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Abstract. Antibiotic-resistance in bacteria is a global health problem, and 
wastewater treatment plants can play a role in their dissemination. In this work, 
we used PCR and plasmid transformation to characterize antibiotic-resistance 
and the phylogenetic groups of Escherichia coli isolated from a treatment plant 
in Zulia, a state in western Venezuela. Thirty-six bacteria isolates were analyzed, 
of which 27 resulted resistant by disc diffusion primarily to tetracycline and 
sulfisoxazole but also to trimethoprim, chloramphenicol, ampicillin, and cip-
rofloxacin. The tetA, sul2, floR, and blaTEM resistance genes were frequently 
present and, in most cases, transferable. dfrA12, tetB, sul3, sul1, and aadA2 
genes also were detected. The integrase gene intI1 was common in multidrug-
resistant isolates. These results suggest that E. coli from the treatment plant 
is a reservoir of antibiotic-resistance genes, which signify a potential health 
threat. Additionally, the phylogroup C was predominant, which is unusual and 
may represent an adaptation of this group to environmental conditions or per-
haps the most frequent phylogroup entering from the influent.
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Resumen. La resistencia bacteriana a antibióticos es un problema de salud 
global y las plantas de tratamiento pueden jugar un papel en su diseminación. 
En este trabajo caracterizamos, mediante PCR y transformación de plásmidos, 
la resistencia a antibióticos y los grupos filogenéticos de Escherichia coli ais-
lada de una planta de tratamiento en el estado Zulia, Venezuela. Se analizaron 
36 aislados bacterianos, de los cuales 27 resultaron resistentes por difusión en 
disco principalmente a tetraciclina y sulfisoxazol, pero también a trimetoprim, 
cloranfenicol y ampicilina. Los genes tetA, sul2, floR y blaTEM se encontraron 
comúnmente en los aislados resistentes y fueron en la mayoría de los casos 
transferibles; adicionalmente se detectaron los genes dfrA12, tetB, sul3, sul1 y 
aadA2. El gen de integrasa intI1 se detectó en la mayoría de los aislados multi-
resistentes. Estos resultados sugieren que E. coli en la planta de tratamiento es 
un reservorio de genes de resistencia a antibióticos, lo que significa una amena-
za potencial para la salud. Adicionalmente predominó el filogrupo C, lo que es 
inusual y podría deberse a una adaptación de este a las condiciones ambientales 
o podría ser el mayoritario en el influente. 

           Received: 28-09-2022       Accepted: 23-03-2023

INTRODUCTION

The indiscriminate use of antibiotics 
in human and animal medicine, as well as 
for prophylaxis and growth promotion in 
animal husbandry, threatens to reduce the 
effectiveness of these fundamental drugs. 
Antibiotic-resistant bacteria, although oc-
curring naturally, are also released into the 
environment, where they may outcompete 
sensitive bacteria due to the presence of an-
tibiotics and other chemical contaminants 
that are also released into the environment. 
The resistance genes in these bacteria can 
then be transferred to other pathogenic and 
non-pathogenic bacteria, thereby increasing 
the environmental reservoir of resistant bac-
teria and genetic resistance determinants.

Escherichia coli is a commensal bacte-
rium that inhabits the intestines of humans 
and other animals and is often used to in-
dicate environmental fecal contamination. 
Some E. coli are pathogens that can cause 
urinary tract, gastrointestinal or nosocomial 
infections. Antibiotic-resistance in environ-
mental E. coli has also been proposed as an 
indicator to monitor the extent of antibiotic 
resistance in the environment 1.

