DEPÓSITO LEGAL ppi 201502ZU4666  
Esta publicación científica en formato digital  
es continuidad de la revista impresa  
ISSN 0041-8811  
Revista  
de la  
Universidad  
del Zulia  
Fundada en 1947  
por el Dr. Jesús Enrique Lossada  
Ciencias  
Exactas  
Naturales  
y de la Salud  
Año 12 N° 33  
Mayo - Agosto 2021  
Tercera Época  
Maracaibo-Venezuela  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Granger causality between cardiovascular diseases and some  
macroeconomic indicators: Azerbaijan case  
Madina Yuzbashova *  
ABSTRACT  
Objective: Statistical assessment of the interdependence of CVD indicators on  
macroeconomic indicators on the example of Azerbaijan. Design: Research design is to test  
statistical hypotheses about the presence of direct and inverse causal relationships between  
CDV-indicators and macroeconomic indicators. Baseline and estimated data cover the period  
from 1991 to 2018 and are based on data from the SSCRA (2019) report. We use paired linear  
regression in which macroeconomic indicators are independent and CDV indicators are  
dependent variables. The stationarity of the time series was checked using the ADF test. To  
investigate the causal relationship between time series, the Granger test was used. Main  
Outcome Measures: p-level < 0.05; time lags are 1, 2 and 3 years. Results: Absence of direct  
and inverse causal relationship between CVD indicators and macroeconomic indicators GDP  
per capita, average annual income households per capita and average annual income  
households per capita. Conclusions: In the period from 1991 to 2018, the number of CDV  
deaths in Azerbaijan increased by 1.54. There is a steady increase in CDV diseases by 2.23  
times. Despite GDP growth, there is no direct and inverse causal relationship between CVD  
indicators and macroeconomic indicators in the sense of the Granger test.  
KEYWORDS: cardiovascular diseases; CVD-mortality; macroeconomy; ADF-test; Granger  
causality.  
*
Recibido: 10/02/2021  
Aceptado: 20/04/2021  
2
47  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Causalidad de Granger entre las enfermedades cardiovasculares y  
algunos indicadores macroeconómicos: el caso de Azerbaiyán  
RESUMEN  
Objetivo: Evaluación estadística de la interdependencia de los indicadores de ECV con los  
indicadores macroeconómicos en el caso de Azerbaiyán. Diseño: El diseño de la investigación  
tiene como objetivo probar hipótesis estadísticas sobre la presencia de relaciones causales  
directas e indirectas entre los indicadores CDV y los indicadores macroeconómicos. Los  
datos de referencia y estimados cubren el período de 1991 a 2018 y se basan en datos del  
informe SSCRA (2019). Usamos regresión lineal pareada en la que los indicadores  
macroeconómicos son independientes y los indicadores CDV son variables dependientes. La  
estacionariedad de la serie temporal se comprobó mediante la prueba ADF. Para investigar la  
relación causal entre series de tiempo, se utilizó la prueba de Granger. Principales medidas  
de resultado: nivel p <0,05; los retrasos son de 1, 2 y 3 años. Resultados: Ausencia de relación  
causal directa e indirecta entre los indicadores de ECV y los indicadores macroeconómicos  
PIB per cápita, hogares con ingresos anuales promedio per cápita y hogares con ingresos  
anuales promedio per cápita. Conclusiones: En el período de 1991 a 2018, el número de  
muertes por CDV en Azerbaiyán aumentó en 1,54. Hay un aumento constante de las  
enfermedades por CDV en 2,23 veces. A pesar del crecimiento del PIB, no existe una relación  
causal directa e indirecta entre los indicadores de ECV y los indicadores macroeconómicos  
en el sentido de la prueba de Granger.  
PALABRAS CLAVE: enfermedades cardiovasculares; Mortalidad por ECV; macroeconomía;  
Prueba ADF; Causalidad de Granger.  
Introduction  
Cardiovascular Disease (CVD) is one of the leading causes of death worldwide.  
According to the World Health Organization (WHO), the number of deaths from CVD in  
2016 was more than 17.9 million. 85% of these deaths are due to heart attack and stroke. CVD  
deaths in the world account for 31% of all deaths (WHO,2019). The main causes of CVD, as  
in other diseases, are: 1) living conditions; 2) ecological situation; 3) genetic; 4) health system  
status. Therefore, it is important to distinguish these causes from each other. Except for  
genetic reasons, the other three reasons are directly or indirectly related to the economic and  
socioeconomic status of the country. Studies show that 75% of CVD deaths are shared by  
middle and low-income countries. 82% of non-infectious deaths under the age of 70 account  
2
48  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
for low- and middle-income countries. Among these diseases, CVD account for more than  
37%.  
Economic studies show that there is a positive correlation between the level of  
economic development and the level of environmental sustainability of a country (Samimi et  
al., 2011), as well as the level of economic development and healthy habits (Van Heuvelen &  
Van Heuvelen, 2019).  
The WHO and other relevant cardiovascular disease agencies are expanding efforts to  
reduce various risk factors for the prevention of cardiovascular disease. However, low-level  
countries are unable to provide quality CVD prevention due to low public health spending  
and low household incomes.  
