

Invest Clin 62(4): 295 - 306, 2021 https://doi.org/10.22209/IC.v62n4a01

Thymosin β 4 regulates endothelial cell function via activating the AKT pathway.

UNIVERSIDAD DEL ZULIA

Yong Tang¹, Hao Dong¹, Wenbin Lu², Xiaofeng Zhang¹, Xiao Shen¹ and Peizhe Zhang¹

¹Department of Cardiology, Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, China.

²Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Zhongda, China.

Key words: thymosin β4; HUVECs; proliferation; migration; apoptosis; AKT signaling.

Abstract. The vascular eendothelial cells are highly heterogeneous and associated with numerous diseases. Thymosin $\beta 4$ (T $\beta 4$) plays pleiotropic roles in endothelial cell differentiation, migration and angiogenesis. However, the underlying mechanisms played by $T\beta4$ in the regulation of endothelial cells have not yet been well investigated. In the present study, TB4 -GFP adenovirus, transfected into human umbilical vein endothelial cells (HUVECs), and cell morphology were analyzed by fluorescence microscopy. ELISA was used to determine the concentration of T β 4 expression. Furthermore, the effects of T β 4 overexpression on HUVECs proliferation, apoptosis and migration were investigated. Real-time quantitative PCR and western blot were conducted to examine mRNA and protein expression in HUVECs with T β 4 overexpression. Moreover, the underlying molecular mechanism of T β 4 in HUVECs function was tested through treatment with LY294002, a PI3K/AKT inhibitor. Overexpression of T β 4 increased the cell ability of HUVECs, and up-regulated the expression of the proliferation markers PCNA and Cyclin D1. In addition, overexpression of Tβ4 reduced HUVECs apoptosis, both under normoxic and hypoxic conditions. Moreover, overexpression of T β 4 increased the ability of HUVECs to migrate through the membrane and up-regulated levels of MMP-2 and MMP-9. The use of LY294002 decreased the p-AKT (Ser473) level, which was induced by TB4 overexpression. Importantly, LY294002 reduced Tβ4-induced HUVECs proliferation and migration. In conclusion, our results suggest that T β 4 is a major regulator of HUVECs function by activating the AKT signaling pathway.

Corresponding author: Yong Tang. Department of Cardiology, Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, China. Email: tangyong86@126.com

La timosina β 4 regula la función de las células endoteliales, activando la vía AKT.

Invest Clin 2021; 62 (4): 295-306

Palabras clave: timosina β4; HUVEC; proliferación; migración; apoptosis; señalización de AKT.

Resumen. Las células endoteliales vasculares son muy heterogéneas y están asociadas con numerosas enfermedades. La Tβ4 desempeña papeles pleiotrópicos en la diferenciación, migración y angiogénesis de células endoteliales. Sin embargo, los mecanismos fundamentales que realiza la T β 4 en la regulación de las células endoteliales aún no han sido bien investigados. En el presente estudio se analizaron el adenovirus Tβ4 –GFP transfectado en las células endoteliales de vena umbilical humana (HUVEC) y la morfología celular, mediante microscopía de fluorescencia. ELISA se utilizó para determinar la concentración de la expresión de T β 4. También, se investigaron los efectos de la sobrexpresión de la T^{β4}, sobre la proliferación de las HUVEC, la apoptosis y la migración. Se realizaron la PCR cuantitativa en tiempo real y el Western blot para examinar el mRNA y la expresión de proteínas en las HUVEC con sobreexpresión de T β 4. Además, se probó el mecanismo molecular subvacente de T β 4 sobre la función de las HUVEC mediante el tratamiento con LY294002, un inhibidor de la PI3K/ AKT. La sobreexpresión de T^{β4} aumentó la capacidad celular de las HUVEC, regulando al alza la expresión de los marcadores de proliferación PCNA y Ciclina D1. Además, la sobre expresión de T β 4 redujo la apoptosis de las HUVEC, tanto en condiciones normóxicas como hipóxicas. Por otra parte, la sobreexpresión de T β 4 aumentó la capacidad de las HUVEC a migrar a través de la membrana y reguló hacia arriba los niveles de MMP-2 y MMP-9. El uso del LY294002 disminuyó el nivel de p-AKT (Ser473), que fue inducido por la sobreexpresión de T β 4. Es importante destacar que LY294002 bajó la proliferación y la migración de las HUVEC inducidas por T β 4. En conclusión, nuestros resultados sugieren que T β 4 es un regulador principal de la función de las HUVEC mediante la activación de la vía de señalización de AKT.

