chimborazo – Ecuador. 
ORCID: https://orcid.org/0000-0002-0646-3984. E-mail: jorge.yaulema@espoch.edu.ec 

*** Ingeniera Electrónica, Escuela Superior Politécnica del Chimborazo, Magister en Sistemas de Control y 
Automatización Industrial - Escuela Superior Politécnica del Chimborazo – Ecuador, Máster Universitario en 
Estadística Aplicada – Universidad de Granada - España. Docente en la Escuela Superior Politécnica del 
Chimborazo – Ecuador. ORCID: https://orcid.org/0000-0003-3911-0461.  E-mail: 
paulina.bolanos@espoch.edu.ec 

**** Ingeniero Mecánico, Escuela Superior Politécnica de Chimborazo, Máster Universitario en Matemáticas 
y Computación – Universidad Internacional de la Rioja - España. Docente en la Escuela Superior Politécnica 
del Chimborazo – Ecuador. ORCID: https://orcid.org/0000-0001-5549-9572. E-mail: 
fernando.marquez@espoch.edu.ec 

Recibido: 03/02/2023                                                                                                            Aceptado: 29/03/2023 

https://orcid.org/0000-0002-0925-8310
https://orcid.org/0000-0002-0646-3984
https://orcid.org/0000-0003-3911-0461
https://orcid.org/0000-0001-5549-9572
mailto:fernando.marquez@espoch.edu.ec


REVISTA DE LA UNIVERSIDAD DEL ZULIA.  3ª época. Año 14, N° 40, 2023 
Héctor Méndez-Gómez et al. // The Relationships Between Discrete Dynamical Systems … 43-83 

                                                                                                                 DOI: https://doi.org/10.46925//rdluz.40.04 
 

44 
 

Relaciones entre sistemas dinámicos discretos en espacios topológicos 
y sus respectivas hiperextensiones a conjuntos de espacios compactos 

 

RESUMEN  

Se han realizado varios estudios vinculados con el análisis de la relación con respecto a las 
propiedades dinámicas de f y su hiperextensión ¯f.  Sin embargo, es escasa la literatura 
respecto al análisis de los efectos del caos individual y colectivo sobre sus comportamientos. 
Por lo tanto, en el presente artículo se establecen varias conjeturas e interrogantes de acuerdo 
a la afectación del caos individual en un ecosistema y su comportamiento caótico dentro de 
la dinámica de este ecosistema, pero en su conjunto. Así, se establecerá en primera instancia 
una introducción a la conceptualización de la transitividad topológica, el caos en el sentido 
de Devaney y cómo se especifican en operadores lineales continuos dispuestos en un espacio 
de Fréchet (operadores hipercíclicos). Además, se describirán las diferentes nociones de caos 
que pueden darse según la relación de la función y su hiperextensión, para finalmente 
corroborar el caos presente con mayor fuerza que el de Devaney según la propiedad de 
especificación periódica fuerte, la misma que aplica tanto a f como a ¯f con el propósito de 
verificar la direccionalidad en la que puede ocurrir el caos individual y colectivo. 

PALABRAS CLAVE: Función, hiperextensión, sistema dinámico, caos individual, caos 
colectivo. 

 

Introduction 

In the analysis of a dynamical system  𝑓 established in a topological space of 𝑋, the 

development of conceptualizations such as topological transitivity and chaos will be 

determined. In the case of studying the individual chaos on the behavior of orbits in the long 

term, it is necessary to determine its behavior according to the changes that can be generated 

when they occur in nature, which can also be collective and establish an affectation between 

both (Peris, 2005). 

When studying collective chaos, an analysis based on the dynamics of the function is 

developed where a family of sets predominates, which in particular will be for the study of 

non-empty compacts established in a topological space (Barnsley, 1993). 

Thus, a question is presented according to the different notions of chaos and the 

relation that it specifies regarding a continuous function 𝑓: 𝑋 ⟶ 𝑋 with its hyperextension 

𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋). For this purpose we will define the hyperspace of non empty compact sets 

established in a topological space of 𝑋 that will be established by (𝑋) . At the same time if it 



REVISTA DE LA UNIVERSIDAD DEL ZULIA.  3ª época. Año 14, N° 40, 2023 
Héctor Méndez-Gómez et al. // The Relationships Between Discrete Dynamical Systems … 43-83 

                                                                                                                 DOI: https://doi.org/10.46925//rdluz.40.04 
 

45 
 

is presented in a metric space (𝑋, 𝑑) we will be able to endow a metric Hausdorff space, same 

that will allow to measure the distance between the sets. 

On the other hand, chaos is defined from different notions, for instance, the one 

established by Devaney and its variants both total chaos and exact chaos, as well as Li-Yorke, 

the ω-chaos and distributional chaos. All of them can specify the relation according to the 

function 𝑓 and its hyperextension 𝑓  . The purpose is established on the comparative analysis 

between the individual and the collective chaos in each of these notions and vice versa. 

Moreover, a stronger chaos than the one proposed by Devaney commonly known as 

the strong periodic specification property is established, which when it is applied to the 

function as its hyperextension, it will determine the directionality that is specified in rising 

or falling as shown in the following scheme: 

 

1. Literature review 

The description of the literature related to chaos in hyperspaces requires the initial 

analysis of preliminary conceptualizations established from topological dynamics with 

respect to dynamical systems and their objective on the behavior that is specified in the long 

term of the iterations of a certain function 𝑓 on the domain points and starting on a certain 

topological point 𝑋 (Peris, 2005). Dynamics, on the other hand, establishes its purpose 

according to the study of the behavior of the orbits within a system (Barnsley, 1993). This 

behavior may be equivalent to the dynamical system itself as to a conjugate system, a process 

called conjugacy (Román et al., 2018).   

Conjugacy is related to the equivalences that can occur in dynamical systems, where 

a topological transitivity is established which is expressed by the theorem that states that 

when f is weakly mixing then it will also be topologically transitive (Bauer & Sigmund, 1975), 

(Ulcigrai, 2021) and (Banks, 2005). 

Within the dynamics of operators, hypercyclicity is presented, which according to its 

universality criterion is defined by {𝑇𝑛 : 𝑛 𝜖 𝑁} being a succession of operators within a 
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Fréchet space that is separated in 𝐸. If dense subsets 𝑋 and 𝑌 of 𝐸 are presented as an 

increasing succession of naturals {𝑚𝑘}𝑘=1
∞   and applications of  𝑆𝑚𝑘 ∶  𝑌 ⟶ 𝐸, 𝐾 𝜖 𝑁 

(whether surely discontinuous or nonlinear, which these terms will be omitted when 

referring to 𝑇 which will be described simply as an operator). Furthermore, an operator 𝑇 on 

a locally convex space of 𝐸 will be hypercyclic when the succession {𝑇𝑛 : 𝑛 𝜖 𝑁}  is universal, 

specified when there exists a vector 𝑥 ∈ 𝑋 where the orbit 𝑥 𝑏𝑦 𝑇 is defined as: 𝑂𝑟𝑏(𝑇, 𝑥) ∶

= {𝑥, 𝑇𝑥, 𝑇2𝑥, . . . } being dense in 𝐸. Denoting in this case a vector 𝑥 as a cyclic vector for 𝑇 

(Liao et al., 2006). 

In relation with topology, convergence has been a topic of complete interest on the 

study of mathematicians, which has generated several classes of spaces, being Fréchet one of 

the pioneers in completely characterizing the classes of spaces by means of convergent 

sequences (Martínez, 2000). 

From hyperspaces the topology can be analyzed from Vietoris that specifies the dense 

set of periodic points according to a dynamic system : 𝑋 ⟶ 𝑋 , being necessary for 𝑓 to 

possess a chaotic condition conforming to that established by Devaney chaos where it is 

stated that a dense set of periodic points will be equivalent for the function  𝑓  as for its 

hyperextension (Delgadillo & López, 2009). 

There are several reformulations of Devaney's chaos such as the total chaos, which 

states that a dynamical system 𝑓: 𝑋 ⟶ 𝑋  being in a metric space of 𝑋 will establish that 𝑓 is 

totally transitive if it is evident that the iterations of 𝑓𝑛 for each 𝑛 𝜖 𝑁 are topologically 

transitive. It is further mentioned that if 𝑓 were fully transitive it will be 𝑓 topologically 

transitive so it will suffice to consider 𝑛 = 1. 

Conversely, Devaney's exact chaos states that a dynamical system 𝑓: 𝑋 ⟶ 𝑋 set in a 

topological space of 𝑋, will determine 𝑓 to be topologically exact when the totality of the 

nonempty open subset 𝑈 ⊏ 𝑋 exists 𝑚 𝜖 𝑁 such that 𝑓𝑚(𝑈) = 𝑋. 

2. Materials and methods 

To establish transitivity requires the use of several definitions, examples, prepositions, 

lemmas and theorems of topological dynamics, operators and hyperspaces, for which the 

following sections are developed. 
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2.1. Topological dynamics 
 

Definition 1.1. The dynamical system is established according to the pair (𝑓, 𝑋) where 𝑋 

represents the metric space and the continuous function determined by 𝑓: 𝑋 ⟶ 𝑋.. 

In the research, it will be simply determined as a dynamical system to 𝑓 ó 𝑓: 𝑋 ⟶ 𝑋, 

or else (𝑓, 𝑋). Starting from the point 𝑥0 ∈ 𝑋,, where its iterations are defined as 𝑓𝑛: 𝑋 ⟶ 𝑋, 

𝑛 ≥ 0, 𝑓𝑛(𝑥0) = 𝑓 ∘ ⋯ ∘ 𝑓⏟
𝑛−𝑖𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛𝑒𝑠

(𝑥0). Where 𝑓0 is the identity function on 𝑋. 

Definition 1.2. When the dynamical system is 𝑓: 𝑋 ⟶ 𝑋 at the point 𝑥0 ∈ 𝑋, the set of the 

orbit 𝑥 under 𝑓  will be:  

𝑂𝑟𝑏(𝑥, 𝑓) = {𝑥, 𝑓(𝑥), 𝑓2(𝑥), … } = {𝑓𝑛(𝑥): 𝑛 ∈ 𝑁0} 

The study of the orbit with respect to the point 𝑥0 ∈ 𝑋 under the function 𝑓 

establishes the succession (𝑓𝑛(𝑥0))
𝑛

, thus determining equivalence with the point 𝑥0 under 

the function 𝑓. 

In a metric space 𝑋 is defined the 𝜔 − 𝑙í𝑚𝑖𝑡𝑒 of 𝑥 ∈ 𝑋 by means of the set 𝜔(𝑥, 𝑓) where 

it will be established the totality of the limit points present in the orbit 𝑥 which is precise as 
a succession. 

Example 1.3. When 𝑓: 𝐶 ⟶ 𝐶 o 𝑧 ↦ 𝑧2 we specify in the following formula the iterates of 𝑓, 

to denote: 𝑓𝑛(𝑧) = 𝑧2𝑛
. 

Where it is determined that if |𝑧 | < 1 la 𝑂𝑟𝑏(𝑧, 𝑓) will tend to 0. On the other hand 

if |𝑧 | > 1 the 𝑂𝑟𝑏(𝑧, 𝑓) will tend to ∞ 

Definition 1.4. The relation of two dynamical systems such (𝑔, 𝑌) and (𝑓, 𝑋) can be 

presented by the continuous function 𝜑: 𝑌 ⟶ 𝑋. Whereby, in the dynamical systems 𝑔: 𝑌 ⟶

𝑌 and 𝑓: 𝑋 ⟶ 𝑋, 𝑓 will be called a semiconjugate of 𝑔 as there exists a continuous function 

as. If  𝜑: 𝑌 ⟶ 𝑋, dense range were to be presented be 𝑓 ∘ 𝜑 =  𝜑 ∘ 𝑔 the diagram will present 
commutativity, as presented below: 

 

On the other hand, in the case that 𝜑 is presented as a homeomorphism both 𝑔 and 𝑓 

will be called conjugates. 
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Definition 1.5. Upon establishing a property 𝑃 in a dynamical system a semiconjugate is 

preserved when in 𝑔: 𝑌 ⟶ 𝑌 the property 𝑃 is satisfied by making 𝑓: 𝑋 ⟶ 𝑋 semiconjugate 

of 𝑔 also satisfies the aforementioned property. 

Therefore, a dynamical system can be defined by another system 𝑓 by restricting a 

subset with 𝑓 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  

Definition 1.6. If 𝑓: 𝑋 ⟶ 𝑋 and a subset of 𝑌 ⊂ 𝑋 is determined 𝑓 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 or 

invariant under 𝑓  when 𝑓(𝑌) ⊂ 𝑌 

In the case when 𝑌 ⊂ 𝑋 is 𝑓 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 we define 𝑓|𝑌: 𝑌 ⟶ 𝑌 as a dynamical 

system. 

Definition 1.7. A dynamical system is set up with the function 𝑓: 𝑇 ⟶ 𝑇, 𝑧 ↦ 𝑧2 with 𝑇 =

{𝑧 ∈ 𝐶: |𝑧| = 1} since 𝑓(𝑇) ⊂ 𝑇, same that will duplicate the argument of 𝑧. 

Definition 1.8. In the dynamical system 𝑓: 𝑋 ⟶ 𝑋 it is considered as topologically transitive 

when any of the pairs of 𝑈, 𝑉 representing nonempty open subsets of 𝑋 is presented 𝑛 ≥ 0, 

being 𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅, where 𝑓 allows the connection of trivial parts of 𝑋, topological 

transitivity in existence can be deduced by means of a point 𝑥 ∈ 𝑋 containing an orbit under 

𝑓 dense. 

Proposition 1.9. The preservation of topological transitivity is presented according to 
semiconjugacy. 

Proposition 1.10. If f represents a continuous function presenting a dense orbit within a 

metric space of 𝑋 where no isolated points are evident, then 𝑓 will be topologically transitive 
(Bauer & Karl, 1975). 