Azerbaijan is an oil-rich country located in the west of the Caspian Sea. At the  
beginning of the 20th century, the country produced about half of the world's oil (Pomfret,  
2011). During the Soviet era, Azerbaijan remained the main oil producer. After Azerbaijan  
gained independence in 1991, it was opened to foreign direct investment (Ciaretta and  
Nasirov 2012, p. 285). Over the past 20 years, oil revenues have had a significant impact on  
economic development as well as on the well-being of the population of Azerbaijan  
(
Gurbanov et al., 2017). However, the expansion of oil production, especially the oil refining  
industry, had a negative impact on the environmental situation in the country (UNECE, 2011)  
and increased income inequality (Gulaliyev et al., 2018). Despite the growth in GDP, the  
number of CVD diseases and deaths from them continues to grow in the country.  
Research examining the relationship between the economic situation of a country and  
the health status of the population provides the key to understanding and reducing the risks  
existing in this area. In each country, these risks have their own specifics, which became  
especially noticeable in the context of the global COVID-19 epidemic (Finol, 2021; Huacal  
Vásquez, 2020). At the same time, developed countries with high GDP per capita were  
among the leaders in mortality from this disease, despite the high level of health care costs  
compared to countries with less developed economies. On the other hand, countries with  
low economic indicators of population income cannot fully withstand the existing risks due  
to limited resources for the prevention and treatment of diseases, including CVD. In any case,  
the starting point for making decisions is objective statistics, on the basis of which one can  
judge the presence or absence of the influence of various indicators on each other.  
2
49  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
The purpose of our research is to statistically assess the dependence of CVD indicators  
on macroeconomic indicators using the example of Azerbaijan.  
1
. Materials and method  
Research design is to test statistical hypotheses about the presence of direct and  
inverse causal relationships between CDV-indicators and macroeconomic indicators, such  
as:  
GDP per capita (퐺퐷푃푃퐶 );  
average annual income households per capita (퐻퐻푅푃퐶 );  
total health expenditure per capita (퐻퐸푋푃푃퐶 ).  
We use the following as CDV indicators:  
the number of cardiovascular patients (퐶푉퐷 );  
the number of mortality from CVD (퐶푉푀 );  
the number of mortalities from CVD per 100,000 deaths (퐶푉푀퐻푇푃 );  
the share of the number of mortalities from CVD in total disease deaths  
(
푆퐶푉푀 ).  
We use linear regression in which macroeconomic indicators are independent and  
CDV indicators are dependent variables:  
퐶푉퐷 =  + 푎 ∗ 퐺퐷푃푃퐶 + 휀ꢀ  
0
1
퐶푉퐷 =  + 푎 ∗ 퐻퐻푅푃퐶 + 휀ꢁ  
2
3
퐶푉퐷 =  + 푎 ∗ 퐻퐸푋푃푃퐶 + 휀ꢂ  
4
5
퐶푉푀 =  + 푏 ∗ 퐺퐷푃푃퐶 + 휈ꢀ  
0
1
퐶푉푀 =  + 푏 ∗ 퐻퐻푅푃퐶 + 휈ꢁ  
2
3
퐶푉푀 =  + 푏 ∗ 퐻퐸푋푃푃퐶 + 휈ꢂ  
4
5
To exclude spurious regression between random variables, it is necessary to check  
their time series for stationarity. The stationarity of the time series of independent and  
dependent variables was checked by using the Augmented Dickey-Fuller (ADF) test (Hill et  
al., 2011). The econometric software eViews was used to calculate the statistical data.  
To investigate the causal relationship between the time series of independent and  
dependent variables, we used the Granger test (Hill et al., 2011). In order to establish howthe  
consequences of changes in indicators in the past affect their current values in the Granger  
test, the values of time lags were chosen as Lag = 1, 2, 3. This means that we took into account  
2
50  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
the possible influence of some variables on the values of others with time lag=1, 2, 3 years old.  
To test statistical hypotheses, we use Fisher's F-test and p value with a significance level of  
0
.05.  
Baseline and estimated data cover the period from 1991 to 2018 and are based on data  
from the SSCRA (2019) report.  
The null hypotheses  are formulated as follows:  
0
퐻 : There is not any causal relation between 퐶푉퐷 and 퐺퐷푃푃퐶 ; 퐶푉퐷 and  
0 푡 푡 푡  
퐻퐻푅푃퐶 ; 퐶푉퐷 and 퐻퐸푋푃푃퐶 ;  
퐻 : There is not any causal relation between 퐶푉푀 and 퐺퐷푃푃퐶 ; 퐶푉푀 and  
0 푡 푡 푡  
퐻퐻푅푃 ; 퐶푉푀 and 퐻퐸푋푃푃 ;  
퐻 : There is not any causal relation between 퐶푉푀퐻푇푃 and 퐺퐷푃푃퐶 ;  
0 푡 푡  
퐶푉푀퐻푇 and 퐻퐻푅푃 ; 퐶푉푀퐻푇 and 퐻퐸푋푃푃퐶 ;  
퐻 : There is not any causal relation between 푆퐶푉푀 and 퐺퐷푃푃퐶 ; 푆퐶푉푀 and  
0 푡 푡 푡  
퐻퐻푅푃퐶 ; 푆퐶푉푀 and 퐻퐸푋푃푃퐶 .  
Alternative hypotheses  are accepted if there is a causal relationship between the  
1
above indicators.  