Received: 06-04-2021 Accepted: 30-05-2021

INTRODUCTION

The vascular endothelial cells are highly heterogeneous and associated with numerous diseases, such as atherosclerosis (1). Atherosclerosis causes stroke and coronary heart disease (2), aging induced cardiovascular disease (3), diabetes mellitus (4), vascular injuries induced by limb ischemia and reperfusion (5), etc. However, the underlying mechanism of endothelial cell proliferation, apoptosis and migration has not been fully elucidated.

Thymosin beta 4 (T β 4) was first isolated from calf thymus and it is a highly conserved G-actin-sequestering peptide (6). It has been reported that T β 4 is expressed in various cell types, such as endothelial cells, and plays pleiotropic roles in endothelial cell differentiation, migration, and angiogenesis (7-9). Smart *et al.* (10) found that T β 4 knockdown reduced the coronary vasculogenesis and angiogenesis by a significant reduction in the pro-angiogenic cleavage product N-acetylseryl-aspartyl-lysyl-proline (AcSDKP) in mice heart. T β 4, which was secreted from the myocardium, promoted epicardium-derived cells inward migration and differentiation into endothelial cells, and further to form the coronary vasculature (11). TB4 could activate mast cells to produce angiogenesis associated factors, such as VEGF, and stimulate endothelial cell migration and differentiation (12). Although the pieces of evidence mentioned above demonstrated beneficial roles of T β 4 for cardiac disease treatment by regulating endothelial cell function, the underlying mechanisms played by T β 4 have not yet been well considered. In this study, we aimed to investigate the role of TB4 in the regulation of HUVECs proliferation, apoptosis, and migration through the AKT signaling pathway.

MATERIALS AND METHODS

Cell culture

Human HUVECs were obtained from Nanjing KeyGen Biotech Co. Ltd. (Nanjing, China) and cultured in RPMI-1640 (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA), streptomycin and penicillin (Nanjing KeyGen Biotech Co. Ltd.) at 37° C under a humidified 5% CO₂ atmosphere. The hypoxic condition was made in a sealed chamber with a gas mixture containing 5% CO₂, 92% N₂, and 3% O₂.

Cell transfection

TB4-GFP adenovirus (Ad-Tβ4) and its negative control (Ad-NC) were obtained from GenePharma Co., Ltd. (Shanghai, China). Logarithmic growth phase HUVECs were seeded into 6-well plates $(8 \times 10^3 \text{ cells/} \text{ well})$ and then infected with Ad-T β 4 or Ad-NC at an MOI of 25. The efficiency of infection was assessed by green fluorescence protein (GFP), and expression of GFP in HUVECs was confirmed by fluorescence microscopy.

The enzyme-linked immunosorbent assay (ELISA)

The concentration of T β 4 in supernatant fluid of cultured HUVECs were analyzed by a human T β 4 ELISA kit (Jingkang Bioengineering Co., Ltd., Shanghai, China) according to the manufacturer's instructions.

Cell proliferation assay

To investigate the effect of T β 4 up-regulation on HUVECs, an MTT assay was designed. In brief, 5×10^4 HUVECs were seeded into 96-well plates and were infected with Ad-T β 4 or Ad-NC for 24 h. Then 20 μ L of 5 mg/mL [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide (MTT)] (Amresco, Washington, USA) in PBS was added and incubated at 37 °C for 4 h. Subsequently, 150 μ L dimethylsulfoxide (DMSO; Sigma, USA) was added to each well to dissolve the formazan product. The absorbance was measured at 490 nm using a microplate reader (Bio-Rad, Hercules, CA, USA).

Cell apoptosis assay

To explore the effect of TB4 on HUVECs apoptosis, 1×10^6 HUVECs cells were collected, washed with PBS, and resuspended in 100 μ L binding buffer, containing 5 μ L Annexin V-APC and 5 μ L 7-AAD (BD Biosciences, Franklin Lakes, NJ, USA) at room temperature. Then, the cell apoptosis was tested using a flow cytometer (BD FACSCalibur, BD Biosciences, CA, USA). Four subpopulations were divided in figure from flow-cytometric analysis: normal cells (Annexin V-APC-/7-AAD-), necrotic cells (Annexin V-APC-/7-AAD+), early apoptotic (Annexin V-APC+/7-AAD-) and late apoptotic (Annexin V-APC+/7-AAD+). Apoptosis index was the total rates of early apoptotic and late apoptotic cells.

