DEPÓSITO LEGAL ppi 201502ZU4666  
Esta publicación científica en formato digital  
es continuidad de la revista impresa  
ISSN 0041-8811  
Revista  
de la  
Universidad  
del Zulia  
Fundada en 1947  
por el Dr. Jesús Enrique Lossada  
Ciencias  
Exactas  
Naturales  
y de la Salud  
Año 12 N° 33  
Mayo - Agosto 2021  
Tercera Época  
Maracaibo-Venezuela  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
The effect of hypothermia on the state of the prooxidant-  
antioxidant system of plants  
Mariia Bobrova *  
Olena Holodaieva **  
Svitlana Koval ***  
Olha Tsviakh ****  
Olena Kucher *****  
ABSTRACT  
Aim of the research: to identify changes in the value of indicators of the state of the prooxidant-  
antioxidant system (PAS) in the tissues of edible parts of agricultural plants under the influence of  
temperature changes. Methodology: Quantitative determination of indicators of the state of PAS was  
performed on tissue samples of edible parts of the following plants: Solánum lycopérsicum L., Сucumis  
sativus L., Capsicum annuum L., Solanum melongena L., Solanum tuberosum L., Allium sativum L., Allium cepa L.,  
Daucus carota L., Beta vulgaris L., Cucurbita pepo var. Giraumontia L. The concentration of superoxide anion  
-
radical (•O  
2
), TBA-active products, superoxide dismutase (SOD) activity, catalase, the  
concentration of ascorbic acid (AA), glutathione (GSH) were determined. The results of the research  
show that hypothermia activates both parts of the PAS, however, cooling is accompanied by more  
powerful both low molecular weight and enzymatic antioxidant (AO) protection. The research of  
AO can be divided according to the degree of reduction of the protective value in hypothermia in the  
following series: SOD, catalase, GSH, AA. The most resistant in terms of changes in PAS to  
hypothermia is Solanum tuberosum L., Allium sativum L., Beta vulgaris L.; the least resistant is Capsicum  
annuum L., and Solánum lycopérsicum L. The generative organs of plants are less resistant to hypothermia  
than the vegetative ones. Practical consequences. As a result of the conducted biochemical analysis,  
it is established which method of storage of plant products is more effective in terms of preservation  
of AO activity: cooling or freezing.  
KEYWORDS: biochemistry; metabolism; enzymes; vitamins; cooling, freezing.  
*
Senior Lecturer of the Department of Biology and Methods of Teaching of the Volodymyr Vynnychenko  
Central Ukrainian State Pedagogical University, Ukraine. E-mail: mails@kspu.kr.ua; kazna4eeva@gmail.com  
ORCID ID: http://orcid.org/0000-0001-7703-651X.  
*
* Associate Professor of the Department of General and Biological chemistry #2 Donetsk national medical  
university, Ukraine. E-mail: contact@dsmu.edu.ua; elena.gologaeva@gmail.com ORCID ID:  
http://orcid.org/0000-0002-4922-7033.  
*
** Senior Lecturer of the Department of the Fundamental Disciplines of the International European  
University, Ukraine. E-mail: admissions@ieu.com.ua; kovalsyu@gmail.com ORCID ID: http://orcid.org/0000-  
0
002-4907-177X.  
*
*** Senior Lecturer of the Department of Chemistry of the V.O. Sukhomlynskyi Mykolaiv National  
University, Ukraine. E-mail: office@mdu.edu.ua; tsvyakho@gmail.com ORCID ID: http://orcid.org/0000-  
0
002-1119-2170.  
*
**** Senior Lecturer of the Department of Chemistry of the V.O. Sukhomlynskyi Mykolaiv National  
University, Ukraine. E-mail: office@mdu.edu.ua; hrizantema84.84@gmail.com. ORCID ID:  
http://orcid.org/0000-0002-9963-6855.  
Recibido: 03/02/2021  
Aceptado: 26/03/2021  
82  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
El efecto de la hipotermia sobre el estado del sistema prooxidante-  
antioxidante de las plantas  
RESUMEN  
Objetivo de la investigación: identificar cambios en el valor de los indicadores del estado del  
sistema prooxidante-antioxidante (PAS) en los tejidos de partes comestibles de plantas  
agrícolas, bajo la influencia de cambios de temperatura. Metodología: la determinación  
cuantitativa de indicadores del estado de PAS se realizó en muestras de tejido de partes  
comestibles de las siguientes plantas: Solánum lycopérsicum L., Сucumis sativus L.,  
Capsicum annuum L., Solanum melongena L., Solanum tuberosum L., Allium sativum L .,  
Allium cepa L., Daucus carota L., Beta vulgaris L., Cucurbita pepo var. Giraumontia L. Se  
determinó la concentración de radical anión superóxido ( O2-), productos activos TBA,  
actividad superóxido dismutasa (SOD), catalasa, concentración de ácido ascórbico (AA),  
glutatión (GSH). Los resultados de la investigación muestran que la hipotermia activa ambas  
partes del PAS. Sin embargo, el enfriamiento va acompañado de una protección antioxidante  
enzimática (AO) y de bajo peso molecular más potente. La investigación de AO se puede  
dividir según el grado de reducción del valor protector en hipotermia en las siguientes series:  
SOD, catalasa, GSH, AA. El más resistente en términos de cambios en PAS a hipotermia es  
Solanum tuberosum L., Allium sativum L., Beta vulgaris L .; el menos resistente es Capsicum  
annuum L. y Solánum lycopérsicum L. Los órganos generativos de las plantas son menos  
resistentes a la hipotermia que los vegetativos. Consecuencias prácticas. Como resultado del  
análisis bioquímico realizado, se establece qué método de almacenamiento de productos  
vegetales es más efectivo en términos de conservación de la actividad AO: enfriamiento o  
congelación.  
PALABRAS CLAVE: bioquímica; metabolismo; enzimas; vitaminas; enfriamiento;  
congelación.  
Introduction  
The influence of temperature on the vital activity of plant organisms is one of the key  
problems of adaptive physiology. The significance of the problems of cold and frost resistance  
of plants is because 64% of the land area of the plant indicates the detrimental effect of low  
temperatures. The connection with global climate change on the planet, the urgency of the  
problem is growing, as caused by anthropogenic factors, the total loss is provided by  
increasing instability of weather and climatic conditions, while different temperature  
differences over relatively short periods of time (Kolupayev & Trunova, 1992; Kolupaev &  
Karpets, 2010; Kolupaev, 2001; Estela Urbina et al. 2020). A lot of work is devoted to the  
83  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
study of temperature changes in the viscosity of membranes and cytosol, the activity of  
metabolic processes. However, the biochemical basis of the effect of temperature on plant  
homeostasis is investigated in fragments. Listening that the action of any stressors is  
reflected in the state of the PAS understudy, the problem determines the increased relevance.  
