DEPÓSITO LEGAL ppi 201502ZU4666  
Esta publicación científica en formato digital  
es continuidad de la revista impresa  
ISSN 0041-8811  
Revista  
de la  
Universidad  
del Zulia  
Fundada en 1947  
por el Dr. Jesús Enrique Lossada  
Ciencias  
Exactas  
Naturales  
y de la Salud  
Año 12 N° 33  
Mayo - Agosto 2021  
Tercera Época  
Maracaibo-Venezuela  
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
A remarkable property of cycloidal curves  
Mikhail Vladimirovich Taldykin *  
ABSTRACT  
The purpose of this theoretical work is to establish a connection between the most important  
properties of plane curves: cycloids and sinusoids. For this, a drawing mechanism is  
considered, which simultaneously draws a sinusoid and two cycloids. Based on the results  
obtained using this mechanical method of obtaining curves, the following important,  
previously unknown, theoretical facts are established. Firstly, new in theoretical terms is  
that the sinusoid is not represented as a graph of a trigonometric function, but as a locus of  
points equidistant from the current points of two cycloids: an ordinary and another cycloid  
congruent to the original one, inverted and shifted along the axis by half a period. Secondly,  
the line passing through the current points of these cycloids is nothing like a normal to the  
resulting sinusoid. This property greatly simplifies the graphical construction of such a  
normal. And, finally, a simple trigonometric relationship was established between the angle  
of rotation of the generating circle and the angle of deviation of the normal from the vertical.  
KEY WORDS: angle of rotation of the generating circle; cycloid; cycloidal curves; generating  
circle; mechanisms for drawing curves; normal to sinusoid; shortened cycloid; sinusoid;  
tangent to a sinusoid.  
*
Head of technical support unit of Institute of Mechanics and Engineering - Subdivision of  
the Federal State Budgetary Institution of Science “Kazan Scientific Center of the Russian  
Academy of Sciences”, Kazan, Russia. ORCID: https://orcid.org/0000-0001-9977-1224. E-  
mail: mvtkazan@gmail.com  
Recibido: 10/02/2021  
Aceptado: 6/04/2021  
9
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
Una propiedad destacable de las curvas cicloidales  
RESUMEN  
El propósito de este trabajo teórico es establecer una conexión entre las propiedades más  
importantes de las curvas planas: cicloides y sinusoides. Para esto, se considera un mecanismo  
de dibujo, que presenta simultáneamente una sinusoide y dos cicloides. Con base en los  
resultados obtenidos mediante este método mecánico de obtención de curvas, se establecen  
los siguientes hechos teóricos importantes, previamente desconocidos. En primer lugar, lo  
nuevo en términos teóricos es que la sinusoide no se representa como un gráfico de una  
función trigonométrica, sino como un lugar geométrico de puntos equidistantes de los puntos  
actuales de dos cicloides: una ordinaria y otra cicloide congruente con la original, invertida y  
desplazada a lo largo del eje por medio punto. En segundo lugar, la línea que pasa por los  
puntos actuales de estas cicloides no se parece en nada a una normal a la sinusoide resultante.  
Esta propiedad simplifica enormemente la construcción gráfica de una normal de este tipo.  
Y, finalmente, se estableció una relación trigonométrica simple entre el ángulo de rotación  
del círculo generador y el ángulo de desviación de la normal respecto a la vertical.  
PALABRAS CLAVE: ángulo de rotación del círculo generador; cicloide; curvas cicloidales;  
círculo generador; mecanismos para dibujar curvas; normal a sinusoide; cicloide acortado;  
sinusoide; tangente a una sinusoide.  
Introduction  
The purpose of this article is to develop new theoretical knowledge regarding  
cycloidal and sinusoidal curves. On the basis of this theoretical knowledge, it is possible to  
construct various devices that associate rotational motion with harmonic motion, such as  
sinus mechanisms, propellers in water with a fish-like working organ, peristaltic pumps with  
a delicate effect on the pumped liquid, for example, blood, and other similar devices.  
The cycloid was first considered by the French mathematician Roberval in 1634.  
When calculating the area under the cycloid graph, he considered an auxiliary curve formed  
by the projection of a point on a circle rolling in a straight line onto the vertical diameter of  
this circle. He carefully and vaguely called this curve the companion of the cycloid. This curve  
turned out to be an ordinary sinusoid (Gindikin, 2001).  