Cell migration assay

For cell migration assay, the Transwell cell culture chambers with 8- μ m pore polycarbonate membrane filters (Millipore, Billerica, MA, USA) were used. Approximately 5×10^5 HUVECs, which mixed in FBS-free RPMI-1640, were seeded into the upper chamber, whereas the lower chamber was filled with RPMI-1640 containing 5% FBS. After 24 h, non-migrated cells from the upper chamber were removed; and migrated cells to the bottom side of the membrane were fixed with 90% alcohol and stained with crystal violet. The migrated cells were counted under a light microscope with 200-fold magnification.

RNA isolation and real-time quantitative PCR

Total RNA from cultured HUVECs was extracted using a miRNeasy kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Total RNA (1 μ g) was reverse transcribed into cDNA by MuLV reverse transcriptase (NEB, USA). Real-time quantitative PCR (RT-qPCR) analysis was performed using Fast SYBR Green (Applied Biosystems, Forster City, CA, USA). Details of the specific RT-qPCR primers to determine relative levels of gene expression are shown in Table I.

Western Blot

HUVECs were lysed with the RIPA lysis buffer (Sigma, USA) according to the manufacturer's instruction. Equal protein was separated by using the 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a polyvinylidene difluoride (PVDF) membrane (Millipore, MA, USA). The membranes were blocked with 5% skim milk, and probed overnight at 4°C using the following primary antibodies: anti-PCNA (Abcam, MA, USA), anti-Cyclin D1 (Abcam, MA, USA), anti-MMP-2 (Cell Signaling Technology, Beverly, MA, USA), anti-MMP-9 (Cell Signaling Technology, Beverly, MA, USA), anti-cleaved caspase-3 (Abcam, MA, USA), anti-AKT (Cell Signaling Technology, Beverly, MA, USA), anti-p-AKT (Ser473) (Cell Signaling Technology, Beverly, MA, USA), and GAPDH (Abcam, MA, USA). Then, the membrane was incubated with HRP-labelled secondary antibody (Abcam, MA, USA) and visualized using an enhanced chemiluminescence system (GE Healthcare, Piscataway, NJ, USA).

Statistical analysis

The data in this study were analyzed by Graphpad Prism 5.0 software and displayed as mean \pm standard deviation (SD). The Stu-

Gene name	Primer sequence $(5' \rightarrow 3')$
PCNA	Forward: CCTGCTGGGATATTAGCTCCA
	Reverse: CAGCGGTAGGTGTCGAAGC
Cyclin D1	Forward: GCTGCGAAGTGGAAACCATC
	Reverse: CCTCCTTCTGCACACATTTGAA
MMP-2	Forward: TGACTTTCTTGGATCGGGTCG
	Reverse: AAGCACCACATCAGATGACTG
MMP-9	Forward: TGTACCGCTATGGTTACACTCG
	Reverse: GGCAGGGACAGTTGCTTCT
GAPDH	Forward: GGAGCGAGATCCCTCCAAAAT
	Reverse: GGCTGTTGTCATACTTCTCATGG

 TABLE I

 PRIMER SEQUENCES USED IN RT-qPCR EXPERIMENTS.

dent's t-test was used to compare the means between the two groups. A value of p < 0.05was considered to indicate a statistically significant difference.

RESULTS

Tβ4 overexpression promotes HUVECs proliferation

To explore the role of T β 4 in the regulation of HUVECs function, we infected HUVECs with Ad-T β 4 or Ad-NC (Fig. 1A). An ELISA analysis was conducted to verify the transfection efficiency, and the results showed that Ad-T β 4 significantly elevated T β 4 expression in HUVECs (Fig. 1B).

The overexpression of T β 4 significantly promoted HUVECs growth (Fig. 2A). Moreover, RT-qPCR and western blot analysis indicated that the mRNA and protein expression of PCNA and Cyclin D1, which are cell proliferation markers, significantly increased in HUVECs infected with Ad-T β 4 (Fig. 2B-D). These data confirmed that $T\beta 4$ promoted the growth of HUVECs.