Since plants are the main source of AO to humans, the study of changes in their number under  
the action of different storage temperatures is of great practical importance.  
Aim of the research: to identify changes in the value of indicators of the state of the  
PAS in the tissues of edible parts of agricultural plants under the influence of temperature  
changes. To achieve this aim, the following tasks were identified:  
1
. To investigate the effect of temperature changes on the content of enzymatic and  
low molecular weight antioxidants in plant tissues.  
2. To identify the effect of temperature changes on the content of prooxidants in plant  
tissues.  
3. To determine which of the antioxidants is more resistant to temperature changes.  
4
. To compare the resistance of plants to hypothermia in terms of changes in  
prooxidant and antioxidant activity in their tissues  
. To compare which method of storage of plant products is more effective in terms of  
preserving antioxidant activity: cooling or freezing.  
5
1
. Literature review  
The first experimental results linking the state of PAS with temperature changes were  
obtained in the '80-'90s. XX century. The influence of temperature as a stress factor is  
described in numerous works by Kolupaeva Y.E., who reveals both the mechanisms of  
temperature influence on physiological processes of the plant organism and the peculiarities  
of metabolism under temperature stress (Kolupayev & Trunova, 1992), the formation of  
temperature adaptations (Kolupaev & Karpets, 2010), and even molecular-cellular level of  
stress reactions of plants (Kolupaev, 2001). Peculiarities of plant perception of the cold signal  
are revealed in the works of Himalov F.R., Chemeris A.V., Vakhitova V.A (Himalov et al.,  
2004). Cellular mechanisms of adaptation to adverse environmental factors are given in the  
works of Kordyum E.L., Sytnyk K.M., Baranenko V.V. (Kordyum et al., 2003). The role of  
proteins in low-temperature stress is given in the work of Kolesnichenko A.V., and  
84  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Voynikova V.K. (Kolesnichenko & Voinikov, 2003). Kolupaev Yu.Ye., also describes the  
importance of prooxidants, namely the reactive forms of oxygen (ROS) in the adaptation of  
plants to stressors (Kolupaev & Karpets, 2009; Kolupaev, 2007). Lukatkina A.S., combines  
oxidative stress with cold damage to plants (Lukatkina, 2002).  
The relationship between temperature stressors and reactive oxygen species has been  
revealed in several works by foreign scientists. Thus, Bhattacharjee S., studied ROS and  
oxidative explosion in stress signal transduction (Bhattacharjee, 2005), which was also the  
subject of research by Apel K. and Hirt N., (Apel & Hirt, 2004), while Dat J.F.,  
Vandenabeele S., and Vranova E., considered ROS under stress resistance (Dat et al., 2000).  
The Biochemical School under the direction of Nikolas Smirnoff has significant work on the  
biochemistry of ROS and AO in plant tissues (Smirnoff, 2005), a number of works by  
Scandalios J.G. devoted to problems in the same direction (Scandalios, 2002; Scandalios,  
2 2  
2005). In the works of Voynikov V.K., an increase in the amount of H O and TBA-active  
products (TBAap) in plant tissues under the action of negative temperatures has been  
described (Voynikov, 2013). Piotrovsky M.S., Shevyreva T.A., Zhestkova I.M., Trofimova  
M.S., emphasize that the most sensitive to low-temperature stress are the processes of  
respiration and photosynthesis, as hypothermia causes primarily a change in the viscosity of  
cell membranes and dysfunction of electron transport chains with the formation of ROS  
(
Piotrovskii et al., 2011). Common in these two works is the idea of the relationship of  
NADPH with hypothermic products of ROS. Awasthi R., Bhandari K., and Nayyar H., prove  
the formation of ROS by low-temperature activation of NADPH oxidase  
(
Awasthi et al., 2015).  
The role of the AO system in hypothermia is noted in (Вerwal & Ram, 2018; Foyer &  
Noctor, 2005; Gill & Tuteja, 2010; Hasanuzzaman et al., 2017; Hasanuzzaman et al., 2019;  
Pacheco et al., 2018; Shao et al., 2008; Suzuki et al., 2012; Szalai et al., 2009), analyzing which  
we can conclude that almost all known enzymatic AO is involved in protecting plants from  
hypothermia and adaptation to it. The first link in AO protection is SOD. It is proved that  
the action of low temperatures not only changes the activity of SOD, but also changes the  
expression of genes responsible for its synthesis. For example, the increase in SOD activity  
has been experimentally proven in wheat (Kolupaev & Karpets, 2019; Dyachenko et al., 2007;  
Major et al., 2011), oats (Awasthi et al., 2015), strawberries (Luo et al., 2011), cucumber  
85  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
(
Ignatenko et al., 2016), potatoes, but some plants reduce the activity of SOD at low  
temperatures, or increase the activity of SOD in the post-stress period (Kolupaev & Karpets,  
019). The closest connection with SOD is catalase, the level of activity and gene expression  
2
of which is also enhanced by hypothermia. The work of a number of scientists experimentally  
proved the enhancement of catalase activity in oats and wheat, potatoes, echinacea,  
chrysanthemums (Kolupaev & Karpets, 2019; Janda et al., 2007). The most common low  
molecular weight AO is ascorbic acid (AA) (Bobrova et al., 2020). The action of low  
temperatures ambiguously affects the content of AA in plant tissues. For example, a number  
of scientists experimentally prove an increase in the content of AA in the tissues of rye  
(
Galiba et al., 2013), barley (Huang & Guo, 2005), chickpeas (Kumar et al., 2011). However,  
the works of Luo Y., Tang H., and Zhang Y., show a lower content of AA in cold-resistant  
varieties of strawberries, compared with unstable, which indicates the species and even  
variety-specific role of AA. A number of scientists describe the role of AA not only during an  
injury but also in post-stress regeneration (Radyuk et al., 2009). The same scientists  
experimentally confirmed the ambiguous role of reduced glutathione in hypothermia.  
Because GSH has the highest correlation with AA among lowmolecular weight antioxidants,  
there is a need for further experimental studies.  
