DEPÓSITO LEGAL ppi 201502ZU4666  
Esta publicación científica en formato digital  
es continuidad de la revista impresa  
ISSN 0041-8811  
Revista  
de la  
Universidad  
del Zulia  
Fundada en 1947  
por el Dr. Jesús Enrique Lossada  
Ciencias  
Exactas  
Naturales  
y de la Salud  
Año 12 N° 33  
Mayo - Agosto 2021  
Tercera Época  
Maracaibo-Venezuela  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea  
due to anthropogenic impact  
Vladimir A. Chechko *  
ABSTRACT  
The work pursued basic objectives: to study the structure of the sedimentary strata, identify  
the sediment units corresponding to specific sedimentation stages of the late Holocene and  
evaluate the factors that influenced their formation in the Vistula Lagoon. For the  
achievement of the goals, well-known methods were used. The thickness of the silt deposits  
was measured by a hand drill. The grain size analysis of bottom sediments was determined  
by the mass content of particles of various sizes as a percentage of the test sample mass. The  
content of the total amount of organic matter in the bottom sediments and the mass loss  
during calcination was determined by the weight method, the determination of the mineral  
vivianite was carried out by standard methods accepted in geology. The Research results  
showed that in the lower part of the cores, organic-rich silts of olive shades are common,  
formed under the influence of river runoff. The sediment composition in the upper part of the  
cores is sharply different due to an anthropogenic factor  artificial river runoff regulation.  
Instead of silty sediments, the lagoon accumulated poorly consolidated, dark gray fine sand  
and siltstone sediments with small organic matter.  
KEYWORDS: sediment cores; sedimentary stratum; sedimentation processes; grain-size  
parameters; hydrological conditions.  
*PhD in Geology and Mineralogy, Senior Scientist, Laboratory for Coastal Systems Study,  
Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt,  
Moscow, Russia, 117997. Moscow, Russia. ORCID ID: https://orcid.org/0000-0003-3030-  
1
165. E-mail: che-chko@mail.ru  
Recibido: 02/02/2021  
Aceptado: 16/04/2021  
131  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Evolución de la sedimentación en la Laguna del Vístula del Mar  
Báltico debido al impacto antropogénico  
RESUMEN  
El trabajo persiguió objetivos básicos: estudiar la estructura de los estratos sedimentarios,  
identificar las unidades de sedimentos correspondientes a etapas específicas de  
sedimentación del Holoceno tardío y evaluar los factores que influyeron en su formación en  
la Laguna del Vístula. Para el logro de las metas se utilizaron métodos bien conocidos. El  
espesor de los depósitos de limo se midió con un taladro manual. El análisis del tamaño de  
grano de los sedimentos del fondo se determinó mediante el contenido de masa de partículas  
de varios tamaños como porcentaje de la masa de la muestra de prueba. El contenido de la  
cantidad total de materia orgánica en los sedimentos del fondo y la pérdida de masa durante  
la calcinación se determinó por el método del peso, la determinación del mineral vivianita se  
llevó a cabo mediante métodos estándar aceptados en Geología. Los resultados de la  
investigación mostraron que en la parte inferior de los núcleos, son comunes los limos ricos  
en materia orgánica de tonos oliva, formados bajo la influencia de la escorrentía de los ríos.  
La composición de los sedimentos en la parte superior de los núcleos es marcadamente  
diferente debido a un factor antropogénico: la regulación de la escorrentía de los ríos  
artificiales. En lugar de sedimentos limosos, la laguna acumuló sedimentos de limolita y arena  
fina de color gris oscuro poco consolidados con pequeña materia orgánica.  
PALABRAS CLAVE: núcleos de sedimentos; estrato sedimentario; procesos de  
sedimentación; parámetros granulométricos; condiciones hidrológicas.  
Introduction  
The increased anthropogenic impact on the processes in the coastal sea areas is  
observed almost everywhere (Marín & Ferrer, 2020; Morales et al, 2021). Researchers are  
particularly interested in coastal lagoons as unique multi-user systems that concentrate on  
economic and social activities. For these reasons, lagoons are subject to numerous  
anthropogenic impacts that can affect their biodiversity, sustainability, or even the  
functioning of ecosystems. It is shown that almost all currently known factors and sources  
of negative impact affect coastal ecosystems (Patin 2015; Anthony et al. 2009; Halpernet al.  
2008; Razinkovas et al. 2008; GIWA 2005; Dolotov 1996).  