Tβ4 overexpression reduces HUVECs apoptosis

To investigate whether T β 4 could affect HUVECs apoptosis, HUVECs were stained with Annexin V, and followed by flow cytometry. As shown in Fig. 3A, HUVECs infected with Ad-TB4 showed less rate of cell apoptosis compared with cells infected with Ad-NC. The level of cleaved caspase-3 in HUVECs infected with Ad-TB4 was down-regulated when compared with HUVECs infected with Ad-NC (Fig. 3B). Also, the effect of $T\beta4$ on HUVECs apoptosis under hypoxic conditions was examined by flow cytometry. The apoptosis results showed that hypoxia significantly increased the rate of HUVECs apoptosis, whereas overexpression of TB4 decreased HUVECs apoptosis after exposure to hypoxic conditions (Fig. 3C). Moreover, overexpression of TB4 reduced the level of cleaved cas-

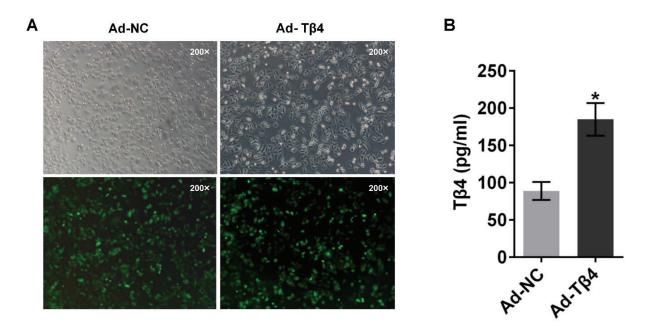


Fig.1. The level of Tβ4 was increased in HUVECs infected with Ad-Tβ4. (A) Morphology of HUVECs observed under a fluorescence microscope upper panel, bright field, 200×; lower panel, fluorescence field, 200×). (B) Tβ4 concentration determined by ELISA. Data are presented as means ± S.D. from 3 independent experiments. *p<0.05.</p>

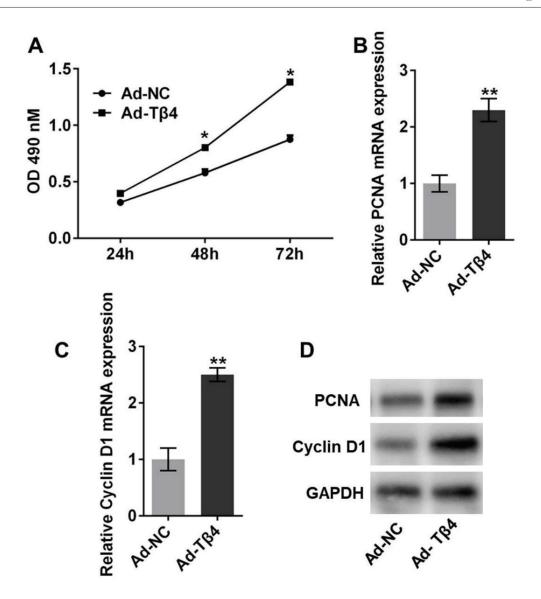


Fig. 2. T β 4 overexpression promoted HUVECs proliferation. (A) CCK-8 analysis of the cell proliferation in HUVECs infected with Ad-NC or Ad-T β 4. (B, C) The relative mRNA level of PCNA (B) and Cyclin D (C) in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) The protein level of PCNA and Cyclin D in HUVECs infected with Ad-NC or Ad-T β 4. (D) HUVECs infected with Ad-NC or Ad-T β 4. (D) HUVECs infected with Ad-NC or Ad-T β 4. (D) HUVECs infected with Ad-NC or Ad-T β 4. (D) HUVECs infected with Ad-NC or Ad-T β 4. (D) HUVECs infected with Ad-NC or Ad-T β 4. (D) HUVECs infected with A

pase-3 in HUVECs after exposure to hypoxic conditions (Fig. 3D). Our data indicated that $T\beta4$ could inhibit HUVECs apoptosis both under normoxic and hypoxic conditions.