The bacterial load of wastewater dis-
charged into natural water bodies is signifi-
cantly reduced by treatment plants. However, 
these plants may also promote the spread of 
antibiotic-resistant bacteria and resistance 
genes by providing favorable conditions for 
increasing the relative abundance of resis-
tant bacteria and the horizontal transfer of 
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the genes conferring this resistance 2. Al-
though there are few treatment plants in 
Venezuela and much of the wastewater is 
discharged directly into the environment, 
there is a wastewater treatment plant in the 
state capital Maracaibo, located in the “El 
Tablazo” Petrochemical Complex of the Mi-
randa municipality of Zulia state. The plant 
was designed so that the petrochemical in-
dustry could reuse some of its effluent water 
while the rest would be discharged into the 
giant Lake Maracaibo.There have been very 
few studies on antibiotic-resistance in bac-
teria isolated from raw or treated wastewa-
ter in Venezuela, but such studies represent 
essential surveillance measures to assess 
the extent of antibiotic-resistance in the 
environment and plan corrective strategies. 
Accordingly, we set out to perform a pheno-
typic and molecular study of antibiotic resis-
tance in E. coli isolates from the wastewater 
treatment plant mentioned above.

MATERIALS AND METHODS

E. coli was isolated from water samples 
of the “El Tablazo” treatment plant (Miran-
da Municipality, Zulia State) collected from 
May to October 2012 for a microbiological 
quality evaluation. The system includes a 
pre-treatment to remove solids followed by 
absorption, biological oxidation, and a first 
chlorine injection. The water is then trans-
ported to the plant at “El Tablazo” and sub-
jected to physical and biological treatment 
based on reactors where dissolved organic 
matter is removed, followed by a secondary 
settling. Then a first effluent is discharged 
into Lake Maracaibo. Another portion of the 
water to be used by the petrochemical com-
plex is treated with a flocculant and chlorine. 

Sampling sites were four different sec-
tions of the treatment plant: pre-treated 
influent (Site1); after physical processing 
(Site 2); after biological processing (efflu-
ent to the Maracaibo lake, Site 3); and the 
chlorine disinfection point (Site 4). There 

were six water samples from Site 1 and Site 
4, four from Site 2, and five from Site 3. 

The water samples were collected in 
sterile bottles and processed according 
to the procedures described in the Stan-
dard Methods for examination of Water and 
Wastewater to determine coliform by the 
fermentation technique 3. Samples showing 
growth in EC broth were streaked onto EMB 
agar to select typical E. coli colonies, which 
were sub-cultured in nutrient agar tubes for 
transport. Re-isolation was performed on 
McConkey agar, and colonies were cultured 
in LB broth and then stored in 20% glycerol 
at -80°C. All assays were performed on the 
bacteria regrown from the frozen stocks.

Biochemical identification and antibiotic 
susceptibility testing

Bacterial isolates were first identified 
with the following biochemical tests: TSI, 
indole-motility, methyl red, Voges Proskauer, 
citrate, and urea.

Resistance was assessed with the Kirby 
Bauer disc diffusion method, using commer-
cial discs with the following antibiotics: tet-
racycline 30 µg (TE), ampicillin 10 µg (AMP), 
ampicillin-sulbactam 10/10 µg (SAM), sulfi-
soxazole 250 µg (SF), chloramphenicol 30 µg 
(C), trimethoprim 5 µg (W), trimethoprim-
sulfamethoxazole 1.25 µg /23.75 µg (SXT), 
ciprofloxacin 5 µg (CIP), aztreonam 30 µg 
(ATM) and imipenem 10 µg. E. coli ATCC 
25922 was used as an antibiotic-susceptible 
control strain. The results were interpreted 
according to CLSI guidelines 4.

PCR amplification
PCR was used to confirm the bacteria 

as E. coli, determine phylogroups, and de-
tect the presence of resistance genes and 
the integrase gene intI1. All PCR reactions 
were performed on boiled bacterial lysates, 
using Taq DNA polymerase with ThermoPol 
buffer (NEB), following the manufacturer’s 
instructions, using previously reported spe-
cific primers, some of which were modified 
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as indicated below. PCR was performed to 
amplify genes conferring resistance to tet-
racycline (tetA and tetB) 5, sulfisoxazole 
(sul1, sul2, and sul3) 6-8, chloramphenicol 
(floR and cat) 6, ampicillin (blaTEM) 9 and 
trimethoprim (dfrA12 and dfrA7&17) 10, 

11. The detection of the intI1 integrase was 
with primers described by Moura12. In con-
trast while the phylogroup identification was 
performed using the quadruplex plus group 
C specific PCR described by Clermont et al. 
13 Negative controls without template DNA 
were included in each PCR assay. A subset 
of the PCR products were confirmed by DNA 
sequencing (Macrogen, Korea) and used as 
positive controls for the detection of resis-
tance genes and intI1, as well as the deter-
mination of phylogroups.