The Vistula Lagoon (Figure 1) belongs to non-tidal coastal geosystems with many  
different economic activity forms (Kjerfve & Magill, 1989). Various factors condition the  
132  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
state of its lithological system. The supply of sedimentary material is regulated by river  
runoff, coastal abrasion, and marine influence (Kennish 2015), the dynamics of the upper  
sediment layer is regulated by wind-wave influence, and the tides are systematic run-up  
phenomena (Blazhchishin 1999; Chubarenko 1994; Blazchishin 1998). An essential  
component of the lithological system is bottom sediments, which are an essential source of  
information on climatic, geochemical, and ecological conditions of the water collection and  
reservoir, and are used as natural indicators of the status of aquatic ecosystems and the scale  
of anthropogenic impact (Dauvalter 2012; Forstner 1979).  
Figure 1. Study area and sediment sampling stations. 1- points for measuring the thickness  
of silt deposits using a geologist's drill; 2- sediment core sampling points; 3- Baltic strait; 4-  
position of the Polish-Russian border  
In the works devoted to studying the bottom sediments of the Vistula Lagoon, the  
primary attention was focused, as a rule, on their upper (010 cm) layer. The features of the  
spatial distribution of the main types of sediments on the bottom surface, their granulometric  
fractions, and the dynamics of the surface layer of bottom sediments were revealed  
(
Szymczak 2019; Chechko 2017). However, the vertical structure of the sedimentary strata  
has been studied very poorly. Perhaps the only research in this direction in recent years is the  
work (Chechko et al. 2018).  
133  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
If the structure and the ratio of the main types of bottom sediments serve as an  
indicator of the current processes of the lagoon sedimentation, the changes in the cores show  
the dynamics and direction of the processes of formation and accumulation of lagoon  
sediments in the historical perspective. The assessment of the morphological structure of  
bottom sediments in the cores allows identifying the evolutionary stages of the lagoon  
development and drawing a conclusion about the variability of the sedimentation regime in  
the lagoon.  
Therefore, the author set the following objectives  to study the structure of the  
sedimentary strata, identify sediment units corresponding to specific stages of Late Holocene  
sedimentation, and assess the factors that influenced their formation.  
1
. Study area  
The Vistula Lagoon is the second-largest shallow lagoon in the Baltic Sea, with a  
maximum depth of 5.2 m and an average depth of 2.7 m, which can be classified as an  
estuarine lagoon without tides (Kjerfve & Magill 1989; Lazarenko & Majewski 1971;  
Chubarenko et al., 2019; Chubarenko & Margonski 2008). It is located in the south-eastern  
part of the sea and is separated from it by a narrow sand spit (Figure 1). Water exchange with  
the sea is carried out through the Baltic Strait and is estuarine; the tides are overrunning  
phenomena (Blazchishin 1998). This is a transboundary water body. The southwestern part  
of the lagoon (43.8% of the area) is under Poland's jurisdiction, and the northeastern part  
(
56.2% of the area, Kaliningrad Bay)  under the jurisdiction of Russia, so the results of field  
studies are given for the Russian part.  
From its origin in the early Atlantic period to the beginning of the twentieth century,  
the Vistula Lagoon was subjected only to natural processes; the determining one was the  
Vistula River runoff (Witak & Pędziński 2018). A significant part of the sedimentation  
material brought by the river was deposited in the estuary area of the Nogat River, due to  
which the mouth was pushed into the lagoon, which made it shallower and smaller  
(
Lazarenko & Majewski 1971; Plit J. 2010). At the turn of the 20th century, an artificial river  
channel was created, through which 90% of the river flow began to flow directly into the sea.  
The determining influence of the Vistula River runoff on hydrological cycles,  
suspension dynamics, sedimentation, and other sedimentation processes has decreased.  
134  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Simultaneously, the influence of the Baltic Sea significantly increased, and the lagoon salinity  
increased to 3.55.0 psu (Chubarenko & Margonski 2008; Matciak & Chyła 2018). Due to  
the decrease in river flow, the average water level in the lagoon decreased, and the Baltic Sea  
waters could easily enter it through the strait. Resuspension processes due to wind-wave  
action take the first place in forming the upper layer of sediments (Ambrosimov et al. 2015;  
Blazhchishin 1999; Gic-Grusza & Dudkowska 2018). In (Chubarenko 1994), it is shown that  
resuspension can cover from 40 to 100% of the lagoon water area. The sedimentary material  
entering the lagoon is not fixed at the bottom immediately; it is repeatedly agitated with the  
resedimentation of bottom sediments and the partial removal of small fractions through the  
strait into the sea (Blazhchishin 1999; Szymczak 2019; Chechko 2017; Cieśliński 2013;  
Chechko V. 2008). In genetic terms, terrigenous sedimentary formations with a large range  
of dimensions  boulders, gravel, pebbles, mixed-grained sands, siltstones, and silt-pelitic  
silts are common on the bottom surface of the Vistula Lagoon (Chechko & Blazchishin 2002;  
Uścinowicz & Zachowicz 1966).  