Tβ4 overexpression promotes HUVECs migration

To demonstrate the role of $T\beta4$ in HU-VECs migration, a Transwell migration assay was conducted. As shown in Fig.4.A, overexpression of T β 4 increased the ability of HU-VECs to migrate through the membrane. MMPs are the main proteolytic enzymes that contribute to the degradation of the extracellular matrix and serve critical roles in the invasion process (13). RT-qPCR determined that T β 4 overexpression up-regulated the mRNA and protein levels of MMP-2 and MMP-

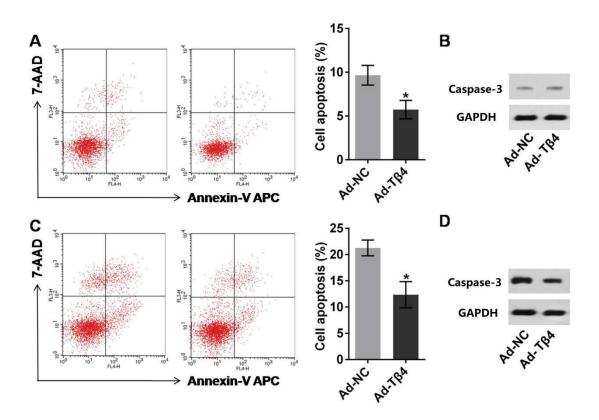


Fig. 3. Tβ4 overexpression reduced HUVECs apoptosis. (A) Scatter diagram and Histogram of apoptosis in HUVECs infected with Ad-NC or Ad-Tβ4. (B) The protein level of cleaved caspase-3 in HUVECs infected with Ad-NC or Ad-Tβ4. (C) Scatter diagram and Histogram of apoptosis in HUVECs infected with Ad-NC or Ad-Tβ4 under hypoxic conditions. (D) The protein level of cleaved caspase-3 in HUVECs infected with Ad-NC or Ad-Tβ4 under hypoxic conditions. Data are presented as means ± S.D. from 3 independent experiments. *p<0.05.</p>

9 (Fig. 4B and 4C). These data confirmed that T β 4 remarkably promoted the HUVECs migration.

Tβ4 overexpression activates AKT signaling pathway

It has been reported that T β 4 could regulate the migratory and proliferative activity of high glucose-treated HUVECs by activation of the AKT signaling pathway (14). Therefore, we hypothesized that overexpression of T β 4 might regulate HUVECs function via the AKT signaling pathway. As shown in Fig. 5, western blot analysis indicated that the p-AKT (Ser473) level in HUVECs infected with Ad-T β 4 was significantly increased. To evaluate the possibility that T β 4 exerts its function through the AKT pathway, HU-VECs were treated with LY294002, a PI3K/ AKT inhibitor (15-18). After exposure to LY294002 (50 μ mol/L (19)), the expression of the p-AKT (Ser473) level was significantly decreased, which was induced by T β 4 overexpression (Fig. 5).

Inhibition of AKT signaling reduces Tβ4-induced HUVECs proliferation and migration

To demonstrate that the AKT signaling regulated T β 4-induced proliferation and migration, the Ad-T β 4 infected HUVECs were treated with LY294002. As shown in Fig. 6A, LY294002 reduced the cell numbers of HUVECs induced by T β 4 overexpression.

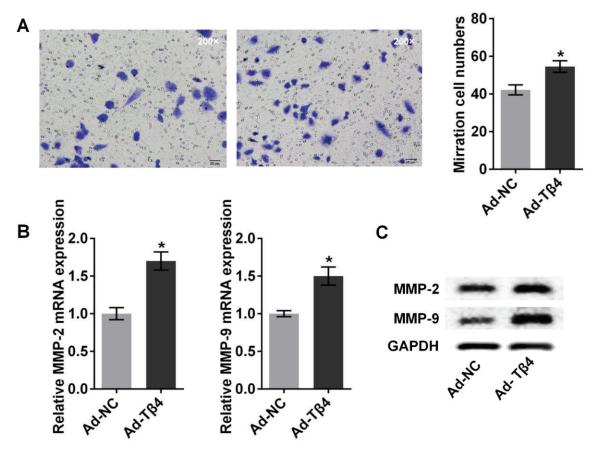


Fig. 4. T β 4 overexpression promoted HUVECs migration. (A) The cell migratory ability was investigated when HUVECs were infected with Ad-NC or Ad-T β 4 (200x). (B) The relative mRNA level of MMP-2 and MMP-9 in HUVECs infected with Ad-NC or Ad-T β 4. (C) The protein level of MMP-2 and MMP-9 in HUVECs infected with Ad-NC or Ad-T β 4. Data are presented as means ± S.D. from 3 independent experiments. *p<0.05.