2
. Results  
In Azerbaijan, CVD and the mortality rate from these diseases is higher than in other  
diseases. The disturbing fact is that the share of CVD in total diseases is steadily increasing.  
Compared to 1990, the number of patients diagnosed with CVD has increased from 60,000  
to 144,000 in 2018 (Figure 1). The alarming point in the significant increase in the number of  
diagnosed CVD in the past 28 years is that there have been mortalities number in relation to  
the number of such diseases. In other words, a big number of the patients on CVD died from  
this disease. During the period covered by this study, mortality from CVD has steadily  
increased among both men and women, as well as in the urban and rural regions. It rose  
averagely from 22,000 in 1991 to 34,000 in 2018 (Figure 2).  
2
51  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
1
1
1
1
60000  
40000  
20000  
00000  
40000  
35000  
30000  
25000  
20000  
15000  
8
6
4
2
0000  
0000  
0000  
0000  
0
10000  
5000  
0
total  
urban  
rural  
Fig. 1. Dynamics of CVD in Azerbaijan  
Fig. 2. Dynamics of deaths from CVD (퐶푉푀 ) in  
Azerbaijan  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
0.700  
0.600  
0.500  
0.400  
0.300  
0.200  
0.100  
.000  
0
average  
Urban  
Rural  
Fig. 3. Share of CVD in total diseases in Azerbaijan  
Fig. 4. Share of CVD mortality (푆퐶푉푀 ) in total  
mortality in Azerbaijan  
Even if we ignore the effects of population growth at that time period there is a  
significant increasing of CVD number in 100,000 populations. Thus, during the same period  
this number increased from 902 to 1462 (Figure 1). If we look at the dynamics of mortality  
rates on per 100,000 people, we will see a slight increase in the number of deaths during this  
period (Figure 2).  
A significant increase is also apparent in the proportion of CVD in the total number of  
patients. Compared with 1990, this figure rose from 3.7% to 7.6% (Figure 3). However, there  
is a significant increase in the share of deaths number from CVD in total mortality number  
2
52  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
from all diseases. Thus, this figure rose steadily from 49% in 1991 to 59% in 2018 (Figure 4).  
This is 0.34% of the country's population. This indicator is higher than the world average  
(
0.24%).  
The initial data that reflect the dynamics of the analysed indicators are presented in  
Table 1. The results of the regression analysis (the value of the coefficient of determination  
2
 ) show a strong correlation between the dependent and independent variables (Table 2).  
Table 1. CVD dynamics in Azerbaijan (1991-2018)  
퐶푉퐷푡  
64306  
79572  
68199  
75501  
71432  
퐶푉푀푡  
21978  
23118  
25016  
24858  
퐶푉푀퐻푇푃푡  
307.3  
318.3  
푆퐶푉푡  
0.492  
0.451  
0.474  
0.453  
0.507  
0.513  
0.515  
0.533  
0.544  
0.561  
0.558  
0.570  
0.571  
0.575  
0.566  
0.569  
0.566  
0.591  
0.611  
퐺퐷푃푃퐶푡  
1209.2  
676.2  
529.8  
436.2  
397.2  
409.2  
505.6  
561.9  
573.9  
655.1  
703.7  
763.1  
퐻퐸푋푃푃푡  
퐻퐻푅푃푡  
-
1
991  
-
-
-
-
1
1
992  
993  
-
-
-
-
-
-
-
-
339.2  
332.5  
340.6  
324.0  
313.1  
1994  
1995  
1996  
25767  
4.37  
6.33  
6.22  
5.13  
5.38  
5.60  
5.45  
5.58  
6.76  
73448  
75599  
75720  
78308  
97765  
97645  
98056  
102239  
107440  
110346  
117345  
116755  
109487  
110929  
114130  
113739  
113702  
121988  
129970  
140433  
134225  
142277  
143182  
24765  
24163  
24681  
25181  
26205  
25267  
26505  
27960  
28488  
29392  
29712  
30355  
31128  
32072  
32554  
32835  
34832  
34379  
33291  
32825  
34093  
33663  
33909  
1997  
1998  
1999  
316.7  
320.3  
329.5  
314.5  
326.8  
341.4  
344.1  
350.7  
350.0  
352.8  
357.0  
363.3  
364.4  
362.7  
379.6  
369.8  
353.6  
344.5  
353.7  
345.8  
345.3  
2000  
-
2
001  
367.4  
310.9  
503.5  
788.6  
962.9  
1240.9  
1515.8  
1633.5  
1875.1  
2162.8  
2521.0  
2936.5  
3302.7  
3538.3  
2748.3  
1983.4  
1894.4  
1948.4  
2
2
002  
003  
883.6  
2004  
1045.0  
1578.4  
2473.1  
3851.4  
5574.6  
4950.3  
5842.8  
7189.7  
7496.3  
7875.8  
7891.3  
5500.3  
3880.7  
4147.1  
4721.2  
8.98  
2
2
005  
006  
14.83  
21.77  
35.33  
49.29  
56.37  
59.63  
68.55  
84.60  
84.80  
90.00  
70.31  
46.40  
42.26  
42.19  
2
2
007  
008  
2
2
2
009  
010  
011  
0.608  
0.611  
2
2
2
2
2
012  
013  
014  
015  
016  
0.633  
0.632  
0.598  
0.600  
0.602  
0.589  
0.592  
2
2
017  
018  
Source: calculated by the author based on the data of SSCRA (2019), World Bank (2019).  