The reactions were performed with 
previously reported primers and conditions 
or with the following variations: Sul1-R. 
5’-TGATCTAACCCTCGGTCTCT-3’ tem-
perature of annealing (Ta) 56°C, blaTEM-F 
5’-GCATACACTATTCTCAGAATGA-3’ bla-
TEM-R 5’-CTCACCGGCTCCAGATTTAT-3’ 
Ta 56°C, dfr7&17-F 5’-CATTTGACTCTC-
TATGGGTGTTC TT-3’ Ta 58°C. 

To avoid analyzing duplicate resistant 
isolates, REP-PCR was performed on isolates 
showing the same phenotype and genotype, 
using the REP1 and REP2 primers as previ-
ously described 14. E. coli-specific PCR was 
performed using primers to amplify rrs (75F 
and 619R) or gad 15, 16, with E. coli XL1-blue 
as a positive control.

Transformation and conjugation assays
Transferability of the detected antibi-

otic resistance genes was assessed by heat 
shock transformation using transformation 
competent E. coli DH5α as the recipient 
strain and plasmid DNA obtained by alkaline 
lysis from all isolates resistant to tetracy-
cline, ampicillin, chloramphenicol, or trim-
ethoprim in which PCR had detected a re-
sistance gene. Transformants were selected 
on LB agar plates containing either carbeni-
cillin (50 µg/mL), ampicillin (32 µg/mL), 

tetracycline (30 µg/mL), chloramphenicol 
(30 µg/mL), or trimethoprim (20 µg/mL) 
as appropriate. Phenotypic resistance was 
confirmed for each transformant, and the 
presence of plasmid DNA and the relevant 
resistance genes were verified.

In some cases, the capacity for conjuga-
tion was assessed in liquid medium using E. 
coli J62-2 as the recipient strain. Selection 
was performed on LB agar plates supple-
mented with tetracycline (30 µg/mL) and ri-
fampicin (50 µg/mL). Transconjugants were 
confirmed by phenotypic resistance, amplifi-
cation of the same resistance gene detected 
in the donor, and ERIC-PCR with primers de-
scribed by Versalovic et al. 14.

RESULTS

Here, we characterized thirty-six iso-
lates identified as E. coli with biochemical 
tests and identified as E. coli with biochemi-
cal tests and  PCR amplification of rrs or 
gad. These isolates originated from the four 
sampling sites: 13 from Site 1, four from Site 
2, nine from Site 3, and ten from Site 4.

Resistance phenotypes
As shown in Fig. 1, the highest fre-

quency of resistance was to tetracycline and 
the lowest to ciprofloxacin and ampicillin-
sulbactam, with intermediate prevalences 
of resistance to the other antibiotics tested, 
including ampicillin.

Twenty-four isolates (66.6%) were fully 
resistant to at least one antibiotic, corre-
sponding to 7/13, 2/4, 7/9, and 8/10 iso-
lates from sampling points 1 to 4, respective-
ly (Table 1). Five of these 24 isolates (20.8%) 
also showed intermediate resistance to one 
or two additional antibiotics (two AMP-CIP, 
one CIP, and two SAM). Among the 12 re-
maining isolates, three had only intermediate 
resistance (two AMP and one TE), and nine 
(9/36, 25%) were fully sensitive to all an-
tibiotics tested. There were also seven iso-
lates (7/24, 29.1%) fully resistant to three 
or more antibiotics of different classes and 
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Table 1 
Phenotypic and genotypic profiles of the bacterial isolates.