Lemma 1.11. There exist certain equivalent statements to the dynamical system 𝑓: 𝑋 ⟶ 𝑋 be: 

 (a) If 𝑓  is considered topologically transitive. 

               (b) On a nonempty open set 𝑈 of 𝑋 let ⋃𝑛=0
∞ 𝑓−𝑛(𝑈)be dense in 𝑋. 

Theorem 1.12. Birkhoff determines transitivity by means of the continuous function 𝑓  

present in a separate and complete metric space of 𝑋 without presence of isolated points. 
By establishing the following equivalent statements: 

 (a) If f is considered topologically transitive. 

(b) By evidencing 𝑥 ∈ 𝑋  an orbit under 𝑓  dense in 𝑋 

If one of the two statements holds the set of points in  𝑋  with an orbit under dense  

𝑓  will represent the set 𝐺𝛿  dense. 
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Preposition 1.13. The property is established by possessing a dense orbit in preserving itself 
in semiconjugacy. 

Definition 1.14.  Defining a metric space without evidence of assortative points (𝑋, 𝑑) 

expresses 𝑓: 𝑋 ⟶ 𝑋 as a dynamical system possessing sensitive dependence on the initial 

conditions with 𝛿 > 0 for each 𝑥 ∈ 𝑋 y 𝜀 > 0 there will exist 𝑦 ∈ 𝑋  with 𝑑(𝑥, 𝑦) < 𝜀 for 𝑛 ≥

0, setting: 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝛿, where the sensitivity constant of 𝑓 will be represented by 

the number 𝛿. 

All the fact previously described is known as the butterfly effect since it establishes 

that very small initial differences can lead to uncontrollable consequences. Furthermore, it 

specifies the stability to which a dynamic system is subject. 

Definition 1.15. Considering the dynamical system 𝑓: 𝑋 ⟶ 𝑋 

             (a) If the point 𝑥 ∈ 𝑋  is set, it is considered as a fixed point of 𝑓  when 𝑓(𝑥) = 𝑥 

             (b) If the point 𝑥 ∈ 𝑋  is set, it is considered as periodic point of 𝑓  𝑛 ≥ 1 as 𝑓𝑛(𝑥) =

𝑥.                       Therefore, 𝑛 represents the period of 𝑓𝑘(𝑥) ≠ 𝑥  for 𝑘 < 𝑛. 

              Denoting the set of periodic points by 𝑃𝑒𝑟(𝑓). 

  A point will be periodic only if it refers to a fixed point of any of the iterations of 𝑓𝑛, 𝑛 ≥

1. 

Preposition 1.16. Within the property of maintaining a dense set of periodic points is 
specified under conjugacy. 

Definition 1.17. The initial version of Devaney's chaos states that a metric space without 

isolated points is denoted by (𝑋, 𝑑)  where 𝑓: 𝑋 ⟶ 𝑋  represents the dynamical system that 
will settle down in a chaotic sense when the conditions described below are satisfied: 

              (a) 𝑓 has a sensitive dependence on the conditions established initially.  

 (b) When 𝑓  is considered topologically transitive. 

 (c) If 𝑓  has a dense set of points that are periodic. 

Example 1.18. To establish the dependence sensitive to initial conditions we require 

𝑓: ]1, ∞[⟶]1, ∞[ which is determined by 𝑓(𝑥) = 2𝑥. Sea |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| = 2𝑛|𝑥 − 𝑦| →

∞ this when  𝑥 ≠ 𝑦  then 𝑓 is defined to possess such a dependence relative to the usual 

metric ]1, ∞[. 

By defining ]1, ∞[  with the metric 𝑑(𝑥, 𝑦) = | 𝑙𝑜𝑔 {𝑥} −  𝑙𝑜𝑔 {𝑦}|, it will be equivalent to: 

𝑑(𝑓^𝑛(𝑥), 𝑓^𝑛(𝑦)) = | 𝑙𝑜𝑔 {𝑓^𝑛(𝑥)} −  𝑙𝑜𝑔 {𝑓^𝑛(𝑦)} | = | 𝑙𝑜𝑔 {2^𝑛𝑥} −  𝑙𝑜𝑔 {2^𝑛𝑦} | 

= | 𝑙𝑜𝑔 {𝑥} −  𝑙𝑜𝑔 {𝑦} | = 𝑑(𝑥, 𝑦),   ∀𝑥, 𝑦 ∈ 𝑋. 
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Therefore, 𝑓  will not have such a dependence on d. In both cases  𝑓  is conjugate by 

the identity. 

Theorem 1.19. Proposed by Banks, Brooks, Cains, Davis and Stacey specify that in a metric 

space 𝑋 without isolated points with a dynamical system 𝑓: 𝑋 ⟶ 𝑋 will be topologically 

transitive when it has a dense set of periodic points. Hence, 𝑓 will have a sensitive 
dependence on the initial conditions with respect to the metric that is defined in the topology 

of 𝑋 (Ulcigrai, 2021).  

Definition 1.20. Devaney chaos describes a dynamical system 𝑓: 𝑋 ⟶ 𝑋 as chaotic if it 

satisfies the following conditions: 

 (a) When 𝑓 is considered topologically transitive. 

 (b) If 𝑓 possesses a dense set of points that are periodic. 

Both conditions are preserved under conjugacy. 

Proposition 1.21. Devaney chaos is preserved by semiconjugacy.  

Definition 1.22. The property of being mixable has greater force with respect to topological 

transitivity, the same being expressed by 𝑓: 𝑋 ⟶ 𝑋 on any of the nonempty open subsets 

𝑈, 𝑉 belonging to 𝑋 where there exists 𝑁 ≥ 0, determining: 𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅,   ∀𝑛 ≥ 𝑁. 

Where it is observed that the function 𝑓 is mixable as well as topologically transitive. 

Preposition 1.23. The property to be preserved mixable will depend on the semiconjugacy. 

Having two metric spaces be 𝑋 and 𝑌 set by their Cartesian product 𝑋 × 𝑌 = {(𝑥, 𝑦): 𝑥 ∈

𝑋, 𝑦 ∈ 𝑌} which will also be a metric space set by the metric: 𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) =

𝑑𝑋(𝑥1, 𝑥2) + 𝑑𝑌(𝑦1, 𝑦2), let 𝑑𝑋 and 𝑑𝑌  be metrics that were defined respectively on 𝑋 and 𝑌. 
Within one of the bases of the topology states that the metric induced on the Cartesian 

product will be composed of the products 𝑈 × 𝑉 of the open subsets 𝑈 ⊂ 𝑋 y 𝑉 ⊂ 𝑌. 

Definition 1.24. The dynamical systems 𝑓: 𝑋 ⟶ 𝑋 and 𝑔: 𝑌 → 𝑌 will have a function 𝑓 × 𝑔 

defined by: 𝑓 × 𝑔: 𝑋 × 𝑌 ⟶ 𝑋 × 𝑌,   (𝑓 × 𝑔)(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)). 

𝑓 × 𝑔 is a continuous function whose iterations are set according to: 

(𝑓 × 𝑔)𝑛 = 𝑓𝑛 × 𝑔𝑛 . 

Similarly, products with more than two spaces or functions will be defined. 

Theorem 1.25. The dynamical 𝑓: 𝑋 ⟶ 𝑋 and 𝑔: 𝑌 → 𝑌 shall satisfy the following statements: 

 (a) When 𝑓 × 𝑔  possesses a dense orbit 𝑓 and 𝑔 will also possess a dense orbit. 

 (b) When 𝑓 × 𝑔 is topologically transitive 𝑓 and 𝑔 will be as well. 

 (c) When 𝑓 × 𝑔 is chaotic 𝑓 and 𝑔 will be chaotic too. 
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               (d) When 𝑓𝑎𝑛𝑑 𝑔 are topologically transitive and one of them is mixable 𝑓 × 𝑔 will 

be so too. 

             (e) When 𝑓 × 𝑔 is mixable only if 𝑓𝑎𝑛𝑑 𝑔 are mixable as well. 

Definition 1.26. 𝑓: 𝑋 ⟶ 𝑋 will be weakly mixable when 𝑓 × 𝑓 is topologically transitive.  

In the case of the products 𝑈 × 𝑉 of open sets 𝑈, 𝑉 ⊂ 𝑋 generating a topological basis 

𝑋 × 𝑋 will establish that the function 𝑓  will be weakly mixable if and only if in any of the 4-

tuple 𝑈1, 𝑈2, 𝑉1, 𝑉2 of nonempty open subsets of 𝑋  where there exists 𝑛 ≥ 0,, it will be: 

𝑓𝑛(𝑈1) ∩ 𝑉1 ≠ ∅  𝑦  𝑓𝑛(𝑈2) ∩ 𝑉2 ≠ ∅. 

Proposition 1.27. The property of weakly mixable will hold according to semiconjugation. 

Moreover, established dynamical systems 𝑓: 𝑋 ⟶ 𝑋 and 𝑔: 𝑌 → 𝑌, in the case where 

𝑓 × 𝑔 is weakly mixable 𝑓 and  𝑔 will be weakly mixable as well. 

Definition 1.28. The dynamical system 𝑓: 𝑋 ⟶ 𝑋  on any pair of sets be 𝐴, 𝐵 ⊂ 𝑋, we express 

the return set of both 𝐴 and 𝐵  as follows: 

𝑁𝑓(𝐴, 𝐵) = 𝑁(𝐴, 𝐵) = 𝑛 ∈ 𝑁0: 𝑓𝑛(𝐴) ∩ 𝐵 ≠ ∅. 

Generally 𝑓 will be omitted since there is no ambiguity. In this definition 𝑓 will be 

topologically transitive or mixable if and only if the return set in any of the pairs of nonempty 

open sets 𝑈, 𝑉  belonging to 𝑋 is possessed. 

𝑁(𝑈, 𝑉) ≠ ∅ (𝑜𝑟 𝑐𝑜𝑓𝑖𝑛𝑖𝑡𝑒, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 

Moreover, if and only if f for any of the 4-tuple 𝑈1, 𝑈2, 𝑉1, 𝑉2 of the non-empty open 

subsets of 𝑋, it will be obtained:      

𝑁(𝑈1, 𝑉1) ∩ 𝑁(𝑈2, 𝑉2) ≠ ∅. 

Lemma 1.29. The 4-set trick is established according to the dynamical system 𝑓: 𝑋 ⟶ 𝑋 and 

the nonempty open subsets of 𝑋, let 𝑈1, 𝑈2, 𝑉1, 𝑉2,  by determining:  

 (a) As there exists a continuous function let 𝑔: 𝑋 ⟶ 𝑋 which commutes with 𝑓, then: 

𝑔(𝑈1) ∩ 𝑈2 ≠ ∅ 𝑦 𝑔(𝑉1) ∩ 𝑉2 ≠ ∅, 

                     There will therefore exist non-empty open sets such as 𝑈1
′ ⊂ 𝑈,𝑉1

′ ⊂ 𝑉1, let 

𝑁(𝑈1
′ , 𝑉1

′) ⊂ 𝑁(𝑈2, 𝑉2) 𝑦 𝑁(𝑉1
′, 𝑈1

′) ⊂ 𝑁(𝑉2, 𝑈2). 

                     Let 𝑓 be topologically transitive, it is established that 𝑁(𝑈1, 𝑉1) ∩ 𝑁(𝑈2, 𝑉2) ≠ ∅. 
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                 (b) As 𝑓 is topologically transitive, it is determined: 

𝑁(𝑈1, 𝑈2) ∩ 𝑁(𝑉1, 𝑉2) ≠ ∅ ⟹ 𝑁(𝑈1, 𝑉1) ∩ 𝑁(𝑈2, 𝑉2) ≠ ∅. 

Theorem 1.30. If 𝑓: 𝑋 ⟶ 𝑋 represents a weakly mixable dynamical system, the 𝑛 −

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓 × ⋯ ×, will be 𝑛 times weakly mixable at 𝑛 ≥ 2 (Banks, 2005). 

Proposition 1.31. The dynamical system 𝑓: 𝑋 ⟶ 𝑋 will be weakly mixable when the 

nonempty open sets 𝑈, 𝑉1, 𝑉2 ⊂ 𝑋, are determined as: 

𝑁(𝑈, 𝑉1) ∩ 𝑁(𝑈, 𝑉2) ≠ ∅. 

Preposition 1.32. The dynamical system 𝑓: 𝑋 ⟶ 𝑋 will be weakly mixable when any pair of 

nonempty open sets 𝑈, 𝑉 ⊂ 𝑋, is determined as: 

𝑁(𝑈, 𝑈) ∩ 𝑁(𝑈, 𝑉) ≠ ∅. 

What will characterize the weakly mixable property with respect to the size terms 

present in the return sets 𝑁(𝑈, 𝑉) with equivalence in topological transitivity in certain 

subsubsessions (𝑓𝑛𝑘)𝑘 

Definition 1.33. The syndetic of a strictly increasing sequence of positive integers (𝑛𝑘)𝑘,  is 

defined according to: 

(𝑛𝑘+1 − 𝑛𝑘)  < ∞. 

On the other hand, the syndetic in a set 𝐴 ⊂ 𝑁 is established according to the 

succession of positive integers if 𝐴 is syndetic or in turn if its complement does not present 

intervals of extremely large length. 

Theorem 1.34. According to a dynamical system 𝑓: 𝑋 ⟶ 𝑋 its equivalence is established by 
the following conditions: 

 (a) If it is weakly mixable 𝑓 

 (b) In the case of any pair of nonempty open sets 𝑈, 𝑉 ⊂ 𝑋 where 𝑁(𝑈, 𝑉)  possesses 
extremely large intervals of length. 

 (c) In the case of any syndetic sequence (𝑛𝑘)𝑘  let the sequence (𝑓𝑛𝑘)𝑘  be 
topologically transitive. 

2.2. Dynamics of operators 

The dynamics to be used in this section is set according to the operators 𝑇: 𝑋 ⟶ 𝑋, 

where X will represent the Fréchet space. 