2
. Research methodology  
Quantitative determination of PAS status was performed on tissue samples of edible  
parts of the following plants: Solánum lycopérsicum L., Сucumis sativus L., Capsicum annuum L.,  
Solanum melongena L., Solanum tuberosum L., Allium sativum L., Allium cepa L., Daucus carota L., Beta  
vulgaris L., Cucurbita pepo var. Giraumontia L. Exposure of the control group was carried out at  
0
0
1
8 C, the first experimental group was in conditions of 4 C, the second experimental group  
0
underwent rapid freezing to -20 C. The duration of exposure of each group is 1 month. Each  
experimental group included 10 samples of 10 plants of each species, so the experiment  
analyzed 1800 samples  
Evaluation of the level and sources of ROS generation was performed by spectrophotometric  
3
NBT test. For analysis, 0.1 g of tissue was homogenized with glass sand in 0.9 cm of  
3
phosphate buffer (pH = 7.4, composition per 1 dm of a solution  5.37 g of KH  
2
PO  
4
·12 H  
2
O,  
3 3  
.5 g of NaCl, 1.5 g NaOH). 0.05 cm of homogenate was taken, 0.05 cm of buffer solution  
8
86  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
was added (to determine the total main unstimulated activity). The samples were shaken for  
3
0
2
min, added to each of 0.05 cm NBT, stirred, incubated in a thermostat at 24 C. After 30  
3
minutes 2 cm of solvent (dimethyl sulfoxide-chloroform in a volume ratio of 2:1) was added,  
shaken for 1 minute, and centrifuged for 5 minutes at 1500 rpm. From the obtained  
centrifugal, a colored supernatant was taken and photometered against the appropriate  
3
control at 540 nm on a microphotoelectrocolorimeter in a 1 cm cuvette 0.5 cm thick.  
To prepare the reagent control, the following solutions were poured into three tubes:  
3
3
3
0
.05 cm of a buffer, 0.1 cm of water, 0.05 cm of NBT and were incubated min in a thermostat  
0
at 24 C and eluted color. To build a standard calibration graph in test tubes typed 0.01, 0.02,  
3 3 3 3  
.05, 0.07, 0.1, 0.2 cm NBT (w = 0.2%), 0.1 cm KOH (C ( KOH) = 1 mol /dm ) and 0.1 cm of  
0
3
0
3
AK solution (18 mg /10 cm ), stirred and incubated for 10 min at 24 C. The color of 2 cm of  
the solvent was eluted, the extinction (E) of each sample was determined and a calibration  
graph was plotted. According to the schedule, superoxide production was found in nmol per  
sample (n nmol •O -  
) and translated into nmol per g of tissue per second of incubation.  
2
Assessment of the level of free radical peroxidation (FRPO) was carried out by the  
concentration of TBA-active products (TBAap). Analysis of the level of TBAap was carried out  
3
in the following sequence: 0.5 g of tissue was homogenized in 4.5 cm of buffer solution (pH  
=
7.4, preparation: 1.9 g of tris-(oxy)-methylaminomethane was placed in a volumetric flask  
3
3
per 1 l with 0,5 l of distilled water, added 50 cm of a solution of HCl (C (HCl) = 0.1 mol/dm ),  
.4 g of ascorbic acid, 32 mg of FeSO .  
7H O in the specified order, after dissolving the previous  
1
4
2
component, added water below the mark; the finished solution was left for a day to adjust  
the pH, as evidenced by the change in its color from blue-violet to yellow). To determine the  
3
basic level of TBAap (TBAap0) to 2 cm of the selected homogenate was immediately added a  
solution of trichloroacetic acid (w = 30%) and centrifuged for 30 minutes at 3000 rpm. To  
3
3
2
cm of centrifugate was added 3 cm of thiobarbituric acid solution (w= 0.338%, extempore  
0
preparation, incubation in a water bath at 80 C until the reagent dissolved, and another 50  
min in a boiling water bath) followed by photometry of the formed trimethine complex at  
540 nm against the control, which did not contain homogenate (control composition for  
3
3
3
3
reagents: 1.2 cm of buffer solution, 0.7 cm of trichloroacetic acid, 0.1 cm of water and 3 cm  
of TBA reagent). To initiate an increase in the level of TBAap (TBAap1,5), the sample was pre-  
incubated for 90 minutes (1.5 hours, therefore MDA1,5) in prooxidant iron-ascorbate buffer,  
87  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
shaking every 20 minutes. Further analysis was performed similarly to the determination of  
TBAap0. The calculations were carried out according to the formula:  
C = E ∙ 240.4  
where C is the concentration of TBAap in μmol/kg;  
E extinction;  
240.4  coefficient taking into account molar extinction and dilution.  
The magnitude of the increase in the level of TBAap, which is inversely proportional  
to the antioxidant supply of tissue, was calculated according to the formula:  
Δ TBAap = | TBAap1,5  TBAap0 | / TBAap0  100%  
where Δ TBAap  increase in the level of TBAap, expressed as a percentage;  
TBAap0, TBAap1,5  basic and stimulated levels of TBAap in μmol/kg, respectively.  
The level of antioxidant protection was assessed by the activity of enzymatic and the  
concentration of non-enzymatic antioxidants. To determine the activity of SOD 0.5 g of  
3
3
tissue was homogenized in 0.5 cm of water after 10 minutes added 2 cm of pigment  
precipitant (ethanol chloroform in a volume ratio of 5: 3), stirred with a glass rod, and kept  
0
at -4 C day. Then stirred and centrifuged at 3000 rpm 15 min. Control (average for several  
determinations before, in the middle, and at the end of a series of experimental samples): in  
3
a cuvette with an optical path length of 1 cm scored successively 4.4 cm of carbonate buffer  
3
3
solution (C = 0.2 mol/dm ; pH = 10.2, for the preparation of which in 1 dm of distilled water  
was dissolved 4.5 g of anhydrous sodium bicarbonate and 9.5 g of decahydrate sodium  
3
3
carbonate), 0.1 cm of distilled water (to establish the optical zero) and added 0.5 cm of  
3
3
adrenaline solution (C = 0.01 mol/dm ) in citric acid (C = 0.01 mol /dm ). Turn on the  
stopwatch, stir with a glass rod, and note the extinction every minute until it stops  
3
increasing. Instead of water, 0.1 cm of the centrifuge was introduced into the experimental  
0
sample, followed by similar procedures. Temperature range 23-27 C.  
The calculation of SOD activity was carried out according to the formula:  
T = (E  
1 2 1  
 E ) ∙ 100 / E  
-
T is the percentage of inhibition of oxidation of •O  
2
adrenaline to adrenochrome (%);  
E
E
1
average extinction control for 1 min (E/t);  
 average extinction of the experiment for 1 min;  
2
1
00 the maximum percentage (%) of inhibition.  
88  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
SOD activity was expressed in conventional units (OD):  
OD = T / (100  t)  
where 1 OD corresponds to the inhibition of the reaction rate by 50%.  