Sampling site Resistance phenotype (FR/IR) Resistance genotype Phylogroup

1 TE tetB B1

1 TE-SF-W-TS tetA-sul2 C

1 TE-SF-W-TS tetA-sul2 C

1 TE-SF-W-TS/amp-cip tetA-sul2 C

1 TE-SF- TS-C/amp-cip tetA-sul2-floR A

1 TE-SF-C/ cip tetA-sul2-floR A

1 TE-C tetA-floR A

1 amp nd B1

1 S na C

1 S na C

1 S na C

1 S na C

1 S na B2

2 TE tetA C

2 TE-SF-W-TS-AMP-C/sam tetA-sul1-blaTEM-floR-dfrA12-intI1 C

2 S na A

2 S na A

3 TE tetA B1

3 TE-W tetA C

3 TE-SF-W- TS-AMP-C-CIP/sam tetA-sul3-blaTEM-intI1 C

3 TE-SF-W-TS- AMP-SAM tetA-sul3-blaTEM-dfrA12-intI1 C

3 TE-AMP tetB-blaTEM C

3 AMP-C blaTEM- floR B1

3 AMP-W blaTEM C

3 te nd C

3 S na A

4 TE tetA C

4 TE tetA A

4 TE-SF tetA B1

4 TE-SF tetA-sul2 A

4 TE-SF tetA-sul2 C

4 TE-SF tetA-sul2 B1

4 TE-SF-W-TS-C tetA-sul3-intI1 C

4 TE- W-C tetA- tetB- flor-intI1 A

4 amp nd C

4 S na C

FR: Fully resistant, IR: intermediate resistance (lowercase), S: sensitive, nd: not determined, na: not apply. The 
abbreviations for the antibiotics are the same as in Fig. 1.
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thus multi-drug resistant or MDR. Two of 
these originated from each of sampling Sites 
1, 3, and 4, and one isolate was from Site 2 
(see Table 1). All isolates were sensitive to 
aztreonam and imipenem.

Resistance genes
The genotypic resistance profiles and 

genes detected are described in Table 1. The 
most frequently detected genes were tetA 
(20/22) and sul2 (8/12), while all isolates 
fully resistant to ampicillin contained bla-
TEM (Fig. 1). The floR gene was detected in 
most (6/8) of the chloramphenicol-resistant 
isolates, none of which contained the cat 
gene. The only amplified determinant as-
sociated with trimethoprim resistance was 
dfrA12, which was detected in just two of the 
ten trimethoprim-resistant isolates. 

Of the seven MDR-resistant isolates, the 
intIl gene was amplified from 5, representing 
21% of the resistant isolates and 13.9% of 
total isolates (Table 1). In one of the isolates 
in which the intIl gene was detected, amplifi-

cation and sequencing with primers specific 
for conserved segments of class 1 integrons 
detected dfrA12 and aadA2, which encodes 
an aminoglycoside adenyl transferase con-
ferring streptomycin resistance.

Transfer of resistance determinants
Transformants were obtained from 

the isolated plasmid DNA of 20/24 resis-
tant isolates. Most of the transformants 
(18/20) were recovered on media with tet-
racycline, while only 1/20 were recovered 
on media with chloramphenicol and 1/20 
on media with trimethoprim. However, the 
major part of the genes conferring resis-
tance to sulfisoxazole and chlorampheni-
col were co-transferred with the tetA gene 
(Table 2). Despite repeated attempts, no 
transformants were obtained from plasmid 
DNA isolated from the remaining four re-
sistant isolates. 