Roberval, as it were, “encrypted” another approach to defining a sinusoid, not as a  
graph of a harmonic function, but as a kind of cycloidal curves with a general kinematic  
approach, in the same mathematical terms as for an ordinary cycloid. “The true spirit of  
1
0
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
geometry means something more: it requires an approach to the study of geometric images  
not from one, but from different points of view, because only this path leads to complete  
knowledge” (Litzman, 1960). In the case of a sinusoid, the first approach is a sinusoid as a  
graph of a sine, and an alternative approach, a sinusoid, is a quasi-cycloidal curve (the main  
parameters are the radius of the generating circle, its angle of rotation, the distance from a  
point to the center of the circle, in the case of considering a shortened cycloid). The term  
wavelength” (cycloid period) is not used, it is used for reference only. The provisions of  
Roberval's treatise concerning the cycloid and the auxiliary satellite line (sinusoid) almost  
unchanged “migrated” into the modern Handbook of Higher Mathematics: “Cycloid and  
M
Sinusoid. The locus of the bases of the perpendiculars dropped from the point of the  
cycloid to the diameter of the generating circle passing through the fulcrum is a sinusoid with  
a wavelength and amplitude d. The axis of this sinusoid coincides with the line of the  
centers of the cycloid(Vygodsky, 2006).  
2R  
By the end of the seventeenth century, mathematicians had discovered all the  
secrets of the cycloid and paid attention to other curves. It has often happened in  
the history of mathematics that a certain idea or problem will appear at exactly  
the right time. This was the case with the cycloid. The discoveries of its beautiful  
geometric and mechanical properties are closely related to the history of analytic  
geometry and differential calculus. The missions and battles that were fought over  
them led to significant achievements. No other curve could serve the same  
purpose” (Martin, 2010).  
The heroic history of the cycloid ended at the end of the 17th century. It arose so  
mysteriously in solving a variety of problems that no one doubted that it played a  
completely exclusive role. The piety before the cycloid held out for a long time,  
but time passed, and it became clear that it was not connected with the  
fundamental laws of nature, like, say, conical sections. The problems that led to  
the cycloid played a huge role in the formation of mechanics and mathematical  
analysis, but when the magnificent buildings of these sciences were built, it  
turned out that these problems are private, far from the most important. An  
instructive historical illusion took place. However, getting acquainted with the  
instructive history of the cycloid, it is possible to see many fundamental facts from  
the history of science” (Gindikin, 2001).  
1
1
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
These two quotes kind of summarize the study of the properties of cycloidal curves at  
the end of the 17th century. However, even in our time, cycloids often become the solution to  
scientific problems, for example, associated with tsunamis. “The optimal trajectory for two  
arbitrary points in the ocean, as in the case of one point on the coast, will also be a cycloid  
passing through these two points” (Shokin et al., 1989).  
It should also be noted that all of the above refers to one isolated cycloid, while this  
article discusses the properties of the mechanism of two cycloids.  
Cycloid properties are currently actively used for educational purposes. “Cycloids are  
a great example of not only the need for parametric equations, but an example of how to  
integrate and differentiate them; they also require many of the necessary skills and abilities  
to use these skills to solve problems” (Roidt, 2011). “The fascinatingly presented biographies  
of great scientists will interest the widest circles of readers, from high school students to  
adults; those interested in mathematics will enjoy and benefit from getting to know the  
scientific achievements of the heroes of the book” (Gindikin, 2001).  
1
. Methodology  
Let's set the task: to invent a mechanism for plotting curves that could draw  
simultaneously such mechanical curves as cycloids and sinusoids. Is it possible to build  
such a mechanism? Mathematics answers in the affirmative. “You can build other hinge  
mechanisms, at least theoretically, which will draw ellipses, hyperbolas and even any  
predetermined curve, whatever its degree” (Courant and Robbins, 2001). Such a mechanism  
for plotting cycloidal curves was found, and it turned out to be extremely simple and  
informative.  
There is no up-to-date information on this area, since the topic has long been  
considered well-established and quite classical, and the expectation of new works is  
considered unlikely. A publication similar to this one could have appeared three hundred  
years ago, and it is surprising that this did not happen earlier. This article provides new  
knowledge for the uderstanding of cycloidal and sinusoidal curves; the provisions outlined  
in this article can be extended to other, more complex cycloidal curves (for example, epi- and  
hypocycloids). Existing newpublications on cycloids are often teaching material for students  
and even for high school students. It should be noted that articles on cycloids are descriptive  
1
2
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
or educational in nature. This work sheds light on the unknown properties of cycloidal  
curves.  