3
To determine the activity of catalase: 0.1 g of tissue was homogenized in 20 cm of distilled  
3
3
water. 7 cm of distilled water was taken from the flasks, then 1 cm of homogenate was added  
3
to the experimental sample, and 1 cm of boiled homogenate was added to the control sample,  
3
in which the enzyme was thermally destroyed. To both samples was added 2 cm of hydrogen  
peroxide (w = 1%), stirred, and left at room temperature for 30 minutes, shaking every 10  
3
minutes. Then 3 cm of sulfuric acid solution (w = 10%) was added to both samples and  
3
titrated with potassium permanganate solution (C (1 /5KMnO  
4
) = 0.1 mol/dm ) to a pale pink  
color that does not disappear within 30 seconds. The calculation of catalase activity was  
carried out by the formula:  
A = (Vcontrol  Vexperimental) ∙ 1.7  
A  catalase number;  
3
Vcontrol  volume of solution KMnO  
4
(C (1/5 KMnO  
4
) = 0,1 mol /dm ), spent on  
titration of the control sample, cm3;  
3
Vexperimentalthe volume of solution KMnO  
4
(C (1/5 KMnO  
4
) = 0,1 mol /dm ), spent  
on titration of the experimental sample, cm3;  
3
2 2 4  
.7  amount of H O (mg), which corresponds to 1 cm of KMnO solution  
1
3
4
) = 0.002 mol/dm ).  
(
C(KMnO  
Used the international unit of activity (μmol of substrate per unit time per unit mass  
of protein), which was calculated by the formula:  
2 2  
A = (Vcontrol  Vexperimental) ∙ 1.7/t ∙ M (H O )  
t incubation time of the sample (30 s);  
M (H ) - molar mass of H (34 g/mol).  
2
O
2
2 2  
O
Determination of GSH concentration was performed in the following order: 0.1 g of tissue  
3
was homogenized with 2.4 cm of trichloroacetic acid solution. After 10 minutes samples  
3
3
were centrifuged for 15 min at 3000 rpm, 0.2 cm of the centrifuge was taken, 0.05 cm of  
3
3
NaOH solution (w = 20%) and 5 cm of Tris-buffer were added, for preparation at 1 dm used  
.06 g of Tris-oxymethylaminomethane, 14.85 g of EDTA for binding of divalent cations and  
6
89  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
3
2
75 ml of HCl, C (HCl) = 0.1 mol/dm ). The pH of the sample was checked and, if necessary,  
the pH was adjusted to 8.0-8.1 with weak solutions of HCl or NaOH (because at pH <8 the  
reaction is almost non-existent, and at pH>8.1 DTNBK hydrolyzes to thionitrophenyl anion,  
3
which overestimates the analysis results). Then added 0.1 cm of Elman's reagent (99 mg of  
3
DTNBK in 25 cm of ethanol). Stirred and kept for 20 minutes in the dark. Photometered at  
4
12 nm in a cuvette at 1 cm against control for reagents that did not contain homogenate. The  
calculation of the analysis results was performed according to the standard calibration  
schedule.  
Determination of the concentration of AA was carried out by direct titrimetry. To do this, in  
a porcelain mortar 1 g of the test material was thoroughly ground with quartz sand. To the  
3
obtained homogenate was added 9 cm of HCl solution (w = 2%), defended for 10 minutes  
3
and filtered. For quantification, 3 cm of the filtrate was taken (test sample), added to the  
flasks, and titrated with a solution of 2.6-dichlorophenolindophenol (C (1/2 2.6  DFIF) =  
3
0
3
.001 mol / dm ) until a pink color appeared which persisted for 30 s. To control the reagents,  
3
cm of the filtrate was boiled with 3 drops of 3% H  
2
O
2
, followed by titration. The calculation  
of the content of AA was carried out according to the formula:  
С = Q  (Aexp - Acontr) ∙ V  
0
/ (V  a)  
1
С  AA content, mmol/kg;  
3
Q is the amount of ascorbic acid, which corresponds to 1 cm of a solution of  
3
2
.6-dichlorophenolindophenol (C (1/2 2.6-DFIF) = 0.001 mol/dm ) (0.088 mg);  
V
0
1
total amount of extract, cm3;  
V
the volume of extract taken for titration, cm3;  
a the amount of test substance, g;  
Acontr, Aexp - volume of solution of 2,6-dichlorophenolindophenol spent on titration  
3
3
of control and experimental sample, cm (C (1/2 2.6 DFIF) = 0.001 mol/dm ) (Bobrova et al.,  
020).  
2
The results obtained by us have undergone mathematical and statistical processing.  
3. Results and discussion  
The results of determining the antioxidant activity in the control group are shown in  
table 1, prooxidant - in table 2.  
90  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Table 1. The results of determining the antioxidant activity in the control group of plants  
Enzyme antioxidants  
Low molecular weight  
antioxidants  
Experimental plants  
Catalase  
activity, SOD activity, AA content, GSH content,  
mkmol/kg•min  
46,8 ± 4,04  
31,4 ± 2,65  
OD  
mmol/kg  
0,28 ± 0,02  
0,44 ± 0,01  
mmol/kg  
34,31 ± 2,78  
41,98 ± 0,28  
Solanum tuberosum L.  
Daucus carota L.  
1,08 ± 0,01  
1,25 ± 0,05  
Allium cepa L.  
Allium sativum L.  
41,4 ± 1,34  
20,4 ± 2,22  
1,54 ± 0,06 0,86 ± 0,03 40,31 ± 3,39  
1,72 ± 0,07 0,08 ± 0,01 48,53 ± 2,54  
Cucurbita pepo var. Giraumontia L  
Beta vulgaris L  
Solanum melongena L.  
Capsicum annuum L.  
Solánum lycopérsicum L.  
Cucumis sativus L.  
127,0 ± 6,09 5,12 ± 0,08  
115,8 ± 3,63 1,94 ± 0,03  
152,0 ± 8,87 3,58 ± 0,06  
0,13 ± 0,01  
0,76 ± 0,01  
0,83 ± 0,01  
1,29 ± 0,02  
0,79 ± 0,03  
0,09 ± 0,01  
28,65 ± 3,19  
39,11 ± 2,34  
40,01 ± 1,56  
36,36 ± 1,38  
38,05 ± 1,13  
22,87 ± 3,15  
25,0 ± 1,64  
23,8 ± 3,41  
5,47 ± 0,19  
3,94 ± 0,11  
135,2 ± 1,67 6,02 ± 0,14  
Table 2. The results of determining the prooxidant activity in the control group of plants  
Indicators of prooxidant activity  
NBT test (unstimulated  
Experimental plants  
-
activity), nmol О  
2
/
gsec  
Δ TBAap, %  
32,11 ± 2,01  
48,68 ± 3,67  
21,45 ± 2,32  
18,72 ± 1,07  
21,12 ± 0,08  
12,94 ± 0,43  
28,58 ± 1,06  
15,47 ± 1,19  
54,12 ± 2,11  
25,51 ± 4,04  
Solanum tuberosum L.  