2
53  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Table 2. Regression between CVD indicators and economic-indicators  
퐺퐷푃푃퐶퐻퐻푅푃퐶푡  
R2 R2  
퐻퐸푋푃푃푡  
R2  
F
t
SE  
F
t
SE  
F
t
SE  
퐶푉퐷푡  
0
0
0
0
.000 0.548 5.617 1.180 0.003 0.429 3.468 2.860 0.000 0.492 4.612 109.033  
퐶푉푀푡  
.000 0.788 9.829 0.136 0.000 0.783 7.601 0.340 0.000 0.792 9.161  
.000 0.666 7.207 0.001 0.001 0.514 4.112 0.003 0.000 0.654 6.449  
.000 0.610 6.371 0.000 0.000 0.700 6.113 0.000 0.000 0.717 7.466  
11.893  
0.076  
0.000  
퐶푉푀퐻푇푃푡  
푆퐶푉푡  
Source: calculated by the author, used eViews  
However, in order to make sure that this is indeed the case, we need to examine their  
time series for stationarity. For these purposes we use ADF test. In this test, the no  
stationarity of the considered time series is assumed as the null hypothesis  . ADF statistics  
0
are used to test the significance of linear regression coefficients based on their comparison  
with critical values. An alternative hypothesis  is considered to be the stationarity  
1
hypothesis.  
First of all we will check stationarity of 퐶푉퐷 time series. We will apply ADF test for  
stationary of 퐶푉퐷 time series as following  
훥퐶푉퐷 = 훼 + 훾 ∗ 퐶푉퐷 + 훽 ∗ 훥퐶푉1+ ,  
(1)  
푡−1  
is the annual change in the number of  
Where 훥퐶푉퐷 = 퐶푉퐷 ꢃ 퐶푉퐷  
푡−1  
cardiovascular patients; 퐶푉퐷1is the change in the number of cardiovascular patients in (t-  
1
) year; α, β, γ-coefficients;   error term.  
Based on the initial data (Table 1) and by using econometric software eViews, we  
calculate the value of the regression coefficients:  
훥퐶푉 = 2284.515 + 0.009877* 퐶푉퐷1  0.30913* 훥퐶푉1  
(2)  
In this case, we obtain the value of the ADF statistic  = ꢄ.ꢀ9. Comparison of τ with  
critical values  (see Table 3) shows that 휏 > 휏 . Consequently, the time series 퐶푉퐷 is  
0
non-stationary. In this case, the null hypothesis H is not rejected.  
2
54  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Table  
3.  
Stationary  
of  
time  
series  
CVD,  
CVM,  
CVMHTP,  
SCVM  
F
SE  
*  
I(0)  
I(1)  
퐶푉퐷푡  
0.250844  
0.000007  
0.628486  
0.000387  
0.23025  
0.000054  
0.035431  
0.000008  
0.050758  
0.303883  
0.045484  
0.312122  
0.110329  
0.277488  
0.060196  
0.325579  
0.19459  
0  
1  
0  
1  
0  
1  
0  
1  
1  
훥퐶푉퐷푡  
퐶푉푀푡  
3.88807  
0.96978  
3.62594  
1.76829  
4.21411  
2.34476  
3.50785  
-
1  
훥퐶푉푀푡  
-
퐶푉푀퐻푇푃푡  
훥퐶푉푀퐻푇푡  
푆퐶푉푀푡  
1  
-
1  
훥푆퐶푉푡  
-
*
Tabular values of τ_ (c) for stationarity of the time series: 3.43 (1%- critical value); 2.86 (5%-  
critical value); 2.57 (10%- critical value)  
Source: calculated by the author, used eViews  
That's why we need to check stationarity of the first differences 퐶푉퐷 time series  
according to ADF test  
훥(훥퐶푉퐷) = 훼 + 훾 ∗ 훥퐶푉퐷 + 훽 ∗ 훥(훥퐶푉퐷)1+ 푡  
(3)  
푡−1  
By calculation the regression equation (3) using the empirical data in Table 1 we find  
훼, 훾 and  coefficients, as well ADF-statistics as follows  
훥(훥퐶푉퐷)푡  
=
3392.519  
1.18152* 훥퐶푉1  
+
0.009676* 훥(훥퐶푉퐷)1  
(4)  
According to the equation (4)  = ꢃ3.89 <  . In this case, the value of the ADF  
statistic lies to the left of the critical value  . Therefore, the first differences of the process,  
i.e. 훥퐶푉퐷 has stationarity 훥퐶푉퐷 ~ 퐼(ꢄ) and the null hypothesis H  
for this series is  
0
rejected.  
Thus, checking the stationarity of the time series 퐶푉퐷 using the ADF test shows that  
the time series of its first differences is stationary 훥퐶푉퐷 ~ 퐼(ꢄ). Therefore, the original time  
series 퐶푉퐷 has stationarity in first order 퐶푉퐷 ~ 퐼(ꢀ).  
Applying similar calculations for the rest of the indicators, we get the results that are  
presented in Table 3. From Table 3, it can be seen that other time series of CVD indicators  
have the same properties in the sense of the ADF test.  