2
. Results  
Let us refer to Figure 1. A point  
P
located on the circumference of the upper generating  
1
disc at a distance  
R
from the center of the disc describes, when rolling without sliding along  
), a well-known ordinary cycloid, which is a series of arches with  
points downward. The curve is periodic, located in the upper positive half-plane; Period  
a straight line (axis  
X
(
basis of the cycloid) 2 R. Similarly, a point P2 located on the circumference of the lower  
from the center of the disk describes, when rolling  
without sliding along a straight line (axis ), a congruent, mirrored, inverted cycloid  
“points” up), shifted along the axis by half a period relative to the upper cycloid. This  
shift is set initially. This cycloid is located already in the lower, negative half-plane. The angle  
in radians is a generalized coordinate for both cycloids, since the producing discs roll  
synchronously without sliding.  
generating disk at the same distance  
R
X
(
X
t
Figure 1. Scheme for plotting cycloidal curves and an ordinary sinusoid  
1
3
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
Let's connect the points  
P and P2 , find the midpoint P3 , equidistant from the points  
1
P
and P2 ; that is, P3 is the midpoint of a segment P P2 of variable length. It will be shown  
1
1
below that the point P3 draws nothing more than the old familiar Roberval's auxiliary line,  
the companion of the cycloid  a sinusoid of the same period as the cycloid and with an  
amplitude equal to the radius of the generating disk.  
However, what is most surprising and striking is the fact that the normal to the  
sinusoid at an arbitrary angle  
t
passes through the same current points  
P
and P2 the cycloid  
1
corresponding to the same value of the generalized coordinate (angle  
t
). A complete and  
generalized proof for the case of an arbitrary value of the ratio r R is given below.  
Thus, a cycloid, as a cycloidal curve and a sinusoid, as a kind of quasi - cycloidal curve  
(
the point P3 is not located on the extension of the radius of the generating circle, but is  
constructed in some way) are “equalized in rights” so that they can be considered not only  
fellow travelers” but also “relatives”, but rather even “Siamese twins” of geometry. The  
properties of these curves can be considered from a general point of view and are determined  
by the radius of the generating circle, its angle of rotation and the distance from a point to its  
center (for shortened cycloids), without involving the concepts of a cycloid basis and  
wavelength for a sinusoid.  
Let two generating circles of radius  
R
(Figure 1) roll synchronously along a direct  
. The  
straight line y  0 (axis ) without sliding in the positive direction of the axis  
X
X
condition of synchronicity means the presence of a common point of contact of the circles  
with the guide at any moment of rolling, i.e. the angles of rotation of the circles are always  
equal. One circle rolls over the “positive” side of the base (top) ( y  0), the other under the  
“bottom” ( y  0).  
The starting points of the upper and lower cycloid are chosen in such a way that the  
lower inverted arch of the cycloid is offset along the guide by half the base. Then the following  
theorem holds, which consists of two points.  
1
4
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
Figure 2. Scheme for obtaining harmonic oscillations (sinusoids) using two shortened  
cycloids  
Taldykin's theorem:  
1
. The locus of the points of the midpoints of the segments connecting the current  
points of two congruent cycloids, mirrored relative to the directing line and shifted  
displaced) along the half-base (half-period) guide is a sinusoid of the same period as the  
(
cycloids, with an amplitude equal to the distance from the point describing the cycloid to the  
center of the generating circle.  
1
5
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
2. The normal to such a sinusoid passes through the current points of the upper and  
lower cycloid.  
Evidence. Let us consider a more general case when the points  
P
and P2 during  
1
synchronous rolling of the generating circles along the guide (x-axis) without sliding  
describe shortened cycloids. Parametric equations of these cycloids  
for  
P
:
x1  Rt   
Rsint  
,
y1  R Rcost ; (1)  
y2  R Rcost  
1
for P2  
:
x2  Rt   
Rsint  
,
;
where x , y , x , y are current coordinates of points P1 and P2  
;
t
is the angle of rotation of  
is the radius of each producing circle; is  
to the center of the generating circle; Truncated cycloids are  
r R ; At  
1 we get an ordinary cycloid, at = 0 is a straight  
line along which the center of the generating circle moves.  
1
1
2
2
each circle in radians (generalized coordinate);  
the distance from the point  
characterized by the ratio  
R
r
P
=
The following properties are valid for such a mechanism of two synchronously rolling  
producing circles with a common point of contact with the directing line.  
1
. The point  
circles describes a sinusoid with an amplitude  
cycloid  
The coordinates of the midpoint P3 of the segment P1P2 are equal to the half-sum of  
the coordinates of the points  
and P2  
P
t
is the middle of the segment P1P2 when rolling the generating  
3
R
and period equal to the periods of the  
2R  
.
P
1
1
2
1
2
,
(2)  
xs   
x1  x2  
Rt   
Rsint Rt   
Rsint  
Rt  
1
1
 = (푦 + 푦 ) = (푅 − 휀푅 푐표ꢂ 푡 − 푅 − 휀푅 cos 푡) = −휀푅 cos 푡  
2
2
Equations for a point P3 are parametric equations of a sinusoid:  
ys  Rcost (3)  
. Tangent and normal to a sinusoid. It is known from the course in differential  
xs  Rt  
,
2
     
, the  
geometry that for a plane smooth curve given in parametric form x  x t y  y t  
equation of the normal to this curve is as follows:  
1
6
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
y'  
Y  y  
x'  
X  x  
0, (4)  
where X,Y are current coordinates of normal points; x, y are coordinates of the  
curve point . Substituting here the parametric equations of the sinusoid (3) and the  
equations of the first derivative of the sinusoid:  
M
푥 = 푅;  = 휀푅 sin 푡; (5)  
we get  
2
.