Daucus carota L.  
Allium cepa L.  
Allium sativum L.  
Cucurbita pepo var. Giraumontia L  
Beta vulgaris L  
Solanum melongena L.  
Capsicum annuum L.  
Solánum lycopérsicum L.  
Cucumis sativus L.  
6,22 ± 0,04  
0,083 ± 0,004  
10,99±0,22  
20,4 ± 1,19  
18,0 ± 1,09  
4,81 ± 0,63  
54,02 ± 2,87  
15,0 ± 1,64  
59,14 ± 2,41  
22,06 ± 0,28  
Cucumis sativus L., is a false fruit, which is formed not only from the walls of the ovary  
but also from parts of the sepals and perianth. Given that people consume the fruits of Cucumis  
sativus L. when they reach consumer maturity, rather than physiological, they continue the  
processes of photosynthesis, active cell division, and growth, as well as seed formation, which  
requires a powerful system of AO protection. Since only Cucumis sativus L. actively  
91  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
photosynthesizes among all experimental parts of plants, we experimentally observe the  
highest level of superoxide in its tissues, but the relatively low value of ΔTBAap is explained  
by the high AO potential. Thus, Cucumis sativus L., has the highest SOD activity and one of the  
highest levels of catalase, but the concentration of low molecular weight AO is one of the  
lowest, which leads to the conclusion that in the tissues of Cucumis sativus L., the enzymatic  
line of AO protection prevails. A decrease in temperature leads to a decrease in the content  
of AA and GSH, but the activity of enzymatic antioxidants increases (tables 3, 5). The level  
of prooxidant activity also increases, which is confirmed by the results of the experiment  
(
tables 4, 6). A possible explanation for this is hypothermic inhibition of photosynthetic  
activity and growth processes. Because the effect of temperature is of primary importance on  
membrane enzymes and processes associated with membrane transport, in the tissues of  
Cucumis sativus L., both photosynthesis (effect on ETC of chloroplasts) and growth (effect on  
ETC of mitochondria - the main energy suppliers during active growth) are inhibited. and  
differentiation). Evidence of a powerful system of antioxidant protection is a decrease in the  
level of ΔTBAap with an increasing generation of superoxide.  
Table 3. The results of determining the antioxidant activity in the experimental group of  
0
plants, under the action of hypothermia to 4 C (cooling)  
Enzyme antioxidants  
Low molecular weight  
antioxidants  
Catalase  
activity,  
Experimental plants  
mkmol/kg•miSOD activity, AA content, GSH content,  
n
OD  
95,2 ± 3,53 10,04 ± 1,00 0,26 ± 0,01  
100,4 ± 3,63 1,31 ± 0,01 1,14 ± 0,01  
mmol/kg  
mmol/kg  
42,11 ± 1,76  
55,28 ± 1,73  
Solanum tuberosum L.  
Daucus carota L.  
Allium cepa L.  
52,2 ± 2,89 2,14 ± 0,02 0,59 ± 0,02 52,44 ± 1,42  
Allium sativum L.  
Cucurbita pepo var. Giraumontia L  
Beta vulgaris L  
Solanum melongena L.  
Capsicum annuum L.  
Solánum lycopérsicum L.  
Cucumis sativus L.  
36,0 ± 2,62  
130,0 ± 6,18 6,04 ± 0,09 0,26 ± 0,01  
137,0 ± 7,03 2,76 ± 0,08 0,81 ± 0,02  
185,0 ± 3,24  
35,2 ± 2,44 6,38 ± 0,09 0,24 ± 0,01  
28,0 ± 3,11  
143,0 ± 2,74 7,11 ± 0,06  
5,08 ± 0,11  
0,26 ± 0,01  
68,12 ± 2,96  
36,09 ± 1,08  
51,23 ± 2,05  
41,94 ± 0,79  
29,01 ± 2,03  
5,19 ± 0,11  
0,07 ± 0,01  
4,62 ± 0,32 0,58 ± 0,02 30,56 ± 1,94  
0,07 ± 0,01 20,11 ± 1,08  
92  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Table 4. The results of determining the prooxidant activity in the experimental group of  
0
plants, under the action of hypothermia to 4 C (cooling)  
Experimental plants  
Indicators of prooxidant activity  
NBT test (unstimulated  
Δ TBAap, %  
-
2
activity), nmol О  
gsec  
10,04 ± 0,98  
/
Solanum tuberosum L.  
35,76 ± 1,01  
39,09 ± 1,21  
29,48 ± 1,09  
20,04 ± 1,00  
25,12 ± 0,08  
17,06 ± 0,18  
32,23 ± 1,08  
60,33 ± 3,14  
58,13 ± 2,11  
23,12 ± 3,18  
Daucus carota L.  
0,098 ± 0,001  
18,64 ± 1,34  
22,9 ± 1,22  
31,06 ± 2,04  
5,43 ± 0,06  
59,58 ± 1,84  
33,1 ± 1,23  
Allium cepa L.  
Allium sativum L.  
Cucurbita pepo var. Giraumontia L  
Beta vulgaris L  
Solanum melongena L.  
Capsicum annuum L.  
Solánum lycopérsicum L.  
Cucumis sativus L.  
66,14 ± 1,98  
28,54 ± 0,16  
Table 5. The results of determining the antioxidant activity in the experimental group of  
0
plants, under the action of hypothermia to -20 С (freezing)  
Enzyme antioxidants  
Low molecular weight  
antioxidants  
Experimental plants  
Catalase  
activity,  
SOD activity, AA content, GSH content,  
mkmol/kg•min  
OD  
mmol/kg  
0,22 ± 0,02  
0,95 ± 0,03  
0,78 ± 0,19  
0,09 ± 0,01  
0,16 ± 0,02  
0,88 ± 0,02  
0,07 ± 0,01  
0,95 ± 0,02  
0,67 ± 0,02  
0,08 ± 0,01  
mmol/kg  
49,11 ± 2,31  
51,14 ± 2,04  
46,13 ± 1,16  
53,25 ± 1,12  
33,06 ± 0,98  
49,16 ± 2,14  
41,09 ± 0,76  
31,34 ± 0,82  
34,09 ± 1,02  
18,56 ± 1,22  
Solanum tuberosum L.  
114,6 ± 2,39 4,01 ± 0,94  
Daucus carota L.  
34,0 ± 1,94  
49,6 ± 1,39  
31,0 ± 3,46  
1,39 ± 0,03  
1,99 ± 0,19  
1,99 ± 0,04  
Allium cepa L.  
Allium sativum L.  