2
55  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
According to the econometrics theory to find a causal-effect relationship between  
time series connected with CVD, CVM and some macroeconomic indicators as independent  
variables, we need to test stationarity of these variables also. So it is important to test by ADF  
tests stationarity of 퐺퐷푃푃퐶 , 퐻퐻푅푃퐶 , 퐻퐸푋푃푃퐶 (Table 4).  
Table 4. Stationary of time series GDPPC, HHRPC, HEXPPC  
F
SE  
*  
I(0)  
0  
1  
0  
0  
0  
0  
I(1)  
퐺퐷푃푃푡  
훥퐺퐷푃푃퐶푡  
퐻퐸푋푃푃푡  
훥퐻퐸푋푃푃퐶푡  
퐻퐻푅푃푡  
0.04249  
0.01529  
0.00721  
0.09701  
0.00874  
0.07246  
0.055729  
0.223092  
0.053618  
0.215486  
0.072448  
0.236128  
1.30732  
3.09492  
1.52293  
2.25642  
2.21679  
2.50093  
1  
-
0  
-
0  
훥퐻퐻푅푃퐶푡  
-
*
Tabular values of τ_ (c) for time series stationarity:3.43 (1%- critical value); 2.86 (5%- critical  
value); 2.57 (10%- critical value)  
Source: calculated by the author, used eViews  
Table 4 shows that only 퐺퐷푃푃퐶 has stationarity in first-order, i.e. 퐶퐷푃푃퐶 ~ 퐼(ꢀ)  
Since the time series of CVD indicators and the indicator 퐺퐷푃푃퐶 are non-stationary and  
there is a strong relationship between them (Table 2), we need to further investigate the  
relationship between the differences of these time series. These results are presented in Table  
5.  
Table 5. Regression between 훥퐺퐷푃푃퐶 and CVD indicators  
R2  
F
t
SE  
훥퐶푉퐷푡  
훥퐶푉푀푡  
0.33453  
0.87215  
0.94947  
0.70093  
0.037288  
0.001056  
0.000164  
0.006001  
0.98403  
0.16259  
0.06402  
0.38850  
1.546872  
0.205113  
0.002461  
0.000004  
훥퐶푉푀퐻푇푡  
훥푆퐶푉푀푡  
Source: calculated by the author, used eViews  
2
56  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
From Table 5 it follows that there is no regression relationship between the  
differences of the considered time series, Therefore, the relationship between CVD indicators  
and the macroeconomic indicator 퐺퐷푃푃퐶 is considered a spurious regression.  
Next, we will test the causality between these indicators using Granger tests (Hill et  
al., 2011). Wee will use time lags 1, 2 and 3 years (Lag = 1,2,3). Tables 6-7 show the likelihood  
of a causal relationship between the Granger tests.  
Table 6. Granger causality tests between CVD indicators and GDPPC  
Lag = 1  
p value**  
Lag = 2  
Lag = 3  
F*  
F
p value  
F
p value  
훥퐶푉퐷 → 훥퐺퐷푃푃퐶  
0.12917  
0.08094  
3.31439  
0.13463  
2.70883  
0.7226  
0.7786  
0.0817  
0.7170  
0.1134  
0.45335  
0.14661  
2.56060  
0.77416  
2.05967  
0.6419  
0.8646  
0.1023  
0.4744  
0.1537  
0.32754  
0.19087  
2.04588  
1.22226  
1.78448  
0.8055  
0.9012  
0.1456  
0.3321  
0.1883  
훥퐺퐷푃푃퐶 → 훥퐶푉퐷  
훥퐶푉푀 → 훥퐺퐷푃푃퐶  
훥퐺퐷푃푃퐶 → 훥퐶푉푀  
훥퐶푉푀퐻푇푡  
훥퐺퐷푃푃퐶푡  
훥퐺퐷푃푃퐶푡  
훥퐶푉푀퐻푇푡  
0.04620  
0.8317  
0.47749  
0.6272  
1.02374  
0.4068  
훥푆퐶푉푀 → 훥퐺퐷푃푃퐶  
0.50317  
1.55198  
0.4852  
0.2254  
1.54078  
0.92947  
0.2386  
0.4112  
1.07047  
1.95456  
0.3878  
0.1592  
훥퐺퐷푃푃퐶 → 훥푆퐶푉푀  
*
*
F
с
= 4.24  
*p < 0.05  
Source: calculation of the author, used eViews  
Table 7. Granger causality tests between CVD indicators and 훥퐻퐻푅푃퐶  
Lag = 1 Lag = 2  
Lag = 3  
F*  
p value**  
F
p value  
0.1096  
0.6138  
0.0030  
0.8798  
0.0095  
F
p value  
0.3389  
0.4275  
0.0116  
0.6297  
0.0124  
훥퐶푉퐷 → 훥퐻퐻푅푃퐶  
5.25322  
0.39197  
12.1757  
0.10156  
11.6609  
0.0392  
2.78053  
0.51274  
10.9711  
0.12974  
7.68146  
1.33068  
1.05239  
7.98132  
0.60977  
7.79516  
훥퐻퐻푅푃퐶 → 훥퐶푉퐷  
0.5421  
훥퐶푉푀 → 훥퐻퐻푅푃퐶  
0.0040  
훥퐻퐻푅푃퐶 → 훥퐶푉푀  
0.7550  
훥퐶푉푀퐻푇푡  
0.0046  
훥퐻퐻푅푃푡  
훥퐻퐻푅푃퐶푡  
훥퐶푉푀퐻푇푡  
0.18512  
0.6741  
0.13259  
0.8773  
0.59304  
0.6391  
훥푆퐶푉푀 → 훥퐻퐻푅푃퐶  
8.90436  
0.15956  
0.0106  
0.6960  
6.81747  
0.93415  
0.0136  
0.4247  
3.12851  
0.23920  
0.0968  
0.8664  
훥퐻퐻푅푃퐶 → 훥푆퐶푉푀  
*
*
F
с
= 4.28  
*p < 0.05  
Source: calculation of the author, used eViews  
2
57  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Table 8. Granger causality tests between CVD indicators and 훥퐻퐸푋푃푃퐶  
Lag = 1 Lag = 2  
Lag = 3  
F*  
p value**  
F
p value  
0.4929  
0.8236  
0.0626  