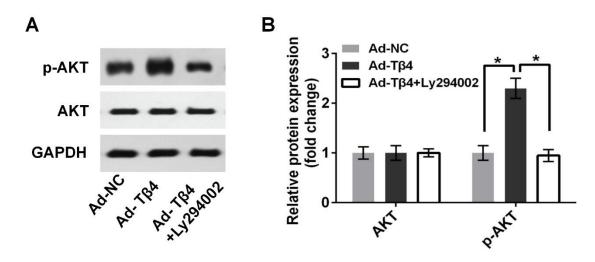


Fig. 5. T β 4 enhanced AKT signaling. (A) The protein level of p-AKT (Ser473) and AKT in HUVECs infected with Ad-NC or Ad-T β 4. (B) The density of the western blots bands shown in (A) was quantified using ImageJ software. Data are presented as means ± S.D. from 3 independent experiments. *p<0.05.

LY294002 enhanced the apoptosis rate of HUVECs, which was decreased by T β 4 overexpression (Fig. 6. B). Furthermore, LY294002 could reverse the T β 4 overexpression-mediated increase in the ability of HUVECs to migrate through the membrane (Fig. 6C).

DISCUSSION

The novelty of our findings was as follows: (1) gene expression modalities of T β 4 alongside its mechanism of actions in endothelial cells, which clarifies the T β 4 function in biomolecular levels, (2) the role of T β 4 in endothelial cells under both, normoxic and hypoxic conditions.

Vascular endothelial cells, which cover the intima of the vascular wall, play an essential role in maintaining vascular wall tension, repairing vascular wall inflammation and promoting vascular proliferation, by secreting a variety of vasoactive substances (20,21). The dysfunction of vascular endothelial cells plays a central role in the pathogenesis of vascular-associated diseases (20). Therefore, controlling endothelial cell function may be a potential novel therapeutic strategy against vascular-associated diseases. The results of this study confirmed that T β 4 plays an important role in the regulation of HUVECs proliferation, apoptosis, and migration. According to the above findings, this study revealed the beneficial effects of Tβ4 on endothelial cells, which may provide novel insights into the potential application of T β 4 for vascular protection and therapy in

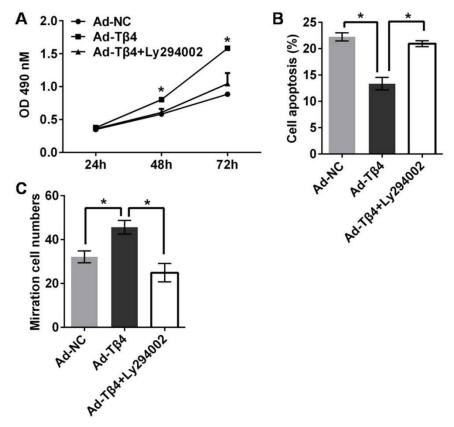


Fig. 6. T β 4 regulated HUVECs proliferation and migration via AKT signaling (A) T β 4-induced HUVECs proliferation was abolished by the AKT signaling inhibitor Ly294002. (B) T β 4-reduced HUVECs apoptosis was abolished by the AKT signaling inhibitor Ly294002. (C) T β 4-induced HUVECs migration was abolished by the AKT signaling inhibitor Ly294002. Data are presented as means ± S.D. from 3 independent experiments. *p<0.05.

vascular-related diseases, including cardiovascular, cerebrovascular, coronary artery, and diabetes diseases.

Tβ4 has been shown to be secreted from embryonic endothelial progenitor cells, endothelial cells, and cardiomyocytes (10,22), suggesting that it may play an important role in endothelial cell function. It has been demonstrated that HUVECs transfected with Tβ4 increased the rate of tube formation on Matrigel while silencing of TB4 abrogated tube formation (23). The addition of exogenous TB4 can enhance vascular sprouting in cultured HUVECs by inducing several biological responses (24). Ho et al. found that exogenous TB4 protected bovine corneal endothelial cells from low-dose ultravioletinduced oxidative stress and apoptosis (25). Tβ4 also mediated the inhibitory effect on endothelial progenitor cells apoptosis induced by serum deprivation (26). Qiu et al. (27) reported that T β 4 could induce circulating endothelial progenitor cell directional migration, which is essential for re-endothelialization and neovascularization. Moreover, Tβ4 could increase telomerase activity and inhibit the senescence of endothelial progenitor cells (28). In our study, we used T β 4expressing adenovirus to demonstrate the effect of Tβ4 on HUVECs proliferation, apoptosis, and migration. Our results showed that T β 4 overexpression promoted HUVECs proliferation and migration. Furthermore, Tβ4 overexpression could effectively reduce the HUVECs apoptosis under normoxic and hypoxic conditions. Hence, both previous studies and our results indicate that TB4 plays an important role in the function of HUVECs.