REVISTA DE LA UNIVERSIDAD DEL ZULIA.  3ª época. Año 14, N° 40, 2023 
Héctor Méndez-Gómez et al. // The Relationships Between Discrete Dynamical Systems … 43-83 

                                                                                                                 DOI: https://doi.org/10.46925//rdluz.40.04 
 

53 
 

Definition 1.35. The pair (𝑇, 𝑋)  represents a linear dynamical system consisting of a 

separable Fréchet space of 𝑋 and an operator 𝑇: 𝑋 ⟶ 𝑋 both linear and continuous. Both 

terms will henceforth be omitted simply referred to 𝑇 as the operator. 

Definition 1.36. The operator 𝑇: 𝑋 ⟶ 𝑋 is considered hypercyclic when 𝑥 ∈ 𝑋 in whose 

orbit under 𝑇  is dense. In this case 𝑥 will be a hypercyclic vector for 𝑇. Hypercyclic vectors 

for 𝑇 will be represented by 𝐻𝐶(𝑇). 

Definition 1.37. The operator 𝑇: 𝑋 ⟶ 𝑋 and a vector 𝑥 ∈ 𝑋 is called cyclic for 𝑇 when the 

space evolved by the orbits is dense in 𝑋, being: 

𝑠𝑝𝑎𝑛𝑇𝑛𝑥: 𝑛 ≥ 0 = 𝑋. 

The vector 𝑥 ∈ 𝑋 is called supercyclic for 𝑇 when its projective orbit is represented as: 

{𝜆𝑇𝑛𝑥:𝑛 ≥ 0, 𝜆 ∈ 𝐾} 

Being dense in X. 

In Fréchet spaces when there are no isolated points by means of Birkhoff's transitivity 

theorem, it will facilitate the determination when an operator 𝑇 is hypercyclic. 

Theorem 1.38. Birkhoff's transitivity theorem determines that an operator 𝑇 is considered 

hypercyclic only when it is topologically transitive, where the hypercyclic vector set 𝐻𝐶(𝑇) 

occurs in a dense set 𝐺𝛿. Several examples are described in (4). 

Example 1.39. The Rolewicz operators, consider 𝑋 = 𝑙𝑝, 1 ≤ 𝑝 < ′𝑜𝑋 = 𝑐0 on 𝜆 ∈ 𝐾, is 

specified: 

𝑇: 𝑋 ⟶ 𝑋, (𝑥1, 𝑥2, 𝑥3, … ) ⟼ 𝜆(𝑥2, 𝑥3, 𝑥4, … ). 

When |𝜆| ≤ 1 we obtain ‖𝑇𝑛𝑥‖ = |𝜆|
𝑛

‖(𝑥𝑛+1,𝑥𝑛+2, … . )‖ ≤ ‖𝑥‖ for the totality of 𝑥 ∈ 𝑋 

as in 𝑛 ≥ 0, which determines that 𝑇 may not be considered as hypercyclic. 

However, when |𝜆| > 1  considers 𝑇 to be hypercyclic. In the open and nonempty 

subsets 𝑈, 𝑉 of  𝑋 one may obtain 𝑥 ∈ 𝑈 and in turn 𝑦 ∈ 𝑉 as follows: 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁 , 0,0, … ),  𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁 , 0,0, … ),   𝑁 ∈ 𝑁. 

Proposition 1.40. By means of Proposition 1.9 the hypercyclicity to be preserved by 
semiconjugation is established.  

Definition 1.41. The definition stated for chaos was described in Theorem 1.38 which 

establishes a new statement of chaos but with a linear perspective. Where an operator 𝑇 will 

be chaotic from Devaney's perspective if the following conditions are satisfied: 

              (a) Let 𝑇 be hypercyclic. 

 (b) When 𝑇  has a dense set of periodic points. 
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Proposition 1.42. Considering 𝑇 a cyclic operator will have 𝑇 sensitive dependence with 
respect to the initial conditions of any of the invariant metrics defined by the translations of 

a topology 𝑋. 

Lemma 1.43. On a nonempty open set 𝑈 ⊂ 𝑋 where 𝑋 is a Fréchet space there will exist a 

nonempty open set 𝑈1 ⊂ 𝑈, besides a 0-neighborhood, 𝑊, which sets 𝑈1 + 𝑊 ⊂ 𝑈. When 

𝑊  presents a neighborhood of 0 there will exist a 0-neighborhood 𝑊1 let  𝑊1 + 𝑊1 ⊂ 𝑊. 
The proof can be evidenced in Lemma 2.36. 

Within the mixable property it is required that the return sets 𝑁(𝑈, 𝑉), referred to 

𝑈, 𝑉 as nonempty open sets of 𝑋 are presented as cofinite. 

Proposition 1.44. The operator 𝑇 is considered to be mixable if or only if the return sets are 

cofinite on any nonempty set 𝑈 of 𝑋 or 0-neighborhood 𝑊. 

𝑁(𝑈, 𝑊)  𝑦  𝑁(𝑊, 𝑈) 

 

 

Definition 1.46.  If 𝑋 and 𝑌 ares Fréchet space then the following space is Fréchet space: 𝑋 ⊕

𝑌 = {(𝑥, 𝑦): 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} . The operators 𝑆: 𝑋 ⟶ 𝑋 y 𝑇: 𝑌 ⟶ 𝑌 determined on Fréchet 

spaces 𝑋 and 𝑌 are set to the operator 𝑆 ⊕ 𝑇 which is defined by: 

𝑆 ⊕ 𝑇: 𝑋 ⊕ 𝑌 ⟶ 𝑋 ⊕ 𝑌,  (𝑆 ⊕ 𝑇)(𝑥, 𝑦) = (𝑆𝑥, 𝑇𝑦). 

Proposition 1.47. The operators 𝑆: 𝑋 ⟶ 𝑋 and 𝑇: 𝑌 ⟶ 𝑌, when the operator 𝑆 ⊕ 𝑇 is 

defined to be hypercyclic both 𝑇 and 𝑆 will be hypercyclic. 

Proposition 1.48. The operators 𝑆: 𝑋 ⟶ 𝑋 y 𝑇: 𝑌 ⟶ 𝑌, will be hypercyclic when at least one 

of them is mixable determining that 𝑆 ⊕ 𝑇 is hypercyclic or in turn if and only if 𝑆 and 𝑇 

were mixable. 

In the contextualization of the investigation an operator 𝑇: 𝑋 ⟶ 𝑋 is defined as 

weakly mixable only when 𝑇 ⊕ 𝑇 were hypercyclic or in turn if and only if for the non-empty 

open subsets 𝑈1, 𝑈2, 𝑉1, 𝑉2 of  ; 𝑁(𝑈1, 𝑉1) ∩ 𝑁(𝑈2, 𝑉2) ≠ ∅ will be obtained. 

From the observation, therefore, a chain of implications concerning the operators is 

precise: 

" mixable"⟹ weakly mixable"⟹ hypercyclic." 

Theorem 1.49. For hypercyclic operators inside Banach spaces there will exist several which 
do not occur as weakly mixable (Liao et al., 2006). 
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Lemma 1.50. 𝑇 being a hypercyclic operator any pair of nonempty open sets 𝑈, 𝑉 of 𝑋 or a 0-

neighborhood 𝑊 will establish both a nonempty open set 𝑈1 ⊂ 𝑈 and a 0-

neighborhood𝑊1 ⊂ 𝑊, let: 

𝑁(𝑈1, 𝑊1) ⊂ 𝑁(𝑉, 𝑊) 𝑦 𝑁(𝑊1, 𝑈1) ⊂ 𝑁(𝑊, 𝑉). 

Theorem 1.51. Since 𝑇 is a hypercyclic operator and on any nonempty open set 𝑈 ⊂ 𝑋 or 0-

neighborhood 𝑊 there exists a continuous operator 𝑆: 𝑋 ⟶ 𝑋 commuting with 𝑇, as: 

𝑆(𝑈) ∩ 𝑊 ≠ ∅ 𝑦 𝑆(𝑊) ∩ 𝑈 ≠  ∅ 

Where it is established that 𝑇 will be weakly mixable. 

Theorem 1.52. Since 𝑇 is a weakly mixable operator when on any pair of nonempty open sets 

𝑈, 𝑉 ⊂ 𝑋 or 0-neighborhood W, such that: 

𝑁(𝑈, 𝑊) ∩ 𝑁(𝑊, 𝑉) ≠ ∅. 

Theorem 1.53. When 𝑇 represents a hypercyclic operator and a dense subset 𝑋0 of 𝑋 

according to the orbit of each 𝑥 ∈ 𝑋0 is bounded 𝑇 in a weakly mixable way. 

Corollary 1.54. Among the operators the following are considered weakly mixable: 

          (a) Chaotic operators. 

          (b) Those hypercyclic operators that have a dense set of points where the orbits 

converge. 

          (c) Hypercyclic operators that have a dense generalized kernel. 

Proposition 1.55. 𝑇: 𝑋 ⟶ 𝑋 being an operator, it follows that: 

          (a) 𝑇 ⊕ 𝑇 will be weakly mixable only when T is as well. 

          (b) 𝑇 ⊕ 𝑇 will be chaotic only when T is as well. 

In contrast to (a) with respect to the result of the more general (b), the following 

proposition is specified. 

Proposition 1.55. Chaotic operators 𝑆 and 𝑇 will be chaotic operators if and only if 𝑆 ⊕ 𝑇 is 

as well. 

2.3. Hyperspaces 

This section specifies the study of a collective dynamics, which means the described 

conceptualizations of topological dynamics and of operators that will be applied to subsets 

of 𝑋 or to the dynamics that are established by means of functions evaluated on subsets 

belonging to a metric space of 𝑋. 
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Definition 1.57. In a topological space X the corresponding hyperspace of nonempty 

compact subsets of X is denoted by: 

𝐾(𝑋) = {𝐾 ⊂ 𝑋: 𝐾 𝑒𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜 𝑦 𝑛𝑜 𝑣𝑎𝑐í𝑜}. 

It is denoted 𝐾(𝑋)  according to the Vietoris topology which is established according 

to the sets of form 

𝑉(𝑈1, … , 𝑈𝑘) = {𝐾 ∈ 𝐾(𝑋): 𝐾 ⊂ ⋃𝑖=1
𝑘 𝑈𝑖 𝑦 𝐾 ∩ 𝑈𝑖 ≠ ∅, 𝑖 = 1, … 𝑘}, 

Being 𝑈1, … , 𝑈𝑘  the non empty open subsets of 𝑋. 

Within the hyper space of non empty compact sets of 𝑅𝑛  is where the fractals (8) and 

(9) which are generally compact are accommodated. 

Moreover, when X represents a metric space we will call 𝐾(𝑋)  as the Hausdorff 

metric which is also a complete metric space, where the topology of it coincides with that of 

Vietoris. 

Definition 1.58. The Hausdorff metric is established when (𝑋, 𝑑) is a metric space by 

endowing 𝐾(𝑋), where: 

𝑑𝐻(𝐴, 𝐵) ≔𝑠𝑢𝑝 𝑠𝑢𝑝 { 𝑑(𝑥1, 𝐵): 𝑥1 ∈ 𝐴},𝑠𝑢𝑝 𝑠𝑢𝑝 { 𝑑(𝑥2, 𝐴): 𝑥2 ∈ 𝐵} , with 𝐴, 𝐵 ∈

𝐾(𝑋)where 𝑑(𝑥, 𝐴) =𝑖𝑛𝑓 𝑖𝑛𝑓 { 𝑑(𝑥, 𝑦): 𝑦 ∈ 𝐴}, 𝑥 ∈ 𝑋, 𝐴 ∈ 𝐾(𝑋). 

By defining the Hausdorff metric on neighborhoods of sets it is established that 𝐴 will 

be an empty set of a metric space (𝑋, 𝑑)  with ε-neighborhood being the set 

𝑁𝜀(𝐴) = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝐴) < 𝜀}. 

Since 𝐴 and 𝐵 are non-empty subsets of  𝑋, it will then be defined: 

𝑑𝐻(𝐴, 𝐵) =𝑖𝑛𝑓 𝑖𝑛𝑓 𝜀 > 0: 𝐴 ⊆ 𝑁𝜀(𝐵) 𝑦 𝐵 ⊆ 𝑁𝜀(𝐴) . 

Both definitions have overlaps but in some cases the use of one is more accurate than 

the other. 

Definition 1.59. The set 𝐾 ⊆ 𝑋 is considered fully bounded when in all 𝜀 > 0  there is a finite 

subset {𝑥𝑖: 1 ≤ 𝑖 ≤ 𝑛}  belonging to 𝐾 as 𝐾 ⊂ ⋃𝑖=1
𝑛 𝐵𝑑(𝑥𝑖 , 𝜀). Denote 𝐵𝑑(𝑥, 𝜀) as the ball of 

center 𝑥 and radius 𝜀 referring to the metric 𝑑. 

Proposition 1.60. A metric space (𝐾(𝑋), 𝑑𝐻)  is considered when it is exposed to the 

Hausdorff metric 𝑑𝐻. This proof follows the ideas put forward in (Banks et al., 1992) and 
(Grosse-Erdmann & Peris-Manguillot, 2011). 
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Lemma 1.61. When 𝑥 ∈ 𝑋 and 𝐴, 𝐾(𝑋)  it will be said that there exists 𝑎𝑥 ∈ 𝐴 such that 

𝑑(𝑥, 𝐴) = 𝑑(𝑥, 𝑎𝑥). 

Set 𝐴 ∈ 𝐾(𝑋) y 𝜀 > 0 we define: 

𝐴 + 𝜀: = 𝑥 ∈ 𝑋: 𝑑(𝑥, 𝐴) ≤ 𝜀. 

Proposition 1.62. For all 𝜀 > 0  as in 𝐴 ∈ 𝐾(𝑋) the set 𝐴 + 𝜀 will be closed. By the result and 

the convergence of Cauchy sequences will provide the completeness proof of (𝐾(𝑋), 𝑑𝐻). 