2
. Material and methods  
Field studies were conducted in the Russian part of the Vistula Lagoon in the summer  
of 2020. Sediment cores were collected at nine stations (Figure 1). A geological rod tube with  
a diameter of 72 mm, specially designed for work in shallow water bodies, was used for  
sampling (Chechko et al. 2019). After lifting the pipe, the core was pushed into the tray, its  
morphological description and subsequent division into 5-centimeter segments were  
performed. Samples were taken from each segment to determine the natural humidity, and  
the rest of the material was packed and sent for laboratory studies.  
The thickness of the silt deposits was measured on two transverse profiles (Figure 1)  
by a hand drill, which was lowered to the bottom and penetrated the bottom sediments. After  
maximum penetration into the sedimentary strata, the drill was rotated clockwise.  
Simultaneously, a sediment sample was fixed in the sample receiver at the lower end of the  
drill. The drill was then removed, a sediment sample was extracted, the length of the drill  
dive was measured, and the sediment thickness was calculated.  
The granulometric analysis of bottom sediments was determined by the mass content  
of particles of various sizes as a percentage of the test sample mass. It was performed by sieve  
135  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
(
fractions > 0.04 mm) and water-mechanical (fractions < 0.04 mm) methods (Budanova et al.  
2013). Based on the granulometric analysis results and following the Wentworth  
classification (Wentworth 1922), the bottom sediments were typified.  
The content of the total amount of organic matter in the bottom sediments was  
determined by the weight method (Heiri et al. 2001) (calcination of a sample of bottom  
sediments at a temperature of 550 °C). The mass loss during calcination was conventionally  
taken as the mass fraction of organic matter. The natural moisture content of sediments was  
determined by weight as the ratio of the mass of water removed from the sample by drying  
to constant mass to the mass of dry matter of this sample, expressed as a percentage  
(
Methodical…1986). The determination of the mineral vivianite was carried out by standard  
methods accepted in geology (Ananyeva 2017).  
3. Results  
Direct measurements of the thickness of the silt layer with a geologist's drill showed  
that in the middle, the most profound part of the basin, it exceeded 5 meters. As the  
researchers approached coastal shallow water areas, the thickness of the mud layer  
decreased; in such cases, the drill completely penetrated it and reached the maternal deposits  
(
Figure 2).  
Figure 2. The thickness of the silty deposits, determined using a geologist's drill (location of  
points is shown in Figure 1). 1-water; 2-silts; 3-maternal deposits  
A detailed description of core 556 is given in Table 1 as an example that gives an idea  
of the vertical structure of the lagoon sedimentary sequence. Based on the sediment  
composition change, the lower (I) and upper (II) sediment packs are distinguished. Each of  
136  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
them is distinguished by specific features that reflect the specific conditions of sedimentation  
and allow distinguishing the same divisions in other cores.  
Table 1. Description of core 556  
Depth  
from the thicknes  
water  
surface, cm  
0400  
Layer  
Pack  
No.  
Layer  
No.  
Visual lithological description  
s, cm  
1
400.0  
4.0  
Water  
4
00404  
Fine-grained silty, unconsolidated, fluid, dark  
gray color, strongly watered, with fragments of  
clamshells and shell detritus sand. On the layer  
surface, there is a live bivalve Rangia cuneata.  
Fine-grained siltstone, weakly consolidated,  
dark gray, without visible stratification sand.  
Apparent bioturbation texture, traces of  
benthic animals, numerous clam shell  
fragments, and shell detritus are observed.  
Soft, dark gray-olive, denser than in the  
overlying layer, sandy siltstone. Along the entire  
layer, there are inclusions of shell fragments,  
shell detritus, their number increases towards  
the lower part.  
2
3
II  
404420  
420454  
16.0  
4
34.0  
5
6
454457  
457476  
3.0  
A cluster of small clamshells, the mineral  
component is represented by sandy siltstone.  
The upper and lower contacts are clearly  
defined.  
Homogeneous, vaguely stratified soft fine-  
aleurite silt of olive-gray color, weakly  
compacted.  
19.0  
I
7
476477  
477515  
1.0  
An accumulation of small fragments and whole  
clamshells.  
8
38.0  
Homogeneous, consolidated, vaguely layered,  
soft fine-aleurite silt of olive-gray color, denser  
than the sediments of the overlying layers.  
Homogeneous, consolidated, vaguely layered,  
soft fine-aleurite silt of olive-gray color, visibly  
thickening towards the lower part. Small shells  
and their fragments are randomly scattered  
throughout the layer.  