It has been investigated that the molecular mechanism of T β 4-regulating endothelial cell function involved various known regulatory pathways (7). It has been reported that T β 4 could promote the migration and proliferation of embryonic endothelial cells via activating protein kinase C (PKC) activity (29). Moreover, T β 4 induced the migration of endothelial progenitor cells via the PI3K/AKT/eNOS signaling pathway (14). Lv et al. found that T β 4 significantly reduced VE-cadherin expression levels in HUVECs through the Notch signaling pathway (30). In high-glucose-exposed vascular endothelial cells, TB4 protects against hyperglycemia-induced damage of endothelial cells via up-regulating the expression of insulin-like growth factor-1 (IGF-1) (31). In the present study, overexpression of TB4 significantly increased the p-AKT (Ser473) level in HUVECs, while LY294002, a PI3K/AKT inhibitor, decreased the p-AKT (Ser473) level, which was induced by TB4 overexpression. LY294002 reduced Tβ4-induced HUVECs proliferation and migration. Thus, T β 4 could regulate the cell function of HUVECs via the AKT signaling pathway. Except for AKT signaling pathway, we couldn't rule out the possibility that $T\beta 4$ regulated HUVECs function by an alternative signaling pathway.

In conclusion, the results of the present study indicate that T β 4 is a major regulator of HUVECs function. T β 4 increased proliferation and migration, while reduced apoptosis of HUVECs. The underline mechanism is the increase of p-AKT (Ser473) level by T β 4, which is demonstrated by the PI3K/ AKT inhibitor LY294002. These results provide novel insights into the role of T β 4 in the pathogenesis of vascular-associated diseases.

ACKNOWLEDGMENTS

The present study was supported by the Special Fund for Medical Science Development of Health Committee of Nanjing (No. YKK18152).

REFERENCES

- 1. Wu X, Zheng X, Cheng J, Zhang K, Ma C. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HU-VEC. Life Sci 2020; 243: p. 117287.
- 2. Chen H, Liu X, Wu Y, Wu X, Wen X, Lu Y, Zhao X. Apoptosis in HUVECs induced by

microRNA-616-3p via X-linked inhibitor of apoptosis protein targeting. Exp Ther Med 2021;21(6):661.

- Jiang F, Xu XR, Li WM, Xia K, Wang LF, Yang XC. Monotropein alleviates H2O2-induced inflammation, oxidative stress and apoptosis via NF-κB/AP-1 signaling. Mol Med Rep 2020;22(6):4828-4836.
- 4. Nie J. inhibits high glucose induced apoptosis in HUVEC by targeting Rab4. Biomed Pharmaother 2020;131: p. 110662.
- Mi L, Zhang Y, Xu Y, Zheng X, Zhang X, Wang Z, Xue M, Jin X. HMGB1/RAGE proinflammatory axis promotes vascular endothelial cell apoptosis in limb ischemia/ reperfusion injury. Biomed Pharmacother. 2019; 116:109005.
- 6. Low T, Hu S-K, Goldstein AL. Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci 1981;78(2):1162-1166.
- **7. Dubé KN, Smart N.** Thymosin β4 and the vasculature: multiple roles in development, repair and protection against disease. Expert Opin Biol Ther 2018;18(sup1):131-139.
- 8. Kupatt C, Horstkotte J, Vlastos GA, Pfosser A, Lebherz C, Semisch M, Thalgott M, Büttner K, Browarzyk C, Mages J. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. The FASEB J 2005;19(11):1576-1578.
- Smart N, Risebro CA, Clark JE, Ehler E, Miquerol L, Rossdeutsch A, Marber MS, Riley PR. Thymosin β4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci 2010;1194(1):97-104.
- Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 2007;445(7124):177-182.
- Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR. Thymosin β4 is essential for coronary vessel development and promotes neovasculariza-

tion via adult epicardium. Ann N Y Acad Sci 2007;1112(1):171-188.