0.7745  
0.0819  
F
p value  
0.4172  
0.7289  
0.1221  
0.6083  
0.1528  
훥퐶푉퐷 → 훥퐻퐸푋푃푃퐶  
1.44088  
0.01092  
1.79643  
0.09418  
1.60944  
0.2448  
0.73965  
0.19644  
3.31034  
0.25973  
2.93841  
1.01610  
0.43900  
2.32988  
0.63030  
2.07728  
훥퐻퐸푋푃푃퐶 → 훥퐶푉퐷  
0.9179  
훥퐶푉푀 → 훥퐻퐸푋푃푃퐶  
0.1960  
훥퐻퐸푋푃푃퐶 → 훥퐶푉푀  
0.7623  
훥퐶푉푀퐻푇푡  
0.2199  
훥퐻퐸푋푃푃퐶푡  
훥퐻퐸푋푃푃퐶푡  
0.01840  
1.01573  
2.47731  
0.8935  
0.3262  
0.1320  
0.13961  
1.49013  
2.72388  
0.8707  
0.2550  
0.0959  
0.53301  
0.89117  
1.72272  
0.6676  
0.4716  
0.2115  
훥퐶푉푀퐻푇푡  
훥푆퐶푉푀푡  
훥퐻퐸푋푃푃퐶푡  
훥퐻퐸푋푃푃푡  
훥푆퐶푉푀푡  
= 4.45  
*p < 0.05  
*
*
F
с
Source: calculation of the author, used eViews  
Note that in our studies we use paired regression and the number of observations for  
different indicators (Table 1.) varies, i.e. we have 28 observations for СVD, CVM, CVMHTP,  
SCVM, GDPPC; 24 observations for HEXPPC and 18 observations for HHRPC. Accordingly,  
the critical values of the F-test with a significance level, i.e.  = 0.05 for these three groups  
of indicators will be different, i.e. for the first group  = 4.24, for the second  = 4.28 and for  
the third  = 4.45.  
Analysis of the data in Table 6 show that in Azerbaijan in the considered time period  
there is no causal relationship between changes in the number of cardiovascular diseases and  
changes in GDP per capita. As well as there is no inverse relationship. All values of the F-test  
are less than the critical F < Fc = 4.24 and p value > 0.05. Consequently, the null hypothesis H  
0
about the absence of direct and reverse causal relationships is confirmed.  
The study of the mutual influence of changes in CVD indicators and changes in  
household incomes is presented in Table 7. Since the standard of living of the population is  
strongly related to household income, one could assume that their change will somehow  
affect the health of the population in terms of CVD. At first glance, the health of family  
members of households contributes to an increase in their income and vice versa. However,  
the data in Table 7 show that changes in household income in Azerbaijan do not affect CVD  
2
58  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
indicators. On the other hand, there is an inverse relationship between these indicators. The  
impact of changes 훥퐶푉퐷 → 훥퐻퐻푅푃퐶 manifests itself during the year, 훥푆퐶푉푀 →  
훥퐻퐻푅푃퐶 within two years, and changes in mortality rates 훥퐶푉푀 푎푛푑 훥퐶푉푀퐻푇푃 are  
felt for lag=3, i.e. three years old.  
Our studies show (Table 8) that in Azerbaijan there is no causal relationship between  
government spending on health care and changes in the number of CVD diseases, including  
a decrease in mortality from these diseases. General health care costs include government  
1
spending, out-of-pocket spending and insurance. According to the World Bank , in  
Azerbaijan in 2017, public health spending accounted for about 15% of total spending. These  
funds are insufficient to improve the quality of medical care to the level of tangible results in  
reducing CVD. The majority of the country's population currently does not have health  
insurance. According to the WHO’s statistics on 2019, in Azerbaijan about 1% of health care  
costs are covered by health insurance and about 84% of health care costs are covered by the  
patients themselves2.  
3. Discussion  
The studies on the economic and socioeconomic nature of the major risks of CVD and  
death from these diseases are found in the economic and medical literature. Most of these  
studies confirm that there is social inequality in CVD. When examining the economic aspect  
of the problem, much attention is paid to the assessment of the economic and socioeconomic  
costs created by CVD, as well as the role of socioeconomic (Mosquera et al.,2016),  
environmental (e.g. Diez Roux, 2001), educational attainment (Woodward et al., 2015) factors  
in the emerging of these diseases. Therefore, we will review the results obtained separately  
in both studies.  