The tetA gene was transferred from al-
most all isolates in which it was detected 
(19/20). The blaTEM gene was transferred 

Fig. 1. Phenotypic and genotypic resistance per antibiotic. The numbers of phenotypically resistant isolates 
with corresponding genotypes (for full resistance) are indicated. Resistance genotypes are numbered 
from 1 to 4 according to the detection frequency from highest to lowest. 1: tetA (TE); sul2 (SF and 
TS); dfrA12 (W); floR (C); or blaTEM (AMP and SAM). 2: tetB (TE); or sul3 (SF and TS). 3: tetA-tetB 
(TE); sul1 (SF); sul1-dfrA12(TS). 4: sul3-dfrA12 (TS). nd: Resistance genotype not determined, IR: 
intermediate resistance. TE, tetracycline; SF, Sulfisoxazole; W, trimethoprim; C, Chloramphenicol; 
TS, Trimethoprim-sulfamethoxazole; AMP, ampicillin; SAM, ampicillin-sulbactam; CIP, ciprofloxacin.
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from 1/6 of the isolates in which it was de-
tected, the sul genes were transferred from 
10/12 isolates (8 sul2 and 2 sul3), floR from 
4/6 and dfrA12 from 1/2 isolates contain-
ing this gene. The tetB gene was not trans-
ferred under the conditions employed. The 
resistance genes most frequently detected in 
our isolates, tetA and sul2, hybridized with 
plasmid DNA isolated from most (18/20), or 
all isolates (8/8), respectively, in which the 
genes had been detected by PCR, confirm-
ing that they were carried on plasmids (not 
shown).

The transfer capability of the tetA gene 
was tested by conjugation experiments with 
five isolates in which the tetA gene was 
detected. Transconjugants were obtained 
from two isolates at the high frequencies of 
7.5 x 10-3 y 1.95 x 10-2, demonstrating that 
the tetA gene was carried on conjugative 
plasmids at least in these two isolates. One 
of these five isolates with the tetA gene gen-
erated neither transformants nor transcon-
jugants; nevertheless, only scant plasmid 
DNA could be obtained from this isolate, 
perhaps because its plasmid was either very 
large or present at a very low copy numbers.

E. coli phylogroup analysis
Of the 36 bacterial isolates studied, 20 

belonged to group phylogenetic C, nine to 
group A, six to group B1, and one to group 
B2 (Table 1).

DISCUSSION

In the present work, we analyzed phe-
notypic antibiotic-resistance, detected cor-
responding antibiotic-resistance genes, 
evaluated their transferability, and deter-
mined the phylogroups of 36 E. coli isolates 
obtained from a wastewater treatment plant. 
Similar to other studies of resistant E. coli 
isolates from wastewater and treatment 
plants 17-21, the most frequent resistance en-
countered was to tetracycline, sulfonamide, 
trimethoprim, and ampicillin. In contrast, 
resistance to the carbapenems and cipro-
floxacin was infrequent or not detected. Our 
results differ from a previous phenotypic 
study of E. coli isolates from stabilization 
ponds in Maracaibo, Venezuela, that found 
a higher proportion of resistance for ampi-
cillin (81.25%) followed by tetracycline and 
trimethoprim 21. In comparison, a study of 
E. coli isolates from a treatment plant in Cu-
maná (Venezuela) found 73.3% and 23.3% of 
ampicillin and tetracycline resistance, re-
spectively. These discrepancies may be due 
to differences in the treatment systems. 

Although tetracycline and sulfonamide, 
to which we found medium to high frequen-
cies of resistance (22% to 64%), have been, 
for the most part, replaced by newer agents 
in human medicine, they are still classified 
as highly important by the World Health Or-
ganization.23 Ampicillin (28% resistance) is 

Table 2 
Antibiotic resistance profiles of transformants and transconjugants.

Genotype Phenotype Number of 
transformants (N=20)

Number of 
transconjugants (N=2)

tetA-sul2 TE-SF 8 -

tetA-sul3 TE-SF 1 -

tetA TE 6 2

tetA-floR TE-C 3 -

tetA- sul3- dfrA12 TE-SF-W 1 -

flor- blaTEM C-AMP 1 -
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still frequently used and considered critical-
ly important in human medicine, as are the 
antibiotics for which we found less frequent 
resistance (8% to 11%).