Theorem 1.63. Since 𝐴, 𝐵 ∈ 𝐾(𝑋) y 𝜀 > 0 will therefore establish 𝑑𝐻(𝐴, 𝐵) ≤ 𝜀 only when 

𝐴 ⊆ 𝐵 + 𝜀 𝑎𝑛𝑑 𝐵 ⊆ 𝐴 + 𝜀. 

Lemma 1.64. Application Lemma which states that it will be (𝐴𝑛)𝑛 a Cauchy sequence when 

it is in 𝐾(𝑋) and in turn (𝑛𝑘)𝑘  represents an increasing sequence of positive integers. For its 

part (𝑥𝑛𝑘
)

𝑘
 being a Cauchy sequence in 𝑋 such that 𝑥𝑛𝑘

∈ 𝐴𝑛𝑘
 in all 𝑘, hence, a Cauchy 

sequence will exist when (𝑦𝑛)𝑛 with respect to 𝑋 such that 𝑦𝑛 ∈ 𝐴𝑛 for its totality 𝑛 and  

𝑦𝑛𝑘
= 𝑥𝑛𝑘

 in all 𝑘. 

Lemma 1.65. When (𝐴𝑛)𝑛  is a sequence present in 𝐾(𝑋) and 𝐴 represents the set that groups 

all points puntos 𝑥 ∈ 𝑋 in such a way there will exist a sequence (𝑥𝑛)𝑛 where it converges 

to 𝑥 and furthermore satisfies 𝑥𝑛 ∈ 𝐴𝑛 at all n. Since (𝐴𝑛)𝑛 is a Caunchy sequence then 𝐴 
will be closed and nonempty. 

To prove that 𝐴 ∈ 𝐾(𝑋) it must be verified that 𝐴 is completely bounded, then in the 

following lemma is specified a tool for that purpose which is to prove (𝐾(𝑋), 𝑑𝐻). 

Lemma 1.66. When (𝐵𝑛)𝑛  is a sequence of sets that is totally bounded in 𝑋 and furthermore 

represents 𝐴 a subset of any of 𝑋. Moreover if for 𝜀 > 0  a positive integer 𝑁 is presented as 

𝐴 ⊆ 𝐵𝑁 + 𝜀 then A will be fully bounded. The primary result of this section is described in 
the following theorem. 

Theorem 1.67.  It is therefore established if (𝑋, 𝑑)  is a complete metric space, (𝐾(𝑋), 𝑑𝐻) will 
be as well.  

Theorem 1.68. The following theorem represents the completion of this section which can 

also be visualized in (Furstenberg, 1967). Where it is expressed that if (𝑋, 𝑑) is considered as 

a separable metric space then (𝐾(𝑋), 𝑑𝐻)  will be as well. 

3. Results 

Having established the literature review as well as the methods described previously, 

the necessary approaches are established for the demonstration by means of the analysis of 

the properties of transitivity and its influence on the different chaos that develop in 

hyperspace. 
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3.1. Transitivity and chaos in hyperspaces 

In a metric space (𝑋, 𝑑)  the concepts concerning topological transitivity and 

Davaney's chaos to be abbreviated by DEV C were studied by means of the application of 

functions defined on the hyperspace 𝐾(𝑋). 

With the continuous function 𝑓: 𝑋 ⟶ 𝑋 we consider the function 𝑓 to be called 

hyperextension 𝑓 set in hyperspace with the totality of nonempty compact subsets of 𝑋 

denoted by 𝐾(𝑋) with Vietoris topology, where 𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋) is naturally generated by  

𝑓(𝐾) = {𝑓(𝑥): 𝑥 ∈ 𝐾}, where 𝑓(𝐾) represents the image of the nonempty compact set of 𝐾 

under 𝑓. It can be seen that 𝑓 is correctly defined since 𝑓 is continuous. So also 𝑓 is 

continuous for which it was observed: that the nonempty open subset U of 𝑋 and the 

continuity of 𝑓  concocts that 𝑓−1(𝑈) is recognized as an open subset of 𝑋, if 𝐾(𝑋)  is 

considered open by 𝑉(𝑈) = {𝐾: 𝐾 ⊂ 𝑈 𝑦 𝐾 ∩ 𝑈 ≠ ∅}, it is seen: 

𝑓−1(𝑉(𝑈)) = {𝐾: 𝑓(𝐾) ⊂ 𝑈 𝑦 𝑓(𝐾) ∩ 𝑈 ≠ ∅} 

= {𝐾: 𝐾 ⊂ 𝑓−1(𝑈) 𝑦 𝐾 ∩ 𝑓−1(𝑈) ≠ ∅} 

= 𝑉(𝑓−1(𝑈)). 

The set 𝑉(𝑓−1(𝑈)), is also presented as open 𝐾(𝑋) as the 𝑓 will remain continuous. 

With both functions it is necessary to know when it can go up or down as shown in 

the following scheme: 

 

3.1.1. Topological transitivity 

Topological transitivity is established according to Definition 1.20 which mentions 

Devaney's chaos, considering the following: 

Theorem 2.1. As is 𝑓: 𝑋 ⟶ 𝑋 a continuous function inside a topological space 𝑋,  equivalent 
statements will be stated, as mentioned. 

       (a) The function 𝑓 is weakly mixable.  

       (b)  The hyperextension of the function 𝑓  is weakly mixable.  
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        (c)  The hyperextension of the function 𝑓  is topologically transitive. 

With nonempty open sets with respect to the Vietoris-based canonical basis in 𝐾(𝑋), 

where 𝑛 ∈ 𝑁 is evident as specified in: 

𝑓𝑛 (𝑉(𝑈1
𝑖 , … , 𝑈𝑘

𝑖 )) ∩ 𝑉(𝑉1
𝑖 , … , 𝑉𝑘

𝑖) ≠ ∅, 𝑖 = 1,2. 

According to Theorem 1.30 applied to 𝑚 = 2𝑘 where there exists 𝑛 ∈ 𝑁,, it is determined: 

𝑓𝑛(𝑈𝑗
𝑖) ∩ 𝑉𝑗

𝑖 ≠ ∅,  𝑖 = 1,2,  𝑘 = 1,2, … , 𝑘. 

Where it is considered 𝑥𝑖,𝑗 ∈ 𝑈𝑗
𝑖   such that 𝑓𝑛(𝑥𝑖,𝑗) = 𝑦𝑖,𝑗 ∈ 𝑉𝑗

𝑖  is for 𝑖 = 1, 2 y 𝑗 =

1, … , 𝑘.. Establishing in this way the compacts 𝐾1 = {𝑥1,1, … , 𝑥1,𝑘}, 𝐾2 = {𝑥2,1, … , 𝑥2,𝑘}. It 

will be 𝑓(𝐾𝑖) = {𝑦𝑖,1, … , 𝑦𝑖,𝑘}, determining that: 

𝑓𝑛(𝐾𝑖) ∈ 𝑓𝑛 (𝑉(𝑈1
𝑖 , … , 𝑈𝑘

𝑖 )) ∩ 𝑉(𝑉1
𝑖, … , 𝑉𝑘

𝑖). 

The hyperextension 𝑓  is found to be weakly mixable. 

In (𝑏) ⇒ (𝑐)  in its hyperextension determines a weakly mixable dynamical system, 

which leads it to be topologically transitive as specified in Definition 1.26. 

On the other hand, in (𝑐) ⇒ (𝑎)  when 𝑓 is topologically transitive and with 

Proposition 1.31 it will be proved that by setting 𝑈, 𝑉1, 𝑉2 ⊂ 𝑋 nonempty open, it is 

determined that: 

𝑁(𝑈, 𝑉1) ∩ 𝑁(𝑈, 𝑉2) ≠ ∅. 

The nonempty open subsets 𝑈, 𝑉1, 𝑉2 of 𝑋, since  𝑓  is topologically transitive it is 

established that 𝑉(𝑈) and 𝑉(𝑉1, 𝑉2) are open in 𝐾(𝑋), where 𝑛 ≥ 0, specifying: 

𝑓𝑛(𝑉(𝑈)) ∩ 𝑉(𝑉1, 𝑉2) ≠ ∅. 

Thus, we obtain a non-empty compact set 𝐾 ∈ 𝑉(𝑈)  that determines 

𝑓𝑛(𝐾) ∈ 𝑉(𝑉1, 𝑉2), 

Let 𝑓𝑛(𝐾) ⊂ 𝑉1 ∪ 𝑉2  with 𝑓𝑛(𝐾) ∩ 𝑉1 ≠ ∅ and 𝑓𝑛(𝐾) ∩ 𝑉2 ≠ ∅, where there exist 𝑥, 𝑦 ∈

𝐾 ⊂ 𝑈 such that 𝑓𝑛(𝑥) ∈ 𝑉1 and 𝑓𝑛(𝑦) ∈ 𝑉2, which implies: 

𝑛 ∈ 𝑁(𝑈, 𝑉1) ∩ 𝑁(𝑈, 𝑉2). 
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Proposition 2.2. A continuous function 𝑓: 𝑋 ⟶ 𝑋 on a topological space 𝑋 refers that 𝑓 is 

mixable only when 𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋)  is also mixable. 

On arbitrary open sets based on Vietoris of 𝐾(𝑋)  as 𝑓 is mixable, it will be possible 

to find 𝑁 ∈ 𝑁 for 𝑖 = 1, … , 𝑘 and 𝑛 ≥ 𝑁, which results: 

𝑓𝑛(𝑈𝑖) ∩ 𝑉𝑖 ≠ ∅. 

It is taken 𝑢𝑖 ∈ 𝑈𝑖   where 𝑓𝑛(𝑢𝑖) ∈ 𝑉𝑖, 𝑖 = 1, … , 𝑘. Hence, it is set 𝐾 = {𝑢_𝑖: 𝑖 =

1, … , 𝑘 } ∈ 𝑉(𝑈_1, … , 𝑈_𝑘) and  𝑓𝑛(𝐾) ∈ 𝑉(𝑉1, … , 𝑉𝑘), determining that it is mixable the 

hyperextension  𝑓. 

When it occurs in the opposite direction (⇐) on nonempty open subsets 𝑈, 𝑉 of 𝑋 it 

is set 𝑁 ∈ 𝑁 such that 𝑓𝑛(𝐾𝑛) ∈ 𝑉(𝑉) at some 𝐾𝑛 ∈ 𝑉(𝑈), 𝑛 ≥ 𝑁. It is therefore determined 

that for any  𝑥𝑛 ∈ 𝐾𝑛 ⊂ 𝑈 let 𝑓𝑛(𝑥𝑛) ∈ 𝑉,  𝑛 ≥ 𝑁 be satisfied, proving that it is mixable 

function 𝑓. 

To summarize, the result of: 

𝑓  topologically transitive ⟹ 𝑓  topologically transitive.  

It represents a false result according to that specified by Roman Flores in (Román-

Flores, 2003) where it is stated that a topologically transitive function 𝑓 is not so for its 

hyperextension 𝑓. 

Theorem 2.4. and Theorem 2.5. Referring to the Hypercyclicity criterion where it is stated 

that an operator 𝑇: 𝑋 → 𝑋  within a separable Banach space of 𝑋 when the following 

statements are equivalent: 

 (a) 𝑇 satisfies the Hypercyclicity criterion. 

 (b) When 𝑇: 𝐾(𝑋) ⟶ 𝐾(𝑋) is topologically transitive. 

Assertions that states the following: 

𝑓  topologically transitive ⟹ 𝑓 topologically transitive. 

𝑓  topologically transitive ⇏ 𝑓  topologically transitive. 

3.1.2. Dense set of periodic points 
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The dense set of periodic points is set to bound 𝑓 to be chaotic according to the notion 

established by Devaney, for this purpose, the present section is described below: 

Theorem 2.6. Given the dynamical system 𝑓: 𝑋 ⟶ 𝑋 in a metric space of 𝑋, if 𝑓 possesses a 

dense set of periodic points its hyperextension 𝑓  will also have one (Ulcigrai, 2021).  

Definition 2.7. Since 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system, the point 𝑥 ∈ 𝑋 will be regularly 

recurrent if in the whole neighbourhood 𝑉 of 𝑥 there exists 𝑛 ∈ 𝑁0  let 𝑓𝑛𝑘(𝑥) ∈ 𝑉 at 𝑘 =

0,1,2, … 

Lemma 2.8. Given the dynamical system 𝑓: 𝑋 ⟶ 𝑋 on a compact metric space of (𝑋, 𝑑) in 

the case where regularly in 𝑓 the set of all recurrent points is dense in 𝑋, it will be established 

that its hyperextension  𝑓 will have a dense set of periodic points. 

It is therefore proved that every nonempty open subset 𝑈 ⊆ 𝑋 possesses a periodic 

point for 𝑓  arranged in 𝑉(𝑈). According to the compactness of 𝑋 there will exist a nonempty 

open set 𝑉 ⊆ 𝑋 where 𝑉 ⊂ 𝑈 determining that 𝑉  will be the closure of 𝑉. A regularly 

recurring point 𝑥 ∈ 𝑉 may be found. Subsequently a positive integer in n as 𝑂𝑟𝑏(𝑥, 𝑓𝑛) ⊂ 𝑉. 

Whereby it is established that 𝑂𝑟𝑏(𝑥, 𝑓𝑛) ⊂ 𝑉 with all limit points of 𝑂𝑟𝑏(𝑥, 𝑓𝑛) arranged 

in  𝑉, which represents 𝜔(𝑥, 𝑓
𝑛

) ⊂ 𝑉. As for 𝜔(𝑥, 𝑓) ∈ 𝐾(𝑋) and also in   𝑓𝑛(𝜔(𝑥, 𝑓𝑛)) =

𝜔(𝑥, 𝑓𝑛) which allows to find the periodic point for the 𝑓  arranged in 𝑉(𝑈). 