Cucurbita pepo var. Giraumontia L  
Beta vulgaris L  
128,0 ± 8,28 7,02 ± 0,12  
124,0 ± 6,89 2,53 ± 0,18  
Solanum melongena L.  
Capsicum annuum L.  
Solánum lycopérsicum L.  
Cucumis sativus L.  
171,0 ± 7,77  
33,6 ± 2,68  
25,2 ± 2,74  
4,18 ± 0,12  
8,38 ± 0,79  
4,11 ± 0,21  
137,4 ± 2,24 8,12 ± 0,04  
93  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Table 6. The results of determining the prooxidant activity in the experimental group of  
0
plants, under the action of hypothermia to -20 C (freezing)  
Experimental plants  
Indicators of prooxidant activity  
NBT test (unstimulated  
Δ TBAap, %  
-
2
activity), nmol •О  
g•sec  
/
Solanum tuberosum L.  
Daucus carota L.  
Allium cepa L.  
Allium sativum L.  
Cucurbita pepo var. Giraumontia L  
Beta vulgaris L  
Solanum melongena L.  
Capsicum annuum L.  
Solánum lycopérsicum L.  
Cucumis sativus L.  
11,11 ± 1,04  
0,111 ± 0,008  
39,56 ± 1,99  
28,1 ± 1,84  
27,0 ± 2,09  
5,87 ± 0,22  
61,02 ± 2,75  
46,1 ± 3,04  
69,89 ± 3,21  
25,96 ± 0,87  
35,84 ± 0,88  
42,04 ± 3,03  
46,67 ± 2,06  
21,23 ± 0,99  
23,12 ± 0,08  
18,14 ± 0,21  
30,52 ± 1,12  
37,1 ± 1,12  
69,94 ± 2,11  
20,23 ± 2,12  
Similar processes are observed in the tissues of Cucurbita pepo var. Giraumontia L., which  
belongs to the same family as Cucumis sativus L., and is also used by humans in a state of the  
consumer rather than physiological maturity. That is, Cucurbita pepo var. Giraumontia L., at the  
time of the study, was also photosynthesized. However, the level of superoxide and TBAap  
generation is lower compared to Cucumis sativus L., which may be explained by both high levels  
of enzymatic and low molecular weight antioxidants and lower photosynthetic capacity.  
Cooling leads to a greater increase in superoxide generation compared to rapid freezing, but  
the TBAap level remains approximately the same, which can be explained by the increase in  
the concentration of AA and GSH together with increased enzyme AO activity, which was  
not observed in Cucumis sativus L. tissues. Therefore, in the biochemical protection of tissues  
Cucurbita pepo var. Giraumontia L., hypothermia activates both enzymatic and non-enzymatic  
link AO protection.  
Capsicum annuum L., has the highest SOD activity among all experimental plants of the  
control group, which is also characterized by the highest content of AA in tissues. At the  
same time, the level of superoxide and TBAap generation naturally turned out to be the lowest.  
However, freezing and cooling lead to the largest increase in superoxide content in 3 and 2.2  
times, respectively. SOD activity increases 1.5 times during freezing and 1.2 times, catalase  
94  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
activity 1.3 and 1.4 times, respectively. The concentration of AA drops sharply on cooling (5.4  
times) and decreases slightly on freezing (1.4 times), remaining the largest among the plants  
of the second experimental group. The concentration of GSH also decreases more during  
cooling than during freezing. Therefore, although the level of SOD and AA in the tissues of  
Capsicum annuum L., is the highest, the activity of enzymatic antioxidants increases with  
hypothermia, but the power of AO protection is not enough to compensate for the increase  
in the concentration of superoxide. The result is an experimentally confirmed increase in  
TBAap levels of 2.4 times during freezing and 3.9 times during cooling, which is one of the  
most contrasting changes among all experimental plants. The obtained digital data may also  
indicate that Capsicum annuum L., has the lowest adaptability to hypothermia in terms of  
changes in prooxidant-antioxidant potential. Moreover, cooling has a more destructive effect  
on tissues than freezing.  
Allium sativum L., has the highest content of GSH among experimental plants, and  
moderate hypothermia increases the value of this indicator by 1.4 times. This plant is also  
characterized by the lowest concentration of AA in the tissues, the content of which does not  
change during freezing, but increases by 3.2 times when cooled. The activity of enzymatic  
antioxidants also increases during cooling to a greater extent than during freezing (3 times  
for SOD and 1.8 times for catalase). The increase in prooxidant activity in hypothermia is  
insignificant, which may indicate that Allium sativum L., is one of the most adapted among all  
experimental plants, and antioxidant resistance to cooling is greater than to freezing, low  
molecular weight antioxidant protection plays a stronger role, compared with enzymatic.  
Tissues of Solanum melongena L., are characterized by the highest value of catalase  
activity among experimental plants. Cooling leads to an increase in activity by 21.7%, freezing  
-
by 12.5%. SOD activity increases by 16.9% during freezing and by 44.9% during cooling.  
There was no significant difference in the content of low molecular weight antioxidants in  
hypothermia. There is an assumption about the role of bioflavonoids in tissue protection of  
Solanum melongena L. The level of superoxide generation in plants of the control group is the  
highest and continues to increase with hypothermia, but no significant difference in ΔTBAap  
was found, indicating a powerful AO defense system.  
The level of SOD in the tissues of Solanum tuberosum L., increases 3.47 times when cooled  
and 3.71 times when frozen. Catalase activity increases 2.03 times when cooled and 2.45 times  
95  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
when frozen. The concentration of GSH also increases by 22.7% when cooled and by 43.1%  
when frozen, the concentration of AA does not change significantly. Given that the level of  
superoxide generation increases 1.61 times when cooled and 1.79 times when frozen and a  
small difference ΔTBAap, it can be argued that Solanum tuberosum L., is also one of the most  
resistant among experimental plants to hypothermia. The fact that starch accumulates in the  
tissues of Solanum tuberosum L., also contributes to the resistance to exposure to low  
temperatures, which when broken down forms glucose, which plays the role of antifreeze,  
preventing water from freezing in the cell.  
The tissues of Daucus carota L., have the lowest level of superoxide production among  
all experimental plants. Moreover, the value of the control group is hundreds of times lower  
than other plants, and the value of antioxidants does not have even a tenfold predominance.  
This suggests the role of alternative compounds with antioxidant properties, such as  
carotene. It was also interesting that with a slight increase in the generation of superoxide  
both during cooling and freezing ΔTBAap decreases, the activity of SOD does not change  
significantly, the growth of catalase is negligible. However, the concentration of AA increases  
2.2 times during freezing, and 2.6 times during cooling, which is not typical for any other  
experimental plant. The glutathione content increases by 21.8% during freezing and by 31.7%  
during cooling. The obtained results allow us to conclude that the non-enzymatic part of the  
antioxidant system is involved in the adaptation to the hypothermia of Daucus carota L. Daucus  
carota L., more resistant to cooling than to freezing.  