9
515540  
540562  
25.0  
22.0  
1
0
Soft, consolidated, lumpy dark gray-olive fine-  
aleurite silt. The upper contact is clear, well-  
defined in color and density.  
137  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
The thickness of the upper pack ranged from 32 cm (core 580) to 65 cm (core 537) and  
averaged 50 cm for all cores. In its upper part, watered, unconsolidated, dark gray, fine-  
grained silty sands with no visible stratification are common. In the lower layers of the  
second pack, an increase in siltstone and a decrease in sand material were observed in the  
composition of sediments. Individual clam shell fragments and randomly scattered particles  
of shell detritus were recorded along the entire pack profile. A characteristic feature of the  
upper pack is the bioturbation textures detected in all cores. Sometimes under a relatively  
thin (515 cm) layer of sediment, clumps of fragments and whole shells of freshwater clams  
from 3 to 20 cm were found.  
Since the cores did not always reach the maternal deposits, the true thickness of the  
lower (I) pack was not elucidated and was limited in each case by the core length. Its  
thickness varied from 73 cm (cores 558, 580) to 102 cm (core 556). The lower pack is  
represented by denser, consolidated, vaguely layered, soft, olive-colored muddy sediments.  
Occasionally, the bulk of the sediments contained unevenly scattered rare shell fragments  
and detritus. The upper contact of the pack is clear, well expressed in color and density  
characteristics.  
The granulometric composition of bottom sediments in the cores is represented by  
size fractions with a diameter of < 0.5 mm. Based on the prevailing fraction (0.1250.063 mm),  
the sediments of the upper pack are dominated by fine and very fine sands, the content of  
which in the near-surface layers reaches 63%. With the depth of occurrence, the sand content  
gradually decreases, and in the lower pack layers, it does not exceed 50%. The main impurity  
is coarse silty (0.0630.04 mm) material (2036%) and particles < 0.04 mm (820%).  
In the sediments of the lower pack, sand particles occupy a subordinate position; their  
content does not exceed 20%. The predominant siltstone material (average 73%) with a high  
proportion (average 15%) of clay parts comes out on top. A characteristic feature of the lower  
pack sediments is uniformity in the vertical distribution of the grain size, without significant  
changes in the ratio of size fractions.  
As noted above, the primary indicator that indirectly characterizes organic matter  
content in the bottom sediments was taken as the loss during calcination. The calcination  
losses of the upper pack varied from 2 to 13% and averaged 6% for all cores (Table 2). The  
minimum (from 2 to 5%) estimated organic content was always observed in the surface (0–  
138  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
1
0 cm) layers of the cores. The pack I is characterized by an increase in loss during calcination  
across the entire profile. The maximum organic matter content reaches 29%, and on average,  
for all cores, it is 19% (Table 2).  
Table 2. Amount of loss on anneal in sediment cores  
Layer,  
cm  
Loss on anneal, %  
Core, №  
5
4
5
4
5
5
6
9
37  
538  
4
4
5
5
6
6
6
7
8
8
8
8
15  
15  
18  
19  
20  
21  
20  
20  
20  
22  
27  
27  
25  
23  
23  
22  
539  
4
6
6
6
7
7
6
7
556  
3
5
5
6
5
5
6
7
3
4
4
6
5
7
7
8
10  
10  
12  
15  
18  
18  
15  
16  
19  
22  
22  
24  
26  
26  
24  
25  
25  
26  
558  
4
4
5
6
5
6
7
579  
4
5
5
6
9
3
3
4
4
3
3
4
5
4
3
3
4
4
3
5
4
4
581  
2
3
4
4
6
10  
11  
0
-5  
-10  
0-15  
5-20  
0-25  
5-30  
0-35  
5-40  
0-45  
5-50  
5
1
1
2
2
3
3
4
6
8
14  
15  
15  
15  
16  
15  
16  
16  
20  
18  
18  
17  
16  
17  
19  
20  
20  
22  
22  
20  
22  
22  
9
10  
9
7
10  
8
9
9
13  
16  
17  
18  
17  
21  
19  
19  
21  
20  
20  
21  
23  
25  
24  
27  
20  
24  
26  
26  
23  
9
10  
9
4
10  
10  
18  
15  
16  
16  
16  
17  
22  
20  
23  
24  
24  
25  
22  
23  
18  
50-55  
55-60  
60-65  
10  
12  
13  
13  
13  
15  
14  
14  
15  
16  
16  
15  
18  
18  
20  
19  
19  
21  
20  
21  
21  
29  
12  
14  
14  
14  
13  
14  
15  
15  
13  
19  
18  
20  
21  
17  
17  
18  
20  
21  
20  
18  
19  
18  
9
15  
16  
17  
17  
19  
20  
20  
22  
22  
27  
22  
23  
27  
25  
23  
23  
6
5-70  
70-75  
75-80  
80-85  
8
5-90  
0-95  
5-100  
00-105  
05-110  
9
9
1
1
1
10-115  
15-120  
20-125  
25-130  
1
1
1
1
30-135  
1
35-140  
1
1
40-145  
45-150  
1
1
50-155  
55-160  
139  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
The natural moisture content of the bottom sediments in the upper pack varied from  
4
5 to 90%. Simultaneously, the highest (7590%) humidity values were always observed in  
the surface layers, in the "bottom sediments  water" contact area. A decrease in humidity  
was observed with an increase in the depth of sediments. However, in the lower pack layers,  
its values again increased markedly.  