For example, Kaplan & Keil (1993) argue that there is an uneven distribution of different  
types of CVD and the prevalence of mortality from these diseases across geographical and  
socioeconomic conditions. This distribution indicates that some regions and some social  
groups are most vulnerable to these diseases. Galobardes et al. (2006) argue that the main risks  
of developing CVD in older people are due to the socioeconomic environment in which they  
1
2
2
59  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
are at an early age. Studies by some researchers, such as Manrique-Garcia et al. (2011), Krieger  
et al. (2008), Avedeno et al. (2009) show that CVD inequality in social groups and in periods  
is inherent in all countries, however, in-country inequality has been declining in recent years.  
One important consequence is that some habits or behaviors of people, such as  
smoking and low physical activity, do not play a major role in this disease. For example,  
research by Nandi et al. (2014)and Stringhini et al. (2010) shows that risks of people with low  
and high social status but do not have these habits are different.  
Akimova et al. (2014) conducted a 12-year study in the Tyumen region of the Russian  
Federation and found that 10.7% of men's deaths and 4.1% of women are caused by CVD. Men  
with lower levels of education are more likely to have CVD. The same holds for women. On  
the other hand, men and women who are engaged in heavy physical activity are more likely  
to have higher CVD and, therefore, mortality rates than those who have easier work. Men  
who are not married or divorced have a higher risk of CVD than married men. In contrast,  
married women have a higher risk of CVD and mortality rates than single women.  
Glymour et al. (2014) show in their research that the risk of CVD is highly dependent  
on the socioeconomic status of people (SES). And SES is changing across regions and social  
groups, so the risk of CVD is also changing. Therefore, mitigation of socioeconomic inequality  
should be taken into account in the risk mitigation measures of CVD.  
This problem was also explored in Kyrgyzstan by Djorupbekova et al (2016). The main  
result of the study is that in the 95% confidence interval CVD’s risk is increased by education  
level increases. CVD’s risks of urban population greater than of rural populations.  
Researchers show that social isolation after a certain age, especially retirement and loss of  
employment, can also lead to an increase of CVD or increasing mortality from these diseases.  
Thus, a comparative analysis of numerous studies on the factors of CVD suggests that  
non-social factors, such as age, sex, smoking, hypertension, etc. are the main causes of  
morbidity and mortality. Our research indirectly confirms these findings. Analysis of the  
causal relationship between CVD indicators and a group of main economic indicators by  
using the case of Azerbaijan show that there is no direct or inverse relationship between  
them. Therefore, the rate of GDP growth in Azerbaijan does not yet allow reducing the risk  
of CVD and achieving a decrease in mortality from CVD. The research methodology proposed  
by us can become a platform for finding the reasons influencing CVD changes in other  
2
60  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
countries. Based on this information, strategies to reduce the risk of CVD in a specific country  
can be optimized.  
Conclusion  
The conducted studies of the direct and inverse causal relationship between CVD  
indicators and macroeconomic indicators allow us to draw the following conclusions.  
In the period under review, 1991-2018 in Azerbaijan there is a steady increase in CDV  
diseases by 2.23 times and mortality from these diseases by 1.54 times. GDP per capita  
between 1995 and 2014 (excluding 2009) also tended to grow from $ 397.2 (1995) to $ 7891.3  
(
(
2014). In other periods, this indicator decreased, especially in 2015 ($ 5500.31) and in 2016  
$ 3880.74). Recently, there has been a gradual increase in this indicator to the value of $  
4
793.59 (2019). However, there is no direct and inverse causal relationship between these  
indicators. Thus, the reasons for the increase in CVD diseases are not related to the growth  
of GDP per capita and vice versa.  
Since the standard of living of the population is strongly related to household income,  
it could be assumed that their change will somehow affect the health of the population in  
terms of CVD. However, our research shows that changes in household income in Azerbaijan  
do not affect CVD indicators. On the other hand, an inverse relationship between these  
indicators is observed and manifests itself over the course of three years.  
Our research also shows that there is no causal relationship between government  
spending on health care and changes in the number of CVD diseases in Azerbaijan, including  
a decrease in mortality from these diseases. It is possible that these funds are not yet sufficient  
to improve the quality of medical care to the level of tangible results in reducing the risks of  
CVD.  
References  
Avendano M, Glymour MM, Banks J, Mackenbach JP. (2009). Health disadvantage in US  
adults aged 50 to 74 years: a comparison of the health of rich and poor Americans with that  
of Europeans. Am J Public Health. 2009; 99(3):5408.  
Akimova E.V., Pushkarev G.S., Smaznov V.Yu., Gafarov V.V., Kuznetsov V.A., (2014).  