A feature of Allium cepa L., tissues is resistance to cooling, but not to freezing, which is  
experimentally confirmed by a significant increase in superoxide production (1.7 times when  
cooled and 3.9 when frozen) and ΔTBAap. The content of AA decreases both when cooled and  
frozen, but other antioxidants increase their activity.  
The level of superoxide and ΔTBAap generation in the tissues of Solánum lycopérsicum L.,  
is the highest among all experimental plants, both during freezing and cooling. Hypothermia  
leads to a decrease in the content of low molecular weight antioxidants and a slight increase  
in the activity of enzymatic AO. Thus, catalase increases the activity during freezing by 17%,  
and during cooling - by 6%, SOD - by 4% and 17%, respectively. This may indicate a low level  
of resistance of Solánum lycopérsicum L., tissues to hypothermia, and the role of other AOs in  
protecting tissues from significant ROS generation. Given that the tissues of the fruit of  
96  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Solánum lycopérsicum L. were used for analysis, a possible cause of high levels of superoxide  
in the control group is its role in fruit ripening, plastid interconversion, and tissue aging.  
Tissues of Beta vulgaris L., are characterized by a fairly high level of catalase and SOD  
activity. Hypothermia increases the value of both low molecular weight and enzymatic AO.  
The experimentally revealed feature of Beta vulgaris L., tissues was the smallest difference  
between the studied parameters in the two experimental groups. Given the low level of Δ  
MDA on a small increase in superoxide production, it can be argued that Beta vulgaris L., is a  
resistant plant to both cooling and freezing.  
Conclusions  
1
.
When the temperature decreases, enzymatic antioxidants undergo the greatest  
changes, which increase the value of their activity in all experimental plants. Thus, the  
average increase in catalase activity during cooling is 31.05%, during freezing - 18.03%; for  
SOD - 60.04% and 38.09% respectively. Therefore, SOD plays a primary protective role under  
the action of hypothermia, compared with catalase. Cooling promotes a greater increase in  
the activity of enzyme AOs than freezing.  
2
.
Change in the production of low molecular weight antioxidants in  
hypothermia is a species-specific feature. From experimentally revealed general regularities  
it is possible to allocate the following: in fabrics of underground spare parts of plants the  
higher control level of GSH is characteristic; increase in GSH production is observed both  
during cooling and freezing of tissues (by 15.32% and 9.9%, respectively); cooling promotes  
greater GSH retention than freezing. AA reduces its content in almost all experimental  
plants, both during cooling (on average by 22.9%) and during freezing (on average by 12.6%).  
Therefore, freezing leads to less destruction of AA in the tissues than cooling.  
3
.
The average value of increasing the generation of superoxide during cooling is  
0.75%, during freezing - 49.35%, but the difference in the average value of ΔTBAap in  
different types of hypothermia is almost absent (increase is 22.12% during cooling and  
3.73% when frozen). Given the above changes in the antioxidant level of protection, it can  
3
2
be argued that hypothermia activates both parts of the PAS, however, cooling is accompanied  
by a more powerful both low molecular weight and enzymatic AO system.  
97  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
4
.
The researched AO can be divided according to the degree of reduction of the  
protective value in hypothermia in the following series: SOD, catalase, GSH, AA.  
The most resistant in terms of changes in PAS to hypothermia are Solanum  
5.  
tuberosum L., Allium sativum L., Beta vulgaris L.; the least resistant are Capsicum annuum L. and  
Solánum lycopérsicum L. The generative organs of plants are the least resistant to hypothermia  
than the vegetative ones.  
6
.
Freezing allows you to store plant products for a longer time than refrigeration,  
however, chilled vegetables retain more AO in the tissues.  
References  
Apel K., Hirt Н. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal  
transduction.  
Рlant  
Biol.  
Vol.  
55.  
P.  
373  
399.  
https://doi.org/10.1146/annurev.arplant.55.031903.141701  
Awasthi R., Bhandari K., Nayyar H. (2015) Temperature stress and redox homeostasis in  
agricultural crops. Front. Environ. Sci. V. 3:11. https://doi.org/10.3389/fenvs.2015.00011  
Bhattacharjee S. (2005). Reactive oxygen species and oxidative burst: roles in stress,  
senescence and signal transduction in plants. Curr. Sci. 89, 11131121. [Google Scholar]  
Вerwal M.K., Ram C. (2018) Superoxide Dismutase: A stable biochemical marker for abiotic  
stress tolerance in higher plants. Open access peer-reviewed chapter. DOI:  
1
0.5772/intechopen.82079  
Bobrova, M., Holodaieva, O., Arkushyna, H., Larycheva, O. y Tsviakh, O. (2020). The value of  
the prooxidant-antioxidant system in ensuring the immunity of plants. Revista de la  
Universidad del Zulia. 11, 30 (jul. 2020), 237-266. DOI:https://doi.org/10.46925//rdluz.30.17.  
Dat J.F., Vandenabeele S., Vranova E. et al. (2000) Dual action of the active oxygen species  
during plant stress responses // Cell. Mol. Life Sci. V. 57. P. 779-795.  
Dyachenko L.F., Totskiy V.N., Fait V.I., Toptikov V.A. (2007) Ekspressivnost' nekotorykh  
gen-enzimnykh sistem v prorostkakh, razlichayushchikhsya po genam Vrd liniy ozimoy  
myagkoy pshenitsy v protsesse zakalivaniya [Expressiveness of some gene-enzyme systems  
in seedlings differing in the Vrd genes of winter bread wheat lines during hardening]. Visn.  
Odesk. nat. un-tu. Biology. 12 (5). 103-111. (in Russian).  
Estela Urbina, R., Ríos Campos, C., Santamaría Baldera, N., GutiérrezValverde, K., & Aguirre  
Zaquinaula, I. (2020). Relación entre el comportamiento del viento y la radiación solar en la  
ciudad de Bagua, Perú (de marzo a octubre, 2019). Revista Latinoamericana De Difusión Científica  
/
/ ISSN 2711-0494 (En Linea), 2(2), 22-31. https://doi.org/10.38186/difcie.22.04  
98  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Foyer CH, Noctor G. (2005). Oxidant and antioxidant signaling in plants: A re-evaluation of  
the concept of oxidative stress in a physiological context. Plant Cell Environ. 28:1056107134.  
https://doi.org/10.1111/j.1365-3040.2005.01327.x  
Galiba G., Vanková R., Irma Tari, Bánfalvi Z., Poór P., Dobrev P., Boldizsár Á., Vágújfalvi A.,  
Kocsy G. (2013) Hormones, NO, antioxidants and metabolites as key players in plant cold  
acclimation. Plant and Microbe Adaptations to Cold in a Changing World / Eds. R. Imai, M.  