In the lower pack, sediments were characterized by a consistently high natural  
humidity, the values of which varied from 90 to 165%. In this case, the humidity values  
changed slightly with increasing sedimentation depth, gradually decreasing towards the  
deepest layers of the cores.  
Blue ocher (ferric phosphoric acid) was detected in microscopic studies in all cores of  
the lower packs, in contrast to the surface layers of sediments, in which it was absent. This  
authigenic mineral occurred as well-defined laminal elongated microcrystals grouped in large  
weakly split aggregates (sometimes reaching more than 1 cm in diameter) and as powdery  
crumbly clusters of indigo blue color.  
4
. Discussion  
It is known (Lazarenko & Majewski 1971; Plit 2010) that until the early 20th century,  
the hydrological and sedimentation regime of the Vistula Lagoon was determined by the river  
flow, and the primary source of sediment was the Vistula River, which annually supplied to  
the waters of the lagoon 45 times as much sediment as any other river. Built in 1916, water-  
regulating structures significantly reduced river runoff. Its influence on sedimentation in the  
lagoon began to weaken; simultaneously, the role of waves and water exchange across the  
Baltic Strait began to increase (Chechko 2008).  
Changes in sedimentation conditions affected the formation of the sedimentary strata,  
as evidenced by the study results. Despite some differences due to the location of core  
sampling points, all of them have a similar vertical structure divided into two divisions: lower  
(
I) and upper (II) sediment packs. Such a division indicates that the formation of the  
sedimentary strata of the lagoon occurred in two stages, each of which corresponded to  
different sedimentation conditions formed under the influence of various factors.  
Judging by the features of the granulometric composition and distribution of organic  
matter in the lower pack, the main source of sedimentary material during its formation was  
140  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
river runoff. A thin sedimentary material was deposited and accumulated in the lagoon basin,  
which turned into soft, homogeneous, olive-colored deposits of the lower pack. Their  
composition is steadily dominated by silty particles (average 73%) for all cores with a high  
proportion (average about 15%) of clay material. The sand component in the bottom  
sediments of the lower pack does not take up much space. The uniformity in the vertical  
distribution of the granulometric composition indicates the constant nature of the  
sedimentary material entering the lagoon from a single source over a long period.  
Human intervention in the hydrological regime caused a sharp change in the  
sedimentation situation and a significant reduction in the arrival and accumulation of fine  
sedimentary material in the lagoon. This is reflected in the composition of the upper pack  
sediments formed after the river runoff regulation. According to the data obtained, its  
thickness varies from 32 to 65 cm. This is the amount of sedimentation that could have  
accumulated in the deep places of the lagoon over the past 100 years at a sedimentation rate  
of about 3.5 mm/year (Chubarenko et al. 2019).  
This gives grounds to characterize the sediments common in the upper pack as  
"modern," i.e., young in historical terms. They are unconsolidated, slightly silted, covered  
with a thin oxidized film on top of small sands of dark gray shades, with the proportion of an  
average of 63% (as opposed to 8% in the lower pack). Simultaneously, the content of silty  
particles significantly decreased  from 73% to 12% (Figure 3). The increase in the sand  
fraction is probably due to the increased role of coastal abrasion in the sedimentation  
processes, and the decrease in silt particles is due to the reduction of river runoff and the  
activation of resuspension processes. It is shown (Blazchishin, 1998; Chechko, 2008) that  
one of the results of resuspension is washing the upper layer of sediments from fine particles  
with their partial discharge into the sea or resedimentation in other parts of the lagoon. The  
absence of layering in the upper pack also indicates the activation of the sediment  
spreading processes.  
It should be noted that the processes of resuspension characteristic of the modern  
environment are a powerful mechanism for self-purification of bottom sediments. In this  
case, sorbed mobile forms of heavy metals and other pollutants partially pass from sediments  
to water, partially with muddy particles are carried out into the sea (Blazhchishin 1999;  
Blazchishin 1998).  