Example 2.9. In (5) consider the Cantor space {0,1}𝑁 from a topological abelian group 

structure to define the following sum: 

(𝑥1, 𝑥2, … ) + (𝑦1, 𝑦2, … ) = (𝑧1, 𝑧2, … ), 

Setting 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 + 𝑐𝑖 𝑚ó𝑑2, 𝑐1 = 0  and 𝑐𝑖+1 = 𝑥𝑖 + 𝑦𝑖 + 𝑐𝑖(𝑑𝑖𝑣2)𝑝𝑎𝑟𝑎𝑖 > 1 to 

determine that: 

𝑓(𝑥1, 𝑥2, 𝑥3 … ) = (𝑥1, 𝑥2, 𝑥3, … ) + (1,0,0, … ) 

Hence, the property of having a dense set of periodic points for 𝑓 and  𝑓  will not be 

equivalent. 

𝑓 𝑒𝑠 𝐷𝑒𝑣 𝐶 ⇏ 𝑓 𝑒𝑠 𝐷𝑒𝑣 𝐶. 

The described direction is not fulfilled because it has been established previously that 

being 𝑓  topologically transitive will not necessarily determine that  𝑓 is topologically 

transitive. It is further held that: 
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𝑓 𝑒𝑠 𝐷𝑒𝑣 𝐶 ⇏ 𝑓 𝑒𝑠 𝐷𝑒𝑣 𝐶, 

Particularly arranged in Example 2.9 since it was determined that  𝑓  has a set of 

periodic points, which is not the case with 𝑓. Which would establish that Devaney's causal 

properties of equivalence between the function and its hyperextension are not always 

satisfied. 

Theorem 2.10. The Shauder-Tychonoff fixed point is determined when let 𝐾 be a nonempty, 

compact t convex subset arranged in a convex space of 𝑋 and 𝑓: 𝐾 ⟶ 𝐾 being continuous it 

will thus be established that 𝑓(𝑝) = 𝑝 for any 𝑝 ∈ 𝐾. The proof of the same is described in 

(Rudin, 1991). 

Theorem 2.11. 𝑇 being a continuous linear operator arranged in a locally convex and complete 

space, the following equivalences are determined: 

 (a) It will be chaotic 𝑇 in the sense established by Devaney. 

 (b) It will be chaotic 𝑇  in the sense established by Devaney. 

 (c) It will be chaotic �̃� in the sense established by Devaney. 

For the demonstration (𝑎) ⇒ (𝑏)  in the chaos of 𝑇 in the sense established by 

Devaney, it will be weakly mixable as stated in Corollary 1.54. It is therefore determined and 

in accordance with Theorem 2.1 that 𝑇 will be topologically transitive. Furthermore, the 

relation of Theorem 2.6 will be followed. Which determines the following: 

By setting (𝑏) ⇒ (𝑐) as Devaney chaos, the semiconjugacy will be established where 

𝑇 will be chaotic in the Devaney sense as well as �̃�. 

When (𝑐) ⇒ (𝑎) will be topologically transitive 𝑇. Which entails that if 𝑈 and 𝑉 are 

presented as nonempty open subsets of 𝑋 the following sets will be considered: 

𝑈′ = 𝑉(𝑈) ∩ 𝐶(𝑋) 𝑦 𝑉′ = 𝑉(𝑉) ∩ 𝐶(𝑋) 

 

In 𝐶(𝑋)  they will be nonopen nonempty. It will be topologically transitive �̃� which 

therefore determines that 𝑛 ≥ 0 and 𝐾′ ∈ 𝑈′ as 𝑇�̃�
(𝐾′

) ∈ 𝑉′. Established that 𝑥 ∈ 𝐾′ ⊂ 𝑈 

such that  𝑇𝑛𝑥 ∈ 𝑉. It is thus proved that 𝑇 possesses a dense set of periodic points which 

proves the existence of periodic 𝐾 ∈ 𝑈′ for  �̃�, which states that 𝑇�̃�(𝐾) = 𝐾 at some 𝑛 ≥ 1. 
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Being  𝐾 nonempty, convex and compact in addition to establishing the Schauder-Tychonoff 

fixed point theorem it is concluded that there exists the point 𝑦 ∈ 𝑈 ∩ 𝑃𝑒𝑟(𝑇). 

3.1.3. Reformulations of Devaney Chaos 

In generating reformulations on the notion of Devaney chaos, conditions will be 

established that will formulate the total Devaney chaos (totDev C) and the exact one (exDev 

C), obtaining: 

 

Which indicates that totDev C and exDev C with respect to the function f will possess 

the same notions of chaos and respectively with their hyperextension ¯f but not reciprocally.  

3.1.3.1. Total Devaney Chaos 

Definition 2.12. When 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system within a metric space 𝑋  it will be 

set that 𝑓  is totally transitive if for the iterations of 𝑓𝑛  of each 𝑛 ∈ 𝑁 to be topologically 

transitive, it will suffice to take 𝑛 = 1.. 

Proposition 2.13. Since 𝑓: 𝑋 ⟶ 𝑋  is a weakly mixable dynamical system it will therefore be 

𝑓 fully transitive. Revising in (Ulcigrai, 2021), the following proof is established: 

It is demonstrated that by establishing that 𝑚 ≥ 1 and 𝑈, 𝑉 as nonempty open subsets of 𝑋, 

it will be the nonempty open set 𝑓−𝑖(𝑉) be in 𝑖 = 0, … , 𝑚 where 𝑓 is considered to be weakly 

mixable by existing 𝑘 ≥ 1  as 𝑓𝑘(𝑈) ∩ 𝑓−𝑖(𝑉) ≠ ∅𝑝𝑎𝑟𝑎𝑖 = 0, … , 𝑚. By the algorithm 

established by division, integers 𝑞 ≥ 0 and 𝑟 will appear such that 𝑘 = 𝑞𝑚 + 𝑟, with 0 ≤

𝑟 ≤ 𝑚 − 1,which will continue with 0 <  𝑚 − 𝑟 ≤ 𝑚. That is 𝑓𝑘(𝑈) ∩ 𝑓−(𝑚−𝑟)(𝑉) ≠ ∅ 

therefore: 

𝑈 ∩ 𝑓−(𝑘+𝑚−𝑟)(𝑉) = 𝑈 ∩ 𝑓−(𝑞+1)𝑚(𝑉) ≠ ∅, 

This leads to 𝑓𝑚(𝑞+1)(𝑈) ∩ 𝑉 ≠ ∅ 

Therefore, the following chain will be fulfilled in any dynamic system 𝑓 
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mixable 

⇓ 

weakly mixable 

⇓ 

fully transitive 

⇓ 

topologically transitive 

Lemma 2.14. When be a dynamical system 𝑓: 𝑋 ⟶ 𝑋 chaotic in the sense of Devaney and 

fully transitive one will establish 𝑓 as weakly mixable. 

By setting 𝑈 and 𝑉 to be nonempty open subsets of 𝑋 it is determined that, 

𝑁(𝑈, 𝑈) ∩ 𝑁(𝑈, 𝑉) ≠ ∅. 

 
Therefore, proposition 1.32 will conclude the above theorem. 

Since 𝑓 is chaotic in the sense of Devaney it is stated to be topologically transitive and 

to have a dense set of periodic points. In this function by its characteristic of topological 

transitivity is therefore determined the existence of 𝑥 ∈ 𝑈 and 𝑛1 ∈ 𝑁 with 𝑓𝑛1(𝑥) ∈ 𝑉. 

Having periodic points 𝑓 will form a dense set in 𝑋 which will determine the existence of a 

periodic point 𝑦 ∈ 𝑈 of 𝑓 be 𝑓𝑛1(𝑦) ∈ 𝑉 as also 𝑓𝑝(𝑦) = 𝑦 for any 𝑝 ∈ 𝑁, where 𝑝 represents 

the period of 𝑦, which states, 

𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅, 𝑐𝑜𝑛 𝑛 = 𝑛1 + 𝑗𝑝,  𝑗 = 0,1,2 

 

Where let 𝑓𝑛1(𝑈) = 𝑈1, even though it is not open 𝑈1 in general, it can be ensured 

that it possesses a nonempty interior. Then, as it is known about the existence of 𝑥 ∈ 𝑈 let 

𝑓𝑛1(𝑥) ∈ 𝑉 and 𝑉 being open, an open ball 𝐵1 ⊂ 𝑉 having center 𝑓𝑛1(𝑥) will be determined. 

As 𝑈 is also open with the continuity of 𝑓𝑛1 there will appear an open ball 𝐵2 ⊂ 𝑈 whose 

center in 𝑋 is determined by𝑓𝑛1(𝐵2) ⊂ 𝐵1. Which denotes that 𝑈1 will have a nonempty 

interior and 𝑓 will be fully transitive, where by applying topological transitivity 𝑓𝑝 𝑎 𝑈1 and 

𝑈 in search of an integer 𝑛2 ≥ 0  be, 

𝑓𝑝𝑛2(𝑈1) ∩ 𝑈 ≠ ∅. 
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By establishing that 𝑗 = 𝑛2  with the definition of 𝑛 it is obtained 𝑛 = 𝑛1 + 𝑛2𝑝 thus 

appreciating the following:  

𝑓𝑛(𝑈) ∩ 𝑉 = 𝑓𝑛1+𝑛2𝑝(𝑈) ∩ 𝑉 ≠ ∅. 

 
In addition, it can be observed that, 

𝑓𝑛(𝑈) ∩ 𝑈 = 𝑓𝑛1+𝑛2𝑝(𝑈) ∩ 𝑈 = 𝑓𝑝𝑛2(𝑈1) ∩ 𝑈 ≠ ∅. 

 

Where it is presented that 𝑛 ∈ 𝑁(𝑈, 𝑈) ∩ 𝑁(𝑈, 𝑉) and where further with 

Proposition q.32 it is proved that 𝑓 will be weakly mixable. 

Definition 2.15. When be a dynamical system 𝑓: 𝑋 ⟶ 𝑋, 𝑓 is said to possess total chaos in 

the Devaney sense when the conditions described below are satisfied: 

 (a) When 𝑓 is fully transitive. 

             (b) When 𝑓  has a dense set of periodic points. 

Then Leman 2.14 may be described according to the following Theorem. 

Theorem 2.16. As a dynamical system 𝑓: 𝑋 ⟶ 𝑋 possessing total chaos in the Devaney sense, 

it will be 𝑓 weakly mixable. 

Theorem 2.17. (Related to Theorem 2.1). When is a dynamical system 𝑓: 𝑋 ⟶ 𝑋 within a 

topological space 𝑋, the following statements will be equivalent, 

 (a) As 𝑓 is weakly mixable. 

 (b) As 𝑓  is weakly mixable. 

 (c) As 𝑓  is fully transitive. 

               (d) As 𝑓  is topologically transitive. 

It is demonstrated that (𝑎) ⇒ (𝑏) results from the immediate Theorem 2.1. 

(𝑏) ⇒ (𝑐)  with the application of Proposition 2.13 it is established that the function ¯f be 

fully transitive. 

(𝑐) ⇒ (𝑑)  be immediate by establishing that ¯f is fully transitive and by definition is 

topologically transitive.  

(𝑑) ⇒ (𝑎) again with Theorem 2.1 will establish an immediate result. 
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Furthermore in Theorem 2.17 the equivalence of the topological transitivity of  𝑓 as the 

total transitivity of  𝑓 in 𝐾(𝑋) is evidenced as a new result that determines the equivalence 

in the functions set on the hyperspace 𝐾(𝑋) of both total chaos and only Devaney chaos. 

Theorem 2.19. In this sense by setting 𝑓: 𝑋 ⟶ 𝑋 in a topological space of 𝑋 as a dynamical 

system, it holds that 𝑓 possesses total chaos in the Devaney sense as its hyperextension 

𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋). 

Since 𝑓 possesses total chaos in the Devaney sense then it will also be totally transitive 

with a dense set of periodic points. If such a set of 𝑓 is dense in 𝑋, the set of periodic points 

in 𝑓 will be dense in 𝐾(𝑋) as Theorem 2.6 states to it. On the other hand, according to 

Theorem 2.17 which determines that 𝑓  continues to be totally transitive so it will have 

therefore total Devaney chaos. Which will establish according to the following scheme the 

sense of going down, as shown below, 

 

3.1.4. Exact Devaney Chaos 

In the present section it will be proved that when there exists dynamical system 

f:X⟶X with exact chaos in the Devaney sense (exDev C), its hyperextension ¯f will also have 

it. 

Definition 2.20. When be a dynamical system 𝑓: 𝑋 ⟶ 𝑋 within a topological space 𝑋, it is 

determined that 𝑓 will be topologically exact upon the occurrence in the entire nonempty 

open subset 𝑈 ⊂ 𝑋 of the existence of 𝑚 ∈ 𝑁 as 𝑓𝑚(𝑈) = 𝑋.. It is worth mentioning the 

particular simplicity in determining that every topologically exact function is overjective. 

Proposition 2.21. Since 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system inside a topological space 𝑋, 𝑓 will 

be presented as topologically exact so it will also be topologically transitive. 

It is demonstrated for 𝑈, 𝑉 as nonempty open subsets of 𝑋 that 𝑓 is topologically exact when 

there exists 𝑚 ∈ 𝑁 as 𝑓𝑚(𝑈) = 𝑋, establishing for 𝑚 the following, 

𝑓𝑚(𝑈) ∩ 𝑉 = 𝑋 ∩ 𝑉 = 𝑉 ≠ ∅. 
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Showing that f is topologically transitive. 

Definition 2.22. As 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system, it is determined to possess exact chaos 

in the sense of Devaney on 𝑓 by satisfying the following conditions, 

 (a) As f is topologically exact. 

 (b) As f has a dense set of periodic points. 

Theorem 2.23. As 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system, within a compact metric space (𝑋, 𝑑), 

the following statements will be equivalent: 

 (a) As 𝑓 is topologically exact. 

 (b) As 𝑓 is topologically exact. 