Yoshida, N.Matsumoto. New York: Springer Science+Business Media, P. 73-88.  
Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic  
stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909930. doi:  
1
0.1016/j.plaphy.2010.08.016  
Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. (2017) Glutathione in plants: Biosynthesis  
and physiological role in environmental stress tolerance. PMBP. 23:249268. doi:  
1
0.1007/s12298-017-0422-2.  
Hasanuzzaman М. M. H. M., Borhannuddin B. T. I. А, Khursheda P., Kamrun N., Jubayer A.  
M., Masayuki F. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating  
Oxidative Damage in Plants under Abiotic Stress. Antioxidants (Basel) Sep; 8(9): 384. doi:  
1
0.3390/antiox8090384.  
Himalov F.R., Chemeris A.V., Vakhitov V.A. (2004) On the perception of a cold signal by a  
plant. Uspekhi sovrem. biology. 124 (2). 185-196.  
Huang M., Guo Z. (2005) Responses of antioxidant system to chilling stress in two rice  
cultivars differing in sensitivity. Plant Biol. V. 49. P. 81-84. DOI: 10.1007/s00000-005-1084-3  
Ignatenko A.A., Repkina N.ꢀꢀ, Titov A.F., Talanova V.V. 2016. The response of cucumber  
plants to low temperature impacts of varying intensity. Trudy Karelsk. Nauchn. Tsentra  
Janda T., Szalai G., Leskó K., Yordanova R., Apostol S., Popova L.P. 2007. Factors  
contributing to enhanced freezing tolerance in wheat during frost hardening in the light.  
:
1674-1682.  
Kolesnichenko A.V., Voinikov V.K. (2003) Proteins of low temperature stress in plants.  
Irkutsk: Art Press. 196 p.  
Kolupaev Y. E. (2007) Aktyvnye formy kysloroda v rastenyyakh pry deystvyy stressorov:  
obrazovanye y vozmozhnye funktsyy [Active forms of oxygen in plants under the action of  
stressors: formation and possible functions] Visnyk Kharkivsʹkoho natsionalʹnoho  
ahrarnoho universytetu. Seriya: Biolohiya. 3, 6-26. (in Russian).  
Kolupaev Yu.E., Karpets Yu.V. Reactive oxygen species, antioxidants and plants resistance  
to influence of stressors. Kyiv: Logos, 2019. 277 p.  
99  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Kolupaev Yu.E., Karpets Yu.V. (2009) Reactive oxygen species during plant adaptation to  
stress temperatures // Physiology and biochemistry cult. plants. 41 (2). 95-108.  
Kolupaev Yu.Ye. (2001) Plant stress responses: molecular cell level. H. 171 p.  
Kolupaev Yu.Ye., Karpets Yu.V. (2010). Formation of plants adaptive reactions to abiotic  
stressors influence. Kyiv : 350 p.  
Kolupayev Yu.Ye., Trunova T.I. (1992) Osobennosti metabolizma i zashchitnyye funktsii  
uglevodov rasteniy v usloviyakh stressov roslyn [Peculiarities of metabolism and protective  
functions of plant carbohydrates under stress conditions]. Fiziologiya i biokhimiya kul't.  
rasteniy, 24,  6. 523-533. (in Russian).  
Kordyum E.L., Sytnik K.M., Baranenko V.V. et al. (2003) Cellular mechanisms of plant  
adaptation to the adverse effects of environmental factors in vivo. Kiev: Naukova Dumka. 277  
p.  
Kumar S., Malik J., Thakur P., Kaistha S., Sharma K.D., Upadhyaya H.D. (2011) Growth and  
metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress  
at reproductive phase. Acta Physiol. Plant. V. 33. P. 779-787. DOI 10.1007/s11738-010-0602-y  
Lukatkina A.S. (2002) Cold damage to thermophilic plants and oxidative stress. Saransk:  
Publishing house of Mordovian University. 208 p.  
Luo Y., Tang H., Zhang Y. 2011. Production of reactive oxygen species and antioxidant  
metabolism about strawberry leaves to low temperatures. J. Agr. Sci. 3 : 89-96.  
Major P.S., Zakharova V.P., Velykozhon L.G. 2011. Activity of some antioxidant enzymes in  
wheat plants under natural conditions of hardening. Fiziol. i Biokhim. Kult. Rast. 43(6) : 507-  
512.  
Pacheco J. H. L., M. A. Carballo, and M. E. Gonsebatt, (2018). “Antioxidants against  
environmental factor-induced oxidative stress,” in Nutritional Antioxidant Therapies:  
Treatments and Perspectives, K. H. Al-Gubory, Ed., vol. 8, pp. 189215, Springer, Cham,  
Switzerland. https://doi.org/10.1007/978-3-319-67625-8  
Piotrovskii, M.S., Shevyreva, T.A., Zhestkova, I.M. and Trofimova, M.S. (2011) Activation of  
plasmalemmal NADPH oxidase in etiolated maize seedlings exposed to chilling  
temperatures. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern  
Phytophysiology, vol. 58, no. 2, pp. 290-298. http://dx.doi.org/10.1134/S1021443711020154.  
Radyuk M.S., Domanskaya I.N., ShcherbakovR.A., Shalygo N.V. 2009. Effect of low above-  
zero temperature on the content of low-molecular antioxidants and activities of antioxidant  
enzymes in green barley leaves. Russ. J. Plant Physiol. 56(2) : 175-180.  
100  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mariia Bobrova et al.// The effect of hypothermia on the state of the prooxidant-antioxidant … 82-101  
Scandalios J.G. (2005) Oxidative stress: molecular perception and transduction of signals  
triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. V. 38. P. 995-1014.  
Scandalios J.G. 2002. The rise of ROS. Trends Biochem. Sci. 27 : 483-486.  
Shao H.B., Chu L.Y., Shao M.A., Jaleel C.A., Mi H.M. (2008) Higher plant antioxidants and  
C
R
Biol. 331:43341.  
Smirnoff N. (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing,  
NY.  
Suzuki N, Koussevitzky S, Mittler R, Miller G. (2012) ROS and redox signalling in the  
Szalai G, Kellos T, Galiba G, Kocsy G. (2009) Glutathione as an antioxidant and regulatory  
Voinikov V.K. (2013) Energy and information systems of plant cells in hypothermia.  
Novosibirsk: Nauka, 212 p.  
101