141  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Figure 3. Sedimentological parameters of core 557 (I, II - sediment packs)  
A characteristic feature of modern sediments is the presence of bioturbation textures  
formed by benthic animals' activity (Figure 4). Traces of animals were observed to a depth of  
3
5-40 cm, and in fact, the entire upper pack is a substance for their vital activity. No traces  
of animals were found in the deeper layers of the sedimentary strata (Ezhova et al. 2005),  
fragments of clamshells and shell detritus were occasionally found.  
Figure 4. Block diagram illustrating bioturbation of bottom sediments Vistula Lagoon  
142  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Regularly in the lower layers of modern sediments, there was an accumulation of  
fragments and whole shells of freshwater clams, as well as shell detritus. According to the  
hypothesis (Blazchishin 1998), this is due to a change in hydrological conditions after  
regulating the runoff of the Vistula River. The increase in the water salinity led to the death  
of freshwater mollusks and the formation of a characteristic thanatocoenosis in the form of a  
layer of shell rock. If the hypothesis is confirmed, it can serve as a horizon separating modern  
sediments and sediments accumulated during river runoff dominance.  
Essential features that allow judging changes in sedimentation conditions include the  
amount of organic matter in the sedimentary strata. In the lower pack, stable high  
concentrations were found, and in all the cores obtained, they ranged from 13 to 29% (Table  
2, Figure 3). The consistent distribution of organic matter over the depth in the lower pack  
sediments, without interruptions or sharp jumps, indicates that the sedimentation  
conditions remain unchanged.  
The restriction of river runoff has led to an expected reduction in allochthonous  
organic matter, and the autochthonous material produced in the lagoon plays a minor role in  
sedimentation. Despite the high productivity of phytoplankton, the main part is dissolved  
and mineralized; this process continues even after its deposition to the bottom (Emelyanov  
2014). Besides, organic particles, being the lightest, may be carried out into the sea when  
sediments are agitated. As a result, in modern sediments, low organic matter values are noted,  
which are on average no more than 6% for all cores.  
Among the physical properties, the natural moisture of bottom sediments responds  
commensurately to changes in sedimentation conditions. In the surface (010 cm) layer of  
modern sediments, the highest contents of the upper pack were found (7590%). This is a  
typical state of the upper layer of sediments, subject to regular sediment spreading and water  
saturation.  
With an increase in the depth of occurrence, the sediment humidity decreases to 45%  
but increases again at the lower pack border. In the lower pack, the moisture content of the  
sediments increases significantly and varies from 145 to 195% (Figure 3). This is due to an  
increase in sediment dispersion and organic matter saturation since these parameters largely  
determine the amount of humidity.  
143  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Among the indicators of the sedimentation environment of lake-lagoon ecosystems,  
the blue ocher is considered very convincing. It is formed from organic substances under  
reducing conditions with oxygen deficiency and indicates anaerobic destruction of organic  
matter. Probably, similar conditions existed in the lagoon during the period of river runoff  
dominance since blue ocher aggregates were detected in all the cores of the lower pack  
(
Figure 3). Given the high organic matter content, some of the sedimentary layers of the lower  
pack can be defined as decay ooze, in which blue ocher has a wide development.  
No traces of blue ocher were found in modern sediments, which can be explained by  
anthropogenic factors. After the river runoff restriction, the average water level in the Vistula  
Lagoon decreased, and the waters of the Baltic Sea could easily enter the lagoon through the  
Baltic Strait (Lazarenko & Majewski 1971). The inflow of sea waters and their mixing with  
the lagoon waters contributed to the oxygen saturation of the entire water strata. Oxidative  
processes began to dominate at the bottom of the lagoon, as evidenced by the oxidized film  
on the surface of the bottom sediments.  
In the author opinion, the results of the core nine studies can be considered very  
interesting. Unlike other cores, it was obtained in a semi-open harbor built in the 1930s, i.e.,  
after river runoff restriction. It could be assumed that the core should not contain silts  
deposited in the lagoon during the period of river runoff dominance. Studies have confirmed  
this assumption. Up to the underlying sands, modern deposits were identified along the  
entire core length  dark gray silted fine sands with insignificant organic content, low  
humidity values, and a complete absence of blue ocher.  
Conclusions  
As a result of the core study, the lithological and stratigraphic heterogeneity of the  
sedimentary strata of the lagoon was revealed. This suggested the genesis and dominant  
influence of factors on Late Holocene sedimentation processes. The data obtained indicate  
that the formation of the sedimentary strata of the Vistula Lagoon includes two stages: the  
stage of river runoff dominance and the stage that followed its artificial restriction (modern  
sedimentation stage).  