Socioeconomic risk factors for cardiovascular death: evidence from a 12-year prospective  
epidemiological study. Russian Journal of Cardiology No. 6 (110) | 2014  
2
61  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Ciaretta, Aitor, and Shahriyar Nasirov (2012). Development Trends in the Azerbaijan Oil and  
Gas Sector: Achievements and Challenges. Energy Policy 40: 28292  
Diez Roux AV, Merkin SS, Arnett D, Chambless L, Massing M, Nieto FJ, Sorlie P, Szklo M,  
Tyroler HA, Watson RL. (2001). Neighborhood of residence and incidence of coronary heart  
disease. N Engl J Med. 2001; 345:99106. doi: 10.1056/NEJM200107123450205  
Dzhorupbekova K.Sh., Akunov A.Ch., Kydyralieva R.B. (2016). Socio-economic indicators as  
risk factors for the development of atherosclerosis in the Kyrgyz Republic // Universum:  
Medicine and Pharmacology: electron. scientific. zhurn. 2016. No. 9 (31). URL:  
http://7universum.com/ru/med/archive/item/3635  
Finol Romero, L. (2021). Transparencia y Gobernanza en la Gestión de la Crisis de COVID-  
1
9.  
Cuestiones  
Políticas,  
39(68),  
23-50.  
URL:  
https://produccioncientificaluz.org/index.php/cuestiones/article/view/35390  
Galobardes B, Smith GD, Lynch JW. (2006). Systematic review of the influence of childhood  
socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol.  
2006;16(2):91104.  
Gulaliyev, M., Aga, A., Azizov, A., Kazimov, F., Mir-Babayev, R. (2018). Assessing the degree  
of inequality in the distribution of national income and its macroeconomic consequences in  
Azerbaijan/ Amazonia investiga. Vol. 7 Núm. 17: 85- 108/ Noviembre - diciembre 2018, 85-108.  
Gurbanov S., Nugent J., and Mikayilov J. (2017). Management of Oil Revenues: Has That of  
Azerbaijan Been Prudent? Economies 2017, 5, 19; doi:10.3390/economies5020019  
Huacal Vásquez, Ángel. (2020). Modelación por mínimos cuadrados de la mortalidad en el  
Perú (1960-2020), causada por enfermedades respiratorias y por Coronavirus Disease 2019.  
Revista Latinoamericana De Difusión Científica // ISSN 2711-0494 (En Línea), 2(3), 19-27.  
https://doi.org/10.38186/difcie.23.03  
Kaplan GA, Keil JE. (1993). Socioeconomic factors and cardiovascular disease: a reviewof the  
literature. Circulation. 1993;88(4):197398.  
Krieger N, Rehkopf DH, Chen JT, Waterman PD, Marcelli E, Kennedy M. (2008). The fall  
and rise of US inequities in premature mortality:19602002. PLoS Med. 2008;5(2): e46.  
Manrique-Garcia E, Sidorchuk A, Hallqvist J, Moradi T. (2011). Socioeconomic position and  
incidence of acute myocardial infarction: a meta-analysis. J Epidemiol Community Health.  
2011;65(4):3019.  
Maria Glymour M., Cheryl R. Clark & Kristen K. Patton, (2014). Socioeconomic  
Determinants of Cardiovascular Disease: Recent Findings and Future Directions. Curr  
Epidemiol Rep (2014) 1:8997 DOI 10.1007/s40471-014-0010-8  
Mosquera PA, San Sebastian M, Waenerlund AK, Ivarsson A, Weinehall L, Gustafsson  
PE.(2016) Income-related inequalities in cardiovascular disease from mid-life to old age in a  
2
62  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Madina Yuzbashova// Granger causality between cardiovascular diseases  247-263  
Northern Swedish cohort: a decomposition analysis. Soc Sci Med. 2016;149:135144. doi:  
1
0.1016/j.socscimed.2015.12.017.  
Nandi A, Glymour MM, Subramanian SV. (2014). Association among socioeconomic status,  
health behaviors, and all-cause mortality in the United States. Epidemiology. 2014; 25(2):170–  
7
. doi:10.1097/EDE.0000000000000038.  
Pomfret, Richard, (2011). Exploiting Energy and Mineral Resources in Central Asia,  
Azerbaijan and Mongolia. Comparative Economic Studies 53: 533  
Samimi A.J., Ghaderi S., Ahmadpour M. (2011). Environmental Sustainability and Economic  
Growth: Evidence from Some Developing Countries //Advances in Environmental Biology, 5(5):  
961-966, 2011  
SSCRA (2019). The State Statistical Committee of the Republic of Azerbaijan.  
Stringhini S, Sabia S, ShipleyM, Brunner E, Nabi H, KivimakiM, et al. (2010) Association of  
socioeconomic position with health behaviors and mortality. JAMA. 2010;303(12):115966.  
VanHeuvelen, T. & VanHeuvelen, J.S. (2019). The (Economic) Development of Healthy  
Eating Habits Gender, Nutrition, and Health Outcomes in 31 Countries// Sociology of  
Development, Vol. 5 No. 1, Spring 2019; (pp. 91-113) DOI: 10.1525/sod.2019.5.1.91  
UNECE, (2011). United Nations Economic Commission for Europe Environmental  
WHO, (2019). World Health Organization. http://apps.who.int/gho/data/node.home  
Woodward M, Peters SA, Batty GD, Ueshima H, Woo J, Giles GG, Barzi F, Ho SC, Huxley  
RR, Arima H, Fang X, Dobson A, Lam TH, Vathesatogkit P. (2015). Asia Pacific Cohort  
Studies Collaboration. Socioeconomic status in relation to cardiovascular disease and cause-  
specific mortality: a comparison of Asian and Australasian populations in a pooled  
analysis. BMJ Open. 2015;5:e006408. doi: 10.1136/bmjopen-2014-006408  
2
63