- 12. Wyczółkowska J, Walczak-Drzewiecka A, Wagner W, Dastych J. Thymosin β4 and thymosin β4-derived peptides induce mast cell exocytosis. Peptides 2007;28(4):752-759.
- 13. Sun C, Feng SB, Cao ZW, Bei JJ, Chen Q, Xu XJ, Zhou Z, Yu ZP, Hu HY. Up-regulated expression of matrix metalloproteinases in endothelial cells mediates platelet microvesicle-induced angiogenesis. Cell Physiol Biochem 2017;41(6):2319-2332.
- 14. Qiu F, Song J, Bi X, Wang M, Zhao Y, Fu G. Thymosin $\beta4$ promotes glucose-impaired endothelial progenitor cell function via Akt/ endothelial nitric oxide synthesis signaling pathway. Exp Ther Med 2018;16(4):3439-3444.
- 15. Dong W, Luo B, Qiu C, Jiang X, Shen B, Zhang L, Liu W, Zhang W. TRIM3 attenuates apoptosis in Parkinson's disease via activating PI3K/AKT signal pathway. Aging (Albany NY) 2020;13(1):735-749.
- 16. Wang Y, Lin Y, Wang L, Zhan H, Luo X, Zeng Y, Wu W, Zhang X, Wang F. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/ FoxO3a signaling pathway in Alzheimer's disease mice. Aging (Albany NY) 2020;12(20):20862-20879.
- 17. Xu L, Chen J, Jia L, Chen X, Awaleh Moumin F, Cai J. SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. J Cell Mol Med 2020 ;24(24):14392-14404.
- 18. Zhu S, Liu X, Xue M, Li Y, Cai D, Wang S, Zhang L. 20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF- α / caspase8 signaling cascades. J Ginseng Res 2021;45(2):295-304.
- Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, Sun G, Sun X. Protective effects of total saponins of *Aralia elata* (Miq.) on endothelial cell injury induced by TNF-α via modulation of the PI3K/Akt and NF-κB signalling pathways. Int J Mol Sei 2018;20(1):36.
- Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothe-

lium and human diseases. Int J Biol Sci 2013;9(10):1057.

- **21.** Palmer RM, Ashton D, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333(6174):664-666.
- 22. Kupatt C, Bock-Marquette I, Boekstegers P. Embryonic endothelial progenitor cell-mediated cardioprotection requires Thymosin β4. Trends Cardiovasc Med 2008;18(6):205-210.
- 23. Grant D, Kinsella J, Kibbey M, LaFlamme S, Burbelo P, Goldstein A, Kleinman, HK. Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J Cell Sci 1995;108(12):3685-3694.
- **24.** Grant DS, Rose W, Yaen C, Goldstein A, Martinez J, Kleinman H. Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 1999;3(2):125-135.
- 25. Ho J, Su Y, Chen KH, Lee O. Protection of thymosin beta-4 on corneal endothelial cells from UVB-induced apoptosis. Chin J Physiol 2010;53(3):190-195.
- 26. Zhao Y, Qiu F, Xu S, Yu L, Fu G. Thymosin β 4 activates integrin-linked kinase and decreases endothelial progenitor cells apoptosis under serum deprivation. J Cell Physiol 2011;226(11):2798-2806.

- 27. Qiu FY, Song XX, Zheng H, Zhao YB, Fu GS. Thymosin β4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol 2009;53(3):209-214.
- 28. Li J, Qiu F, Yu L, Zhao Y, Fu G, Zhou B. Thymosin β4 reduces senescence of endothelial progenitor cells via the PI3K/Akt/ eNOS signal transduction pathway. Mol Med Rep 2013;7(2):598-602.
- 29. Bock-Marquette I, Shrivastava S, Pipes GT, Thatcher JE, Blystone A, Shelton JM, Galindo CL, Melegh B, Srivastava D, Olson EN. Thymosin β4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol 2009;46(5):728-738.
- **30.** Lv S, Cheng G, Zhou Y, Xu G. Thymosin beta4 induces angiogenesis through Notch signaling in endothelial cells. Mol Cell Biochem 2013;381(1):283-290.
- **31.** Kim S, Kwon J. Effect of thymosin beta 4 in the presence of up-regulation of the insulinlike growth factor-1 signaling pathway on high-glucose-exposed vascular endothelial cells. Mol Cell Endocrinol 2015;401:238-247.