During the influence of river runoff, mainly soft, fine-aleurite silts of olive shades  
enriched with organic matter were accumulated in the lagoon basin. According to their  
144  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
composition and properties, some of them can be classified as decay ooze formations. The  
uniformity of the sediments and the slight changes with depth indicate the duration,  
continuity, and immutability of the sedimentation conditions.  
Under the influence of an anthropogenic factor (artificial restriction of river runoff),  
sedimentation conditions in the lagoon have radically changed, which resulted in the  
cessation of the accumulation of olive, organic-enriched silts. Instead, siltstone formations  
with an admixture of fine-grained sands began to accumulate. They were distinguished by  
gray color shades, low content of organic substances, and attractive conditions for benthic  
animals' lives.  
Artificial regulation of river runoff has led to a change in the direction of evolution of  
the Vistula Lagoon as a system in general and a change in its natural sedimentation regime,  
in particular. The sedimentation situation that has developed under the influence of the  
anthropogenic factor can be described as favorable. The lagoon is not threatened by  
waterlogging and contamination of bottom sediments due to the existing effective self-  
cleaning mechanism.  
Funding  
The study and grain size analysis of bottom sediment samples were supported by  
RFBR project No. 14-45-390013 r_a, analysis and interpretation of data were done with the  
support of the state assignment of IO RAS (Theme No.0128-2021-0012).  
References  
Ambrosimov A. K., Yakubov Sh. Kh., Babakov A. N, Chubarenko B. V. (2019) [Water wave  
motions in the bottom layer of shallow water areas (on the example of the Vistula Lagoon in  
the Baltic Sea)]. Russian Meteorology and Hydrology 4: 259268 [In Russian].  
Ananyeva L.G. (2017) [Keys to minerals and rocks]. Tomsk, Polytechnic University, 81 p. [In  
Russian].  
Anthony A., Atwood J., August P. et al. (2009). Coastal lagoons and climate change:  
ecological and social ramifications in U.S. Atlantic and Gulf coast ecosystems. Ecology and  
Society (14) 1: 1-29.  
Blazhchishin A.I. (1999) [Paleogeography and Evolution of Late Quaternary Sedimentation  
in the Baltic Sea]. Kaliningrad, Yantarny Skaz, 160 p. [In Russian].  
145  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Blazchishin A. I. (1998) [On the geoecology of the Curonian and the Vistula Lagoon]. Berlin,  
Schriftenr. f. Geowiss. 7: 39-57 [In German].  
Budanova T.E., Ozmidov O.R., Ozmidov I.O. (2013). Modern methods of studying the  
granulometric composition of soils. Engineering research (8): 66-73.  
Chechko V. A. (2017) [Features of modern sedimentation processes in Vistula and Curonian  
lagoons]. The Baltic Sea system. Izd. Nauchnyj mir, Moscov: 373-380. [In Russian].  
Chechko V. (2008). Spatial structure and evolution of bottom sediments in the Vistula  
Lagoon. Transboundary water and basins in the South-East Baltic, ed. B.V.Chubarenko.  
Kaliningrad, Terra Baltica: 246-251.  
Chechko V.A., Chubarenko B. V., Topchaya V.Yu. (2018). [The influence of natural and  
anthropogenic factors on the formation of the sediment layer of the Kaliningrad Bay of the  
Baltic Sea]. KSTU News (48): 47-58. [In Russian].  
Chechko V.A., Blazchishin A. I. (2002). Bottom deposits of the Vistula Lagoon of the Baltic  
Sea. Baltica (15): 13-22.  
Chechko V.A., Paka V.T., Podufalov A.P. (2019) [New approach to obtaining  
stratigraphically undisturbed columns of bottom sediments in shallow water bodies].  
Oceanological research (47) 1: 177-184. [In Russian].  
Chubarenko B.V. (1994) [Analysis of zones of secondary pollution of waters of the Vistula  
and Curonian lagoons]. Geography and natural resources (3): 33-40. [In Russian].  
Chubarenko B., Chechko V., Kileso A., Krek E., Topchaya V. (2019). Hydrological and  
sedimentation conditions in a non-tidal lagoon during ice coverage  The example of Vistula  
Lagoon in the Baltic Sea. Estuarine, Coastal and Shelf Sciences (216): 38-53.  
Chubarenko B., Margonski P. (2008). Тhe Vistula Lagoon. Ecology of Baltic Coastal Waters.  
Ed. U., Schiewer. Ecology of Baltic Coastal Waters. Ecological Studies. Berlin, Heidelberg,  
Springer-Verlag (197): 167 195.  
Cieśliński R. (2013). Prediction of changes in the hydrological conditions of the Vistula  
Lagoon under the influence of the shipping channel through the Vistula Spit. Monitoring of  
the natural environment (14): 1325.  