The antibiotic resistance we observed is 
common in E. coli isolated from healthy hu-
mans in low and middle-income countries 24, 
and the antibiotic-resistance in human iso-
lates of E. coli has been correlated with the 
resistance in E. coli isolated from the local 
wastewater 25. The resistance patterns may 
also be affected by selection or adaptation 
to the specific characteristics of the treat-
ment plant 26.A high prevalence of the tetA, 
sul2, and blaTEM genes has been previously 
observed in E. coli isolated from other treat-
ment plants.17, 27 However, previous studies 
have predominantly found the cat gene in 
chloramphenicol-resistant isolates 17, 25, but 
most of our chloramphenicol resistant iso-
lates carried the floR gene. In contrast, the 
cat gene was not detected.  

We found the intI1 gene in 13.9% of 
total isolates, similar to a study by Figueira 
et al. that found the gene in 22.3 % of E. 
coli isolates from treated wastewater 20. In-
tegrons contribute to the spread of multi-
drug resistance, and class I integrons are the 
most important in clinical isolates 28. 

Horizontal transmission of plasmids car-
rying resistance genes is a crucial route for 
disseminating resistance. Similar to our re-
sults, a previous study of E. coli and other fe-
cal coliforms isolated from treatment plants 
found that most plasmid transformants were 
resistant to tetracycline, followed by chlor-
amphenicol and trimethoprim 29. The resis-
tance genes tetA, blaTEM, tetB, sul, floR, and 
dfrA12 can be found on chromosomes, but 
as we observed, they are frequently carried 
on plasmids 30-35. 

E. coli isolates can be classified into 
seven main phylogenetic groups: A, B1, B2, 
C, D, E, and F. Intestinal pathogenic E. coli 
strains have been associated with groups 
A, B1, and E, while extra-intestinal strains 
mainly belong to groups B2 and D36. Howev-
er, Group C can also include human patho-

genic strains, as shown in a study of human 
isolates from the USA and Europe, in which 
phylogroup C was associated with uropatho-
genic E. coli, although B2 and D predomi-
nated 37. Jafari et al. found that group C was 
the most common (21.3%) among Shiga 
toxin-producing E. coli (STEC) patient iso-
lates 38. It has been suggested that some E. 
coli phylogroups, particularly groups A and 
B1 (or non-B2), are more prone to develop 
antibiotic resistance to traditional antibiot-
ics and fluoroquinolones 39, 40.Most previous 
studies assigning E. coli phylogroups have 
used the triple PCR method 41 that identifies 
only four groups: A, B1, B2, and D. Several 
studies have found group A to predominate 
in wastewater, followed by D or B120. Group 
A is also the phylogroup most frequently 
observed in human commensal isolates, fol-
lowed by B2 group 42. Researchers employ-
ing the quadruplex method plus the group C 
specific PCR, or in silico typing, have found 
that phylogroup C is less frequent than other 
phylogroups in samples from birds, humans, 
non-human mammals, domestic animals, 
wild animals, river and lake water43-45. Two 
studies on strains from wastewater found 
that group A or B2 predominated, while 
none or only 1% belonged to group C 17, 46. 

Therefore, the presence of group C in 
most of our isolates differs from the findings 
in similar studies and could be due to geo-
graphical location or climate differences, as 
these factors may influence the distribution of 
phylogroups 45. It is also possible that previous 
studies that used only the triple PCR method 
classified C group isolates as group A. 

In conclusion, we observed E. coli iso-
lates resistant to diverse antibiotics, includ-
ing some clinically essential agents and found 
that many were associated with transferable 
genetic determinants and class 1 integrons. 
Also, in contrast to other studies, many of 
our isolates belonged to the phylogroup C. 
The characteristics of the isolates we stud-
ied may have been determined by the influ-
ent water, the nature of the treatment plant, 
and environmental conditions, but an evalu-
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ation of the contribution of each of these as-
pects would require a much larger study with 
many more isolates. Similar studies should 
be repeated in the same treatment plant 
and undertaken in other treatment plants in 
Venezuela, and these studies should be ex-
tended to include untreated wastewater and 
focus on resistance to the newer, currently 
more commonly used antibiotics.
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