(6)  
Y sint  Rcost sint  X  Rt  0  
Thus, on the one hand, the equations of the normal to a sinusoid, given in a parametric  
form x  Rt  
,
y    
Rcost are as follows  
1
t
;
(7)  
Y  X  
R  
cost R  
sint  
sint  
On the other hand, the equation of a straight line passing through two given points  
     
P x1; y1 P x2; y2  
, is:  
1 2  
y  y1  
y2  y1 x2  x1  
x  x1  
; (8)  
Substituting the current values for the points here  
P
x1; y1  
,
P
x2; y2  
(1)  
1
2
get  
y   
R Rcost  
x   
Rt Rsint  
.
(9)  
R Rcost  
R Rcost Rt Rsint  
Rt Rsint  
After a number of transformations, equation (9) can be written in the form  
푦 = −푥  
− 푅휀 cos 푡 + 푅  
(10)  
ꢃ ꢄꢅꢆ ꢇ  
ꢃ ꢄꢅꢆ ꢇ  
Comparing the equation of a straight line passing through two given points  
   
P x1; y1  
1
,
P
x2; y2  
(10) with the equation of the normal to the sinusoid (1), we see that they are  
identical. Therefore, we can conclude that the normal to the sinusoid at an arbitrary point  
and the line passing through the points and that  
2
M
x at; y  Rcos  
P
t
   
P t  
2
1
draw the cycloids coincide, that is, the normal to the sinusoid is a line passing through the  
current points of the upper and lower truncated cycloids.  
1
7
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
Basic relations between the angle of rotation of the generating circles (generalized  
coordinate) and the angle between the normal to the sinusoid and the vertical. It follows  
directly from Figure 2 that  
P A P B   
Rsin  
; (11)  
Rcos  
1
2
AO  O P  O B   
; (12)  
1
3
2
then for a sinusoid:  
P1A  
AP3  
Rsint  
tg  
sint ; (13)  
R
It is well known that the normal to the cycloid passes through the fulcrum of the  
generating circle (Gindikin, 2001). Let's draw normals to cycloids, connecting points and  
P
1
P2 with a common point O3 of support of two generating circles. Tangent of the angle  
between the normal to the cycloid and the vertical for the upper cycloid  
sint  
tg1  
tg2  
; (14)  
1
cost  
sint  
cost  
1  
for the lower cycloid. (15)  
Conclusion  
The theorem on the construction of a flat curve was first formulated in the work:  
sinusoid using two truncated cycloids, one of which is of the usual form with its points  
downward, the other is inverted and shifted by half a period, relative to the original one. In  
this case, a point equidistant from the current points of the cycloid during the rolling of two  
identical generating circles draws a sinusoid of the same period as the cycloid, and the line  
passing through the current points of the cycloid is the normal to the constructed sinusoid.  
An elementary relationship has been established between the angle of rotation of the  
generating circle and the angle of deviation of the normal to the sinusoid from the vertical.  
1
8
REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 33, 2021  
Mikhail Vladimirovich Taldykin // A remarkable property of cycloidal curves, 9-19  
Acknowledgment  
The author is sincerely grateful to Professor Rinat Gerfanovich Zaripov for constant  
attention to the work, senior researcher Irina Veniaminovna Morenko for help in preparing  
the article and Galina Ivanovna Budnikova for a number of valuable advice and support.  
References  
Courant, R. and Robbins, G. (2001). What is mathematics? 3rd edition. Moscow: Moscow  
Center of Continuous Mathematical Education, 568.  
Gindikin, S. G. (2001). Stories about physicists and mathematicians. Secrets of the cycloid.  
3
rd ed., Extended. Moscow: Moscow Center of Continuous Mathematical Education, 448.  
Litzman, V. (1960). Old and new about the circle. Moscow: Publishing house of physical and  
mathematical literature, 60.  
Martin, J. (2010). The Helen of Geometry. The College Mathematics Journal, 41, 17-28.  
Roidt, T. (2011). Cycloids and Paths (PDF) (MS). Portland State University, 4.  
Shokin, Yu. I., Chubarov, L. B., Marchuk, An. G. and Simonov, K. V. (1989). Computational  
experiment in the tsunami problem. Novosibirsk: Science. Siberian branch, 168.  
Vygodsky, M. Ya. (2006). Handbook of Higher Mathematics. Moscow: AST, 991.  
1
9