Which is demonstrated that (𝑏) ⇒ (𝑎)  by assuming 𝑓  to be topologically exact 

where 𝑈 will be a nonempty open subset of 𝑋. Moreover, 𝑉(𝑈)  is nonempty and open in 

𝐾(𝑋)  thus determining the existence of 𝑚 ∈ 𝑁 as 𝑓𝑚(𝑉(𝑈)) = 𝐾(𝑋). Particularly it is 

defined 𝑋 ∈ 𝑓𝑚(𝑉(𝑈)) ⊂ 𝑉(𝑓𝑚(𝑈)) which determines that 𝑓𝑚(𝑈) = 𝑋.  

In turn (𝑎) ⇒ (𝑏) in its reciprocal assumes that 𝑓 will be topologically exact, which 

must be proved for any open set 𝑈 = 𝑉(𝑈1, … , 𝑈𝑘) ⊂ 𝐾(𝑋) where there exists 𝑚 ∈ 𝑁, as 

𝑓𝑚(𝑈) = 𝐾(𝑋). In a sense of compactness on 𝑋 for each 𝑖 = 1, … , 𝑘  there will exist a 

nonempty open set 𝑉𝑖  such that 𝑉𝑖 ⊂ 𝑈𝑖  and 𝑉𝑖 ⊂ 𝑈𝑖 where 𝑉  establishes the closure of 𝑉. 

Since 𝑓 is topologically exact, it is found 𝑚1, … , 𝑚𝑘  as 𝑓𝑚𝑖(𝑉𝑖) = 𝑋 for each 𝑖 = 1, … 𝑘, where 

𝑚 = { 𝑚1, … , 𝑚𝑘} will therefore be established, 

𝑓𝑚 (𝑉 (𝑉1, … , 𝑉𝑘)) = 𝑉 (𝑓𝑚 (𝑉1) , … , 𝑓𝑚 (𝑉𝑘)) = 𝐾(𝑋). 

 
Where 𝑓𝑚(𝑈) = 𝐾(𝑋) which proves that 𝑓 is topologically exact. 

Theorem 2.24. Since 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system, when 𝑓 exhibits exact chaos in the 

Devaney sense it is determined that 𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋)will also exhibit it. Which will 

determine the lowering power as shown in the following scheme, 
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3.2.  Transitivity and chaos in hyperspaces 

The present section establishes an introduction to other types of chaos notions such 

as Li-Yorke chaos (LUC), ω-chaos (ωC) and distributional chaos (dC), which will be 

established according to comparisons resulting from the function 𝑓 defined within a 

topological space 𝑋  and its hyperextension 𝑓  that is stated in the hyperspace of non-empty 

compact subsets of 𝑋, 𝐾(𝑋). From this perspective we will try to answer if it is possible to 

obtain the following scheme 

 

It is specified that in the development of this section we present (X,d)  in a compact 

metric space. Determining for this purpose that 𝑓: 𝑋 ⟶ 𝑋  be a continuous function.  

3.2.1. Li-Yorke chaos and ω-chaos 

For the introduction to Li-Yorke chaos the following definitions are expressed: 

Definition 3.1. When a pair of points 𝑥, 𝑦 ∈ 𝑋 are set to be a Li-Yorke pair for f if it is present, 

(a) 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≥ 0  

(b) 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) = 0  

 

Definition 3.2. When a scrambled Li-Yorke subset 𝑆 of 𝑋  is set to 𝑓 if #𝑆 ≥ 2  in all pairs of 

points other than 𝑆 will be a Li-Yorke pair. Where #𝑆 establishes the cardinality of 𝑆. 

Definition 3.3. 𝑓: 𝑋 ⟶ 𝑋  being a Dynamical System it will be established that 𝑓 happens to 

be chaotic in the Li-Yorke sense if it possesses a non-enumerable scrambled Li-Yorke set. 

Example 3.4. According to (18) it is determined that 𝑓: [0,1] ⟶ [0,1] will be a continuous 

function having a periodic point of period 3, so that f will be chaotic in the Li-Yorke sense. 

Definition 3.5. A dynamical system be 𝑓: 𝑋 ⟶ 𝑋, shall be stated, 

 (a) It shall be determined as proximal when a pair of points 𝑥, 𝑦 ∈ 𝑋  is expressed as 

𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) = 0  and if a pair is not proximal so it shall be said to be distal. 

 (b) It will be determined as asymptotic when a pair of points 𝑥, 𝑦 ∈ 𝑋  is expressed as 

𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) = 0 . 
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Proposition 3.6. With the definitions described previously, it is determined that, a pair of 

points 𝑥, 𝑦 ∈ 𝑋 will be a Li-Yorke pair only when they are proximal and non-asymptotic and 

are denoted according to the following sets respectively. 

𝑃𝑟𝑜𝑥(𝑓) = {(𝑥, 𝑦): 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦))  = 0}, 

𝐴𝑠𝑦𝑚(𝑓) = {(𝑥, 𝑦): 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) = 0 } 

 
For any 𝑥 ∈ 𝑋 is called the proximal cell of the point 𝑥 of a set that has all proximal points 

conforming to 𝑥 denoted by 𝑃𝑟𝑜𝑥(𝑓)(𝑥). 

Definition 3.7. According to the previous definition it is determined that a point 𝑥 is distal 

when  𝑃𝑟𝑜𝑥(𝑓)(𝑥) = {𝑥}. Therefore, a dynamical system is said to be distal when its points 

are also distal. A dynamical system 𝑓 is proximal when every pair of points of 𝑋 are also 

proximal. Thus establishing the following, 𝑃𝑟𝑜𝑥(𝑓)(𝑥) = 𝑋 for all 𝑥 ∈ 𝑋. 

Definition 3.8. A dynamical system 𝑓: 𝑋 ⟶ 𝑋 is determined to be Li-Yorke sensitive when 

𝛿 > 0  is present such that any point 𝑥 ∈ 𝑋 y 𝜀 > 0  where 𝑦 ∈ 𝑋 is evident with 𝑑(𝑥, 𝑦) < 𝜀  

and with the proximal pair 𝑥, 𝑦 in the case of some 𝑛 ≥ 0  will obtain 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝛿. 

The same manifests itself in (Akin & Kolyada, 2003). 

Theorem 3.9. When is a dynamical system 𝑓: 𝑋 ⟶ 𝑋 and f Li-Yorke sensitive it will be 

established that it possesses sensitive dependence on initial conditions. From this 

perspective and furthermore for any point 𝑥 ∈ 𝑋 when the proximal cell 𝑃𝑟𝑜𝑥(𝑓)(𝑥) is dense 

in 𝑋  it will be presented that 𝑓  is Li-Yorke sensitive. 

Theorem 3.10. As a dynamical system 𝑓: 𝑋 ⟶ 𝑋 is weakly mixable it will be established at 

all 𝑥 ∈ 𝑋 as the proximal cell 𝑃𝑟𝑜𝑥(𝑓)(𝑥)  representing a dense subset of 𝑋. 

Theorem 3.11. When 𝑓: 𝑋 ⟶ 𝑋  is established as a dynamical system the following 

statements will be equivalent: 

 (a) 𝑓 will be weakly mixable. 

 (b) In the case of any 𝑥 ∈ 𝑋 when the proximal cell 𝑃𝑟𝑜𝑥(𝑓)(𝑥) is dense in 𝑋 

              (c) In the case of the existence of 𝑥 ∈ 𝑋 with a proximal cell 𝑃𝑟𝑜𝑥(𝑓)(𝑥) dense in 𝑋 

 (d) 𝑃𝑟𝑜𝑥(𝑓)  will be dense in 𝑋 × 𝑋. 

Definition 3.12. As a dynamical system 𝑓: 𝑋 ⟶ 𝑋 presents a subset 𝑆 of 𝑋 with at least two 

points, it is called a set 𝜔 − 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 if for 𝑓 any two distinct points 𝑥, 𝑦 ∈ 𝑆  the following 

conditions will be satisfied: 

 (a) When it is numerable 𝜔(𝑥, 𝑓) ∖ 𝜔(𝑦, 𝑓). 
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       (b)  𝜔(𝑥, 𝑓) ∩ 𝜔(𝑦, 𝑓) ≠ ∅ 

(𝑐) 𝜔(𝑥, 𝑓) ∖ 𝑃𝑒𝑟(𝑓) ≠ ∅ 

 

Proposal established in (Li, 1993). 

Definition 3.13. When a dynamical system 𝑓: 𝑋 ⟶ 𝑋 is set up, it is determined that 𝑓 will 

be 𝜔 − 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 upon the existence of 𝜔 − 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑  non-numerable. 

Theorem 3.14. Since a dynamical system 𝑓: 𝑋 ⟶ 𝑋 will be 𝜔 − 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 it is determined that 

𝑓 will be chaotic in the Li-Yorke sense. 

The proof in (Lampart, 2003) is carried out as the evidence that the reciprocal is not true. 

Theorem 3.15. The relation of the Li-Yorke chaos and the 𝜔 − 𝑐ℎ𝑎𝑜𝑠 between the continuous 

function 𝑓 and its hyperextension as asserted in (Guirao et al., 2009). In order to support the 

scheme shown at the beginning of the section. Then, being 𝑓: 𝑋 ⟶ 𝑋 a dynamical system and 

𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋)the hyperextension of 𝑓 in the hyperspace 𝐾(𝑋). Therefore, the following 

statements will be satisfied,  

(a) When a set 𝑆 is presented as revolved Li-Yorke (𝜔 − 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 , respectively) 

there will then exist for 𝑓, a scrambled Li-Yorke (𝜔 − 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 , respectively) set 

for  𝑓  with equal cardinality of 𝑆. 

 (b) When 𝑓 is chaotic in the Li-Yorke sense (𝜔 − 𝑐ℎ𝑎𝑜𝑡𝑖𝑐, respectively) it will then 

also be 𝑓. 

For (a) it is demonstrated by means of the function,  𝜑: 𝑋 ⟶ 𝐾(𝑋), 𝑥 ⟼ {𝑥}  where it 

is denoted that, 

𝑑𝐻(𝜑(𝑥), 𝜑(𝑦)) = 𝑑𝐻({𝑥}, {𝑦}) = 𝑑(𝑥, 𝑦). 

Being 𝜑 an isometry, the effect 𝑓  will be conjugate by 𝑓 according to the path 𝜑. Thus 𝜑 ∘ 𝑓 =

𝑓 ∘ 𝜑. will be obtained. Hence, 𝑓({𝑥}) = {𝑓(𝑥)}. 

When 𝑆 is a scrambled Li-Yorke subset of 𝑋, it will be established that #𝑆 ≥ 2 and 

every pair of points that are distinct from 𝑆 will be a Li-Yorke pair. Therefore, for 𝑥, 𝑦 ∈ 𝑆 it 

will be held that, 

𝑙í𝑚 𝑠𝑢𝑝𝑛⟶∞ 𝑑𝐻 (𝑓𝑛({𝑥}), 𝑓𝑛({𝑦})) = 𝑙í𝑚 𝑠𝑢𝑝𝑛⟶∞ 𝑑𝐻({ 𝑓𝑛(𝑥)}, { 𝑓𝑛(𝑦)}) 
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 = 𝑙í𝑚 𝑠𝑢𝑝 𝑑𝑛⟶∞ ( 𝑓𝑛(𝑥),  𝑓𝑛(𝑦)) ≥ 0. 

It is also determined that, 

𝑙í𝑚 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝐻 (𝑓𝑛({𝑥}), 𝑓𝑛({𝑦})) = 𝑙í𝑚 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝐻({ 𝑓𝑛(𝑥)}, { 𝑓𝑛(𝑦)}) 

 

= 𝑙í𝑚 𝑖𝑛𝑓 𝑑𝑛⟶∞ ( 𝑓𝑛(𝑥),  𝑓𝑛(𝑦)) = 0. 

Proving that if 𝑥, 𝑦 represents a Li-Yorke pair for 𝑓, it establishes {𝑥}, {𝑦} as a Li-Yorke 

pair for 𝑓. So the following set is considered, 

𝑆 = {{𝑥} ∈ 𝐾(𝑋): 𝑥 ∈ 𝑆}. 

With respect to (b), the proof establishes that since 𝑓 has chaos in the Li-Yorke sense 

it will also possess a set 𝑆 which will be Li-Yorke scrambled. What would be established by 

(a), a continuation where 𝑓 possesses a scrambled Li-Yorke set with equal cardinality to 𝑆, 

the latter being non-numerable will determine that the scrambled Li-Yorke set of 𝑓  will be 

as well. Thus proving that 𝑓  possesses chaos in the Li-Yorke sense. 

According to Theorem 3.15 it will be obtained, 

 

3.2.2. Distributional chaos 

Distributional chaos had its notions at the introductory level in (23) and was later 

generalised in (Balibrea et al., 2005) and (Smítal, J & Stefánková, 2004). 

Definition 3.16. Since (𝑋, 𝑑) is a compact metric space. For 𝑥, 𝑦 ∈ 𝑋 as for 𝑡 ∈ 𝑅 and 𝑛 ∈ 𝑁 

will be, 

𝜉(𝑥, 𝑦, 𝑛, 𝑡) = #𝑖: 0 ≤ 𝑖 < 𝑛 𝑦 𝑑 (𝑓
𝑖
(𝑥), 𝑓

𝑖
(𝑦)) < 𝑡. 

Which defines the upper distribution function for 𝑥, 𝑦 to be 

𝐹𝑥𝑦
∗ (𝑡) =

1

𝑛
 𝜉(𝑥, 𝑦, 𝑛, 𝑡). 
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In addition, the lower distribution function for 𝑥, 𝑦 will be 

𝐹𝑥𝑦(𝑡) =
1

𝑛
 𝜉(𝑥, 𝑦, 𝑛, 𝑡). 

 
The two functions described are non-decreasing and also 0 ≤ 𝐹𝑥𝑦 ≤ 𝐹𝑥𝑦

∗ ≤ 1 When 

𝑡 < 0 it will be determined that 𝐹𝑥𝑦
∗ (𝑡) = 0,, or in turn when 𝑡 > 𝑑𝑖𝑎𝑚(𝑋) will be 𝐹𝑥𝑦(𝑡) =

1. 