Dauvalter V. A. (2012). [Geoecology of bottom sediments of lakes]. Murmansk: MSTI, 242  
p. [In Russian].  
Dolotov Yu. S. (1996). Problems of rational use of coastal space and its nature conservation  
in the World Ocean. Izd. Nauchnyj mir, Moscov, 304 p. 373-380. [In Russian].  
Emelyanov E.M. (2014). Biogenic components of the Baltic Sea. Geology and Geophysics 12  
(
12): 1759 1774.  
146  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Ezhova E., Zmudzinski L., Maciejewska K. (2005). Long-term trends in the  
macrozoobenthos of the Vistula Lagoon, southeastern Baltic Sea. Bulletin of the Sea  
Fisheries Institute, Gdynia, Poland (164) 1: 55-73.  
Forstner, U. (1979). Metal Pollution in the Aquatic Environment. Berlin: Springer-Verlag, 210  
p.  
Gic-Grusza G., Dudkowska A. (2018) [Wind waving]. Vistula Lagoon, еd. J. Bolałek. PWN  
Warszawa: 8689. (in Polish).  
GIWA (Global International Waters Assessment) (2005) GIWA Regional assessment.  
University of Kalmar, Sweden, 110 p.  
HalpernB.S., Walbridge Sh., SelkoeK.A. et al. (2008). A Global Map of Human Impact on  
Marine Ecosystems. Science (319): 948-955  
Heiri, O., Lotter, A.F., Lemcke, G. (2001). Loss on ignition as a method for estimating organic  
and carbonate content insediments: reproducibility and comparability of results. Journal of  
Paleolimnology (25):101-110.  
Kennish M. J. (2015). Coastal lagoon. Encyclopedia of Estuaries, ed. M. J., Kennish. Springer  
:
140-143.  
Kjerfve, B., Magill K. E. (1989). Geographic and hydrodynamic characteristics of shallow  
coastal lagoons. Marine Geology (88) 3: 187199.  
Lazarenko N.N., Majewski A. (1971) [Hydrometeorological Regime of the Vistula Lagoon].  
Saint-Petersburg: Hydrometeoizdat, 276 p.  
Marín L., J., & Ferrer, L. (2020). Basura marina en la costa Oeste de la Bahía de Amuay, estado  
Falcón (Venezuela). Revista Latinoamericana De Difusión Científica, ISSN 2711-0494, 2(2), 6-21.  
https://doi.org/10.38186/difcie.22.03  
Matciak M., Chyła N. (2018) [The temperature and salinity of the lagoon]. Vistula Lagoon,  
ed. J. Bolałek. PWN Warszawa: 92–99. (in Polish).  
Methodical recommendations for laboratory study of engineering-geological properties of  
bottom sediments, 1986. Leningrad: Ministry of Geology of the USSR, 52 p.  
Morales Rojas, E., Díaz Ortiz, E. A., García, L., Veneros Guevara, J., Chavez Quintana, S., &  
Medina Tafur, C. A. (2021). Calidad físicoquímica y microbiológica del agua en los lagos de  
Tunants y Yahuahua, en la región Amazonas, Perú. Revista De La Universidad Del Zulia,  
1
2(32), 139-158. https://doi.org/10.46925//rdluz.32.11  
Patin S.A. (2015). Anthropogenic Impact on Marine Ecosystems and Living Resources:  
Sources, Effects, Problems. RFRIO works «Control and protection of the state of the aquatic  
environment and biological resources» (154): 85-104.  
147  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Vladimir A. Chechko// Evolution of sedimentation in the Vistula Lagoon of the Baltic Sea 131-148  
Plit J. (2010). Natural and man-made changes in the delta of Vistula River. Cultural  
landscapes of rivers valleys. Works of the Cultural Landscape Commission (PTG),  
Sosnowiec (13): 1328.  
Razinkovas A., Gasiunaite Z., Viaroli P., Zaldıvar J. M. (2008). European lagoons - need for  
further comparison across spatial and temporal scales. Hydrobiologia (611)1: 1-4.  
Szymczak E. (2019). Characteristics of Sediments in a Changing Environmental Conditions  
in Vistula Lagoon (Poland). IOP Conf. Ser.: Earth Environ. Sci. 362 012048: 1-10.  
Uścinowicz Sz., Zachowicz J. (1966). Geochemical atlas of the Vistula Lagoon. Warszawa,  
Polish Geological Institute, 94 p.  
Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of  
Geology (30): 377-392.  
Witak M., Pędziński J. (2018) [The Middle and Late Holocene]. Vistula Lagoon, ed J.  
Bolałek. PWN Warszawa: 2634. (in Polish).  
148