Both functions describe both upper and lower bounds depending on how many 

times the distance 𝑑 (𝑓 𝑖(𝑥), 𝑓 𝑖(𝑦)) that develop on the 𝑥 and 𝑦 trajectories are less than 𝑡 

over the course of 𝑛 iterations. 

 
Definition 3.17. Since 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system and if there exist a pair of points 
𝑥, 𝑦 ∈ 𝑋 such that, 
(𝑑1𝐶) 𝐹𝑥𝑦

∗ ≡  1 and 𝐹𝑥𝑦(𝑡) = 0 at some 𝑡 > 0 it will be said that 𝑓 possesses distributional 
chaos of type 1. 
 
(𝑑2𝐶) 𝐹𝑥𝑦

∗ ≡  1 and 𝐹𝑥𝑦(𝑡) < 𝐹𝑥𝑦
∗ (𝑡) at some 𝑡 > 0 it will be said that 𝑓 possesses 

distributional chaos of type 2. 
 
(𝑑3𝐶) 𝐹𝑥𝑦(𝑡) < 𝐹𝑥𝑦

∗ (𝑡) at all 𝑡 ∈ 𝐽, where will be a non-degenerate interval 𝐽 it will therefore 

be established that 𝑓 will possess distributional chaos of type 3. 
 
It is therefore denoted by 𝑑1𝐶 ⇒ 𝑑2𝐶 ⇒ 𝑑3𝐶 but not reciprocally. 
 

Theorem 3.18. When let both 𝑔: 𝑌 ⟶ 𝑌 and 𝑓: 𝑋 ⟶ 𝑋 be conjugate dynamical systems via 

𝜑: 𝑌 ⟶ 𝑋, setting (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) to be metric space. It is determined that 𝑔 possesses 

distributional chaos of type 1 and type 2 respectively only if 𝑓 possesses the same types. 

It is therefore demonstrated that since 𝜑: 𝑌 ⟶ 𝑋 is a homeomorphism conjugate to 𝑔 y 𝑓 it 

will be established that 𝜑 ∘ 𝑔 = 𝑓 ∘ 𝜑. By presenting continuity in 𝜑 given 𝜀 > 0 if there exists 

𝛿 > 0  be in 𝑥, 𝑦 ∈ 𝑌 if 𝑑𝑌(𝑥, 𝑦) <  𝛿 it is determined that 𝑑𝑋(𝜑(𝑥), 𝜑(𝑦)) < 𝜀. Such that, 

𝑑𝑌(𝑔𝑛(𝑥), 𝑔𝑛(𝑦)) < 𝛿 ⇒ 𝑑𝑋(𝜑 ∘ 𝑔𝑛(𝑥), 𝜑 ∘ 𝑔𝑛(𝑦)) < 𝜀, 

 
And being 𝜑 ∘ 𝑔𝑛 = 𝑓

𝑛
∘ 𝜑, it generates, 

𝑑𝑌(𝑔𝑛(𝑥), 𝑔𝑛(𝑦)) < 𝛿 ⟹ 𝑑𝑋(𝑓𝑛 ∘ 𝜑(𝑥), 𝑓𝑛 ∘ 𝜑(𝑦)) < 𝜀. 
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Therefore, 

𝐺𝑥𝑦
∗ (𝛿) ≤ 𝐹𝜑(𝑥)𝜑(𝑦)

∗ (𝜀) 

 

Let 𝐺𝑥𝑦
∗  and 𝐹𝑥𝑦

∗  be upper distribution functions with respect to 𝑔 and 𝑓 respectively. 

Similar case is presented by the continuity present in 𝜑−1, in any of the cases of 𝜀 > 0 

where there exists arbitrarily small 𝛿 > 0  being for 𝑥, 𝑦 ∈ 𝑌 𝑑𝑋(𝜑(𝑥), 𝜑(𝑦)) < 𝛿 which 

establishes that 𝑑𝑌(𝑥, 𝑦) < 𝜀 Determining, 

𝐹𝜑(𝑥)𝜑(𝑦)(𝛿) ≤ 𝐺𝑥𝑦(𝜀), 

 
𝐹𝑥𝑦  and 𝐺𝑥𝑦 being lower distribution functions with respect to 𝑓 and 𝑔. 

In the case where 𝐺𝑥𝑦
∗ ≡ 1 according to Definition 3.1 we obtain 𝐹𝜑(𝑥)𝜑(𝑦)

∗ ≡ 1. On the 

other hand, if 𝐺𝑥𝑦(𝜀) = 0 according to Definition 3.2 we will have 𝐹𝜑(𝑥)𝜑(𝑦)(𝛿) = 0. 

Establishing as a consequence that if 𝑔 possesses distributional chaos of type 1 then 𝑓 will 

also possess it.  

So also, when let 𝐺𝑥𝑦(𝜀) < 1 and by Definition 3.2 𝐹𝜑(𝑥)𝜑(𝑦)(𝛿) < 1 is generated it 

will show that as 𝑔 holds distributional chaos of type 2 then 𝑓 will also possess it. 

Finally, in (Balibrea et al., 2005) it is proved that distributional chaos of type 3 is not 

preserved under conjugacy. 

Definition 3.19. Being a dynamical system 𝑓: 𝑋 ⟶ 𝑋, the subset 𝑆 de 𝑋 will be set 

distributively scrambled for 𝑓 when #𝑆 ≥ 2, as for any pair of distinct points 𝑥, 𝑦 ∈ 𝑆 by 

holding that, 

 Let 𝐹𝑥𝑦
∗ (𝑡) = 1 in the totality of 𝑡 > 0 

 Let 𝐹𝑥𝑦(𝑡) = 0  at some 𝑡 > 0 

The pair 𝑥, 𝑦  will be considered to be distributionally chaotic for 𝑓. Moreover, it is 

specified that 𝑓 will possess distributional chaos when there exists a distributionally 

scrambled set but it is not numerable for the same. Denoting the similarity between 

distributional chaos and type 1 chaos. 

Theorem 3.20. Since the system 𝑓: 𝑋 ⟶ 𝑋 is a dynamical system, it follows, 
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(a) When a distributionally scrambled set 𝑆 ⊂ 𝑋 is evident for 𝑓 there will exist a 

similar set for 𝑓 and it   will have the same cardinality as 𝑆.  

 (b) When 𝑓 exhibits distributional chaos, 𝑓 will also have it. 

According to Theorem 3.20 it establishes a proof that is corroborated by Theorem 3.15 

where it is stated that the function 𝜑: 𝑋 ⟶ 𝐾(𝑋),  𝑥 ⟼ {𝑥} will be an isometry. 

So also with respect to Theorem 3.20 it may be lowered as expressed in the following scheme, 

 

Asserting according to Theorems 3.20 and 3.15 that they are not true in general terms. 

In the theorem it is stated the compactification of integers, where it is considered a discrete 

topological space 𝑋∞ = 𝑍 ∪ {∞}  defining the function 𝑓: 𝑋∞ ⟶ 𝑋∞in, 

𝑓(𝑛) = {𝑛 + 1, 𝑛 ∈ 𝑍, ∞, 𝑛 =  ∞}  

 
3.2.3. Li-Yorke Chaos for Linear Operators 

When 𝑇 is a continuous linear operator within a Fréchet space 𝑋 possessing chaos in 

the Li-Yorke sense, 𝑇 will also possess chaos in the sense of Li-Yorke according to Theorem 

3.15. With this and in accordance with (Bernardes et al, 2017) as well as the Banach-Steinhaus 

theorem, the following lemma is developed. 

Lemma 3.22. As 𝑇 is a continuous linear operator inside a Fréchet space 𝑋 and 𝑇 possesses a 

Li-Yorke pair a residual subset 𝑍 of 𝑋 will be established being unbounded the 𝑂𝑟𝑏(𝑥, 𝑇) for 

each 𝑥 ∈ 𝑍. In addition to the detailed with the Li-Yorke chaos criterion and (Bernardes et 

al, 2015) the following Theorem will be proved. 

 

Theorem 3.23. As 𝑇 is a continuous linear operator inside a Fréchet space 𝑋 and is defined 

as 𝑁𝑆(𝑇) = 𝑥 ∈ 𝑋: (𝑇𝑛𝑥)𝑛∈𝑁 , it has subsequences converging to 0. In the case that 

𝑠𝑝𝑎𝑛(𝑁𝑆(𝑇)) is dense, equivalence in the following statements will be determined,  

 (a) When 𝑇 possesses Li-Yorke chaos 

 (b) When 𝑇 possesses Li-Yorke chaos 
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 (c) When 𝑇 possesses a Li-Yorke pair 

 
Corollary 3.24. When 𝑋  represents a Fréchet space with successions let be the basis 

(𝑒𝑛)𝑛∈𝑍.. Assuming a translation with weights to the left, it is determined,  

𝐵𝑤(𝑥1, 𝑥2, 𝑥3, … ) = (𝑤2𝑥2, 𝑤3𝑥3, 𝑤4𝑥4, … ), 

𝑋 being an operator, equivalences are established in the following statements, 

 When 𝐵𝑤  possesses Li-Yorke chaos 

 When  𝐵𝑤 possesses Li-Yorke chaos 

 When  𝐵𝑤 possesses a Li-Yorke pair. 

In the demonstration, it is established the set 𝑁𝑆(𝐵𝑤) which has a dense subspace of 

𝑋 with all finite support successions, following as detailed in the previous theorem. 

Conforming to the classical Banach spaces 𝑙𝑝 , 1 ≤ 𝑝 < ∞ and 𝑐0 furthermore by 

(Bermúdez et al., 2011) it is determined that 𝐵𝑤  will contain Li-Yorke chaos only when, 

𝑠𝑢𝑝 𝑠𝑢𝑝 |𝑤𝑛 ⋅ … ⋅ 𝑤𝑚|: 𝑛 ∈ 𝑍+, 𝑚 > 𝑛 = ∞. 

Thus establishing the characterization in relation to the succession of weights.  

3.3.  Specification properties 

In the present scheme, the study is made in order to know the specification properties, 

which are determined as notions with greater strength than chaos in the sense of Devaney. 

Therefore, it is established as an objective to analyze the possibility of rising and falling in 

the scheme shown below, 

 

SPSP being the acronym given to the strong periodic specification property. 

3.3.1. Specification properties in hyperspace 

We will work with 𝑓: 𝑋 ⟶ 𝑋 as a continuous function where the compact metric 

space will be represented by (𝑋, 𝑑). 
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Definition 4.1. f:X⟶X as a continuous function will be able to satisfy the strong periodic 

specification property when in the entire 𝜀 > 0 an integer 𝑁𝜀 > 0 is possessed be any integer 

𝑠 ≥ 2, such as the points 𝑦1, 𝑦2, … , 𝑦𝑠 ∈ 𝑋 and the integers, 

0 = 𝑎1 ≤ 𝑏1 < 𝑎2 ≤ 𝑏2 < ⋯ < 𝑎𝑠 ≤ 𝑏𝑠, 

For 𝑎𝑗 − 𝑏𝑗−1 ≥ 𝑁𝜀 con 𝑗 = 2, … , 𝑠, there will therefore exist a point 𝑥 ∈ 𝑋 that will satisfy 

the following conditions, 

       (𝑎) 𝑑 (𝑓 𝑖(𝑥), 𝑓 𝑖(𝑦𝑙)) < 𝑓𝑜𝑟 𝑎𝑙 ≤ 𝑖 ≤ 𝑏𝑙𝑦𝑙 = 1, … , 𝑠, 

       (𝑏)  𝑓𝑏𝑠+𝑁𝜀(𝑥) = 𝑥. 

By satisfying this definition in the special case especial 𝑠 = 2, it will only be 

determined that 𝑓 satisfies the periodic specification property (PSP). 

By omitting condition (b) in the periodic specification property, it is established that 

there exists a strong specification property in what is abbreviated as SSP (weak specification 

property-WSP). 

Replacing both conditions in the strong periodic specification property by, 

𝑑 (𝑓 𝑖+𝑘(𝑏𝑠+𝑁)(𝑥), 𝑓 𝑖+𝑘(𝑏𝑠+𝑁)(𝑦𝑙)) < 𝜀, 

 
When 𝑘 ∈ 𝑁, 𝑎𝑙 ≤ 𝑖 ≤ 𝑏𝑙  𝑦 𝑙 = 1, … , 𝑠, it is possible to conceptualize the recurrent 

strong recurrent specification property (RSSP) and in the specific case 𝑠 = 2  it will be said 

that 𝑓 satisfies the recurrent weak periodic specification property (RWSP). 

Proposition 4.2. Let 𝑓: 𝑋 ⟶ 𝑋  be a continuous function defined on (𝑋, 𝑑) as a metric space. 

When 𝑓  satisfies SSP one will have that the set of periodic points of 𝑓 is dense in 𝑋 and 

furthermore 𝑓 is mixable. 

Proposition 4.3. When defining continuous functions 𝑓: 𝑋 ⟶ 𝑋 and 𝑔: 𝑌 ⟶ 𝑌 on compact 

metric spaces respectively as (𝑋, 𝑑𝑋) and on (𝑌, 𝑑𝑌), the following statements must be 

satisfied, 

 (a) When 𝑓 satisfies SSP it is determined that 𝑓𝑘 will also satisfy SSP at any 𝑘 ≥ 1. 

 (b) When 𝑓 and 𝑔 satisfy SSP it is determined that 𝑓 × 𝑔 will also satisfy SSP. 

Theorem 4.4. In a dynamical system 𝑓: 𝑋 ⟶ 𝑋 satisfying SSP it will be established that 

𝑓: 𝐾(𝑋) ⟶ 𝐾(𝑋) also satisfies it. Allowing by this theorem to go down according to the 

scheme posed at the beginning of this section as observed in (Bauer & Sigmund, 1975). 
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It will be obtained therefore, 

𝑑𝐻 (𝑓 𝑖(𝐾), 𝑓 𝑖(𝐾𝑙)) < 𝑑𝐻 (𝑓 𝑖(𝐾), 𝑓 𝑖(𝐿𝑙)) + 𝑑𝐻 (𝑓 𝑖(𝐾𝑙), 𝑓 𝑖(𝐿𝑙)) < 𝜀/2 + 𝜀/2 = 𝜀, 

Where 𝑎_𝑙 ≤ 𝑖 ≤ 𝑏_𝑙$ 𝑦 $𝑙 = 1, … , 𝑠, which shows that 𝑓 satisfy the strong periodic 

specification property.  

Determining therefore that it will be possible to go down with the strong periodic 

specification property, as shown below, 

 

3.3.2. Example  

The following example is established in relation to (Guirao et al., 2009) which starts 

from a function 𝑓 with its hyperextension that satisfies the property of strong periodic 

specification and also possesses chaos in the sense of Devaney but 𝑓 does not have the same 

or the described property. 

Established the dynamical system succession ((𝑓𝑛 , 𝑋𝑛))
𝑛=1

∞
 being a metric space 𝑋𝑛  

compact in the totality of 𝑛 will be considered (∏∞
𝑛=1 𝑓𝑛 , ∏∞

𝑛=1 𝑋𝑛) as a dynamical 

System product. 

The following lemmas will allow us to prove the mentioned. 

Lemma 4.5. Let any succession ((𝑓𝑛 , 𝑋𝑛))
𝑛=1

∞
 of dynamical systems which will feature every 

positive integer 𝑛 in the whole set of recurring points, frequently of 𝑓𝑛 which will be dense 

in 𝑋𝑛, it will therefore be established, (∏∞
𝑛=1 𝑓𝑛 , ∏∞

𝑛=1 𝑋𝑛) as a product dynamical 

system which will contain a dense set of recurring points in a regular manner. 

Lemma 4.6. Let any succession ((𝑓𝑛 , 𝑋𝑛))
𝑛=1

∞
 of dynamical systems which will present the 

property of strong periodic specification, it will be established (∏∞
𝑛=1 𝑓𝑛 , ∏∞

𝑛=1 𝑋𝑛)  as a 

dynamical system, a product which will have the property of strong or weak recurrent 

specification. 

It is proved in accordance with 𝜀 > 0  upon the existence of a positive integer 𝑀 such that, 

∑

∞

𝑖=𝑀+1

1

2𝑖
<

𝜀

4
. 
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Being the constant 𝑁𝑛 determined by the periodic specification property for 𝑓𝑛, when 

it is 1 ≤ 𝑛 ≤ 𝑀 and 𝑁 = 𝑁𝑛  . When being integers 𝑥, 𝑦 ∈ ∏∞
𝑛=1 𝑋𝑛 and 𝑎1 ≤ 𝑏1 < 𝑎2 ≤

𝑏2 as 𝑏1 − 𝑎1 > 𝑁 𝑎𝑛𝑑 𝑏2 − 𝑎2 > 𝑁. So also, when are periodic points 𝑝1, … , 𝑝𝑀 at each 𝑝𝑗  

the specification property on 𝑓𝑗, 𝑥𝑗, 𝑦𝑗 will be obtained. Which defines the following point, 

𝑝 = (𝑝1, … , 𝑝𝑀 , 𝑞𝑀+1, 𝑞𝑀+2, … ) ∈ ∏

∞

𝑛=1

𝑋𝑛, 

Let 𝑞𝑗 ∈ 𝑋𝑗 be any points. With direct calculation it will be verified how 𝑝 satisfies the 

specification properties. 

Lemma 4.7. When 𝑓 is the continuous function with the strong recurrent (weak recurrent) 

specification properties, its hyperextension 𝑓  will possess the strong periodic specification 

property (or in turn the periodic specification property). 

The demonstration is established according to the satisfaction of 𝑓 with respect to the 

recurrent strong specification property. When 𝜀 > 0  and the constant 𝑁 are set by the above 

property at 𝜀/2. It is set 𝑠 ≥ 2, sets 𝐴1, … , 𝐴𝑠   𝑦  ≤ 𝑏1 < 𝑎2 ≤ 𝑏2 < ⋯ < 𝑎𝑠 ≤

𝑏𝑠  𝑐𝑜𝑛 𝑏𝑗−𝑎𝑗 > 𝑁. 

Being open sets 𝑈𝑖,1
𝑙 , … , 𝑈𝑖,𝑟

𝑙  that need to cover 𝑓 𝑖(𝐴) set by balls having diameter less 

than 𝜀/4  with centers 𝐴𝑖 , let 𝑎𝑙 ≤ 𝑖 ≤ 𝑏𝑙 . Therefore, it is assumed that 𝑟 will be equally 

presented at 𝑖 and 𝑙. Since 𝑦𝑖,𝑗
𝑙 ∈ 𝐴𝑙  is the center of the ball 𝑈𝑖,1

𝑙 . Moreover, if the point 𝑥𝑖,𝑗 is 

subject to the strong recurrent specification property at the points 𝑦𝑖,𝑗
1 , … , 𝑦𝑖,𝑗

𝑠  as in 𝑎1 ≤

𝑏1 < 𝑎2 ≤ 𝑏2 < ⋯ < 𝑎𝑠 ≤ 𝑏𝑠. According to Lemma 2.8 which represents a similar 

argument, it finds a point 𝑃𝑖,𝑗 ∈ 𝐾(𝑋) periodic within a period 𝑏𝑠 + 𝑁 and specifies that, 

𝑑𝐻 (𝑓𝑘(𝑃𝑖,𝑗), 𝑓𝑘({𝑦𝑖,𝑗
𝑙 })) ≤

𝜀

2
 𝑝𝑎𝑟𝑎 𝑎𝑙 ≤ 𝑖 ≤ 𝑏𝑙  𝑦 𝑙 = 1, … , 𝑠. 

Considering the set 

𝑃 = ⋃𝑖,𝑗𝑃𝑖,𝑗 

It is therefore established that 𝑃 represents a desired periodic point. 

When 𝑛 ∈ 𝑁 and 𝑍𝑛+1 is a cyclic group with 𝑛 + 1 elements. 𝑍𝑛+1 will be endowed 

with the discrete topology. Being a topological product space 𝑋𝑛 = (𝑍𝑛+1)∞ =

{(𝑥𝑚)𝑚=1
∞ : 𝑥𝑚 ∈ 𝑋𝑛+1, 𝑚 ∈ 𝑁} corresponding to the nonnumerable number that can be 
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presented of copies of 𝑍𝑛+1 it will result that 𝑋𝑛 is homeomorphic with respect to the Cantor 

set. Which determines that 𝑋𝑛 is a compact, perfect space with a basis of both closed and 

open numberable sets. Base that develops according to the cylinder sets in the following way, 

[𝑧1, … , 𝑧𝑘] = (𝑥𝑚)𝑚=1
∞ ∈ 𝑋𝑛: 𝑥1 = 𝑧1, … , 𝑥𝑘 = 𝑧𝑘, 

Let 𝑘 ∈ 𝑁 and 𝑧1, … , 𝑧𝑘 be an arbitrary succession of elements belonging to 𝑍𝑛+1 

according to length 𝑘. 

In the definition of the function 𝑓𝑛: 𝑋𝑛 ⟶ 𝑋𝑛 by the 𝑓((𝑥𝑚)𝑚=1
∞ ) = (𝑦𝑚)𝑚=1

∞  where 

it will be established that, 

𝑦𝑚{𝑥𝑚+1,  𝑥1 ≠  𝑋𝑛+1  1 + 𝑥𝑚+1,  𝑥1 =  𝑋𝑛+1  

In all 𝑚 ∈ 𝑁. 

 

Lemma 4.8.  When 𝑛 ∈ 𝑁 is given for 𝑓𝑛: 𝑋𝑛 ⟶ 𝑋𝑛  it will follow that, 

 (a) 𝑓𝑛  is a continuous function 

 (b) 𝑓𝑛  will not contain periodic points in a period equal to n. 

             (c) When 𝑛 ≥ 3 is presented, the function 𝑓𝑛  will be able to satisfy the strong periodic 

specification    property. 

 (d) 𝑓𝑛  will be topologically exact. 

In the proof of (a) it is proved that by setting 𝑧 ∈ 𝑋𝑛, it will be the preimage in any 

open neighbourhood of 𝑧 conforming to 𝑓𝑛  will be open. That is, being [𝑧1, … , 𝑧𝑘]  (𝑘 ≥

𝑛) we will have, 

𝑓−1([𝑧1, … , 𝑧𝑘]) = (⋃𝑎∈𝑍𝑛+1∖{𝑧𝑛}[𝑎, 𝑧1, … , 𝑧𝑘]) ∪ [𝑧𝑛 − 1, 𝑧1 − 1, … , 𝑧𝑘 − 1] 

Which will be open. In case it is 𝑘 < 𝑛  the disjunct decomposition will be set as, 

[𝑧1, … , 𝑧𝑘] = ⋃𝑎1,…,𝑎𝑛−𝑘
[𝑧1, … , 𝑧𝑘, 𝑎1, … , 𝑎𝑛−𝑘]. 

In the case of (b) by assuming the existence of the sequence (𝑥𝑚)𝑚=1
∞ ∈ 𝑋𝑛 be, 

(𝑦𝑚)𝑚=1
∞ = 𝑓((𝑥𝑚)𝑚=1

∞ ) = (𝑥𝑚)𝑚=1
∞ . 

By definition of 𝑓𝑛 it is appreciated that 𝑘 + 𝑥𝑚+𝑛 = 𝑥𝑚 in the totality of 𝑚 ∈ 𝑁, where 𝑘 =

#{𝑗 ∈ {1, … , 𝑛}: 𝑥𝑗 = 𝑥𝑗+𝑛} clearly specifying 0 ≤ 𝑘 ≤ 𝑛 where the following cases are 

considered: 
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 1. Being 𝑘 > 0 it will present 𝑗 ∈ {1, … , 𝑛} in such a way that 𝑥𝑗 = 𝑥𝑗+𝑛 and considering the 

equality in 𝑘 + 𝑥𝑗+𝑛 = 𝑥𝑗  it is appreciated 𝑘 = 0 determining a contraindication. 

 2. Being 𝑘 = 0 it will appear in particular 𝑥𝑛+1 = 𝑥1 having subsequently 𝑘 ≥ 1 determining 

a contraindication. 

For (c) it is proved that as there exists 𝑁 ∈ 𝑁  in each 𝑠, 𝑡 ∈ 𝑁 in the case of two finite 

successions of points be 𝑢1, … , 𝑢𝑠 and 𝑣1, … , 𝑣𝑡  elements of 𝑍𝑛+1 a succession 𝑤1, … , 𝑤𝑁 will 

be found conforming to, 

𝑓𝑛
𝑠+𝑁([𝑢1, … , 𝑢𝑠, 𝑤1, … , 𝑤𝑁, 𝑣1, … , 𝑣𝑡]) = [𝑣1, … , 𝑣𝑡]. 

It is then stated that 𝑁 = 2𝑛. 

In (d) it is analyzed according to the same techniques described previously, that since 

[𝑢1, … , 𝑢𝑘] is a non-empty cylindrical set, it will be defined that 𝑓𝑛
𝑘+2𝑛([𝑢1, … , 𝑢𝑘]) = 𝑋𝑛. 

Theorem 4.9. Since f:X⟶X exists as a topologically exact Dynamical System, it does not 

satisfy the strong periodic specification property by presenting "Per" (f) as nondense in X. 

However, its hyperextension ¯f containing exact Devaney chaos will. 

It is demonstrated according to 𝑛 ∈ {2, … } when presented (𝑓𝑛 , 𝑋𝑛) within a 

Dynamical System stated in Lemma 4.8 where each 𝑓𝑛 contains exact Devaney chaos and 

further satisfies the strong periodic specification property, it will therefore be established as 

a Cartesian product where 𝑓 is topologically exact including the recurrent strong 

specification property as provided in Lemma 4.6. Mentioning again Lemma 4.8 it is further 

determined that 𝑓 possesses non-periodic points in a period equal to or greater than 2. 

Furthermore, the function being topologically transitive and different in its identity function 

establishes that the set 𝑃𝑒𝑟(𝑓)  will not be dense. This means that 𝑓  does not possess exact 

chaos in the sense of Devaney and also does not satisfy the property of strong periodic 

specification, on the contrary its hyperextension 𝑓 does possess such chaos and fulfils the 

property mentioned in Lemmas 4.5 and 4.7 in addition to Theorem 2.23. 

If exact Devaney chaos is present in  𝑓, it will also possess Devaney chaos which, 

according to Theorem 2.17, will be equivalent to almost total chaos in the Devaney sense, 

which determines that, 

𝑓 𝑡𝑜𝑡𝐷𝑒𝑣 𝐶 ⇏ 𝑓 𝑡𝑜𝑡𝐷𝑒𝑣 𝐶, 
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And in turn 

𝑓 𝐷𝑒𝑣 𝐶 ⇏ 𝑓 𝐷𝑒𝑣 𝐶, 

Since 𝑓 does not have a dense set of periodic points. 

Conclusions 

With respect to the function 𝑓 and its hyperextension 𝑓  and in accordance with the 

different properties of partial chaos type analyzed, the following is established, 

 (a) In topological transitivity ⇏; ⇐  

 (b) Fully transitive ⇒; ⇐ 

 (c) Exactly topological ⇒; ⇐ 

 (d) Weakly mixable ⇒; ⇐ 

 (e) Mixable ⇒; ⇐ 

 (f) In the density of periodic points ⇒; ⇍ 

             With the various notions of chaos as the periodic point density, it can be established 

that,  

  (a) Devaney chaos (Dev C) ⇏; ⇍ 

  (b) In the cases: totDev C, exDev C, LYC, ω C, dC, and SPSP ⇒; ⇍ 

Which determines that collectively the different notions of chaos have no implication 

with those individually. But vice versa they are consistently related, except for chaos in 

Devaney's sense. 
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