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Abstract

The main goal of this paper is to introduce and study a new type of contra continuity
called contra e∗θ-continuity. Also, we obtain fundamental properties and several characte-
rizations of contra e∗θ-continuous functions via e∗-θ-closed sets which are de�ned by Farhan
and Yang [11]. Moreover, we investigate the relationships between contra e∗θ-continuous
functions and other related generalized forms of contra continuity.
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continuity, contra e∗θ-closed graph.

Resumen

El objetivo principal de este documento es presentar y estudiar un nuevo tipo de contra
continuidad llamada contra e∗θ-continuidad. Además, obtenemos propiedades fundamentales
y varias caracterizaciones de funciones contra e∗θ-continuas a través de conjuntos e∗-θ cerra-
dos que están de�nidos por Farhan y Yang [11]. Además, investigamos las relaciones entre
las funciones contra continuas y otras formas generalizadas relacionadas de e∗θ-continuidad
de contra.

Palabras y frases clave: e∗-θ-conjunto abierto, e∗-θ-conjunto cerrado, contra e∗θ-
continuidad, e∗θ-continuidad, contra e∗θ-grá�co cerrado.

1 Introduction

In 1996, the concept of contra continuity [6], which is stronger than contra α-continuity [12], con-
tra precontinuity [13], contra semicontinuity [7], contra b-continuity [17], contra β-continuity [5],
is de�ned by Dontchev. Many results have been obtained related to the notions mentioned above
recently. In this paper, we de�ne and study the notion of contra e∗θ-continuity which is stronger
than contra e∗-continuity [10] and weaker than contra βθ-continuity [4]. Also, we obtain sev-
eral characterizations of contra e∗θ-continuous functions and investigate their some fundamental
properties. Moreover, we investigate the relationships between contra e∗θ-continuous functions
and seperation axioms and contra e∗θ-closedness of graphs of functions.
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2 Preliminaries

Throughout this present paper, X and Y represent topological spaces. For a subset A of a space
X, cl(A) and int(A) denote the closure of A and the interior of A, respectively. The family of all
closed (resp. open, clopen) sets of X is denoted C(X)(resp. O(X), CO(X)). A subset A is said to
be regular open [23] (resp. regular closed [23]) if A = int(cl(A)) (resp. A = cl(int(A))). A point
x ∈ X is said to be δ-cluster point [24] of A if int(cl(U))∩A 6= ∅ for each open neighbourhood U
of x. The set of all δ-cluster points of A is called the δ-closure [24] of A and is denoted by clδ(A).
If A = clδ(A), then A is called δ-closed [24], and the complement of a δ-closed set is called δ-open
[24]. The set {x|(U ∈ O(X,x))(int(cl(U)) ⊆ A)} is called the δ-interior of A and is denoted by
intδ(A).

A subset A is called α-open [18] (resp. semiopen [14], preopen [15], b-open [2], β-open [1],
e-open [8], e∗-open [9]) if A ⊆ int(cl(int(A))) (resp. A ⊆ cl(int(A)), A ⊆ int(cl(A)), A ⊆
int(clδ(A)), A ⊆ cl(int(A)) ∪ int(cl(A)), A ⊆ cl(int(cl(A))), A ⊆ cl(intδ(A)) ∪ int(clδ(A)), A
⊆ cl(int(clδ(A)))). The complement of an α-open (resp. semiopen, preopen, b-open, β-open, e-
open, e∗-open) set is called α-closed [18] (resp. semiclosed [14], preclosed [15], b-closed [2], β-open
[1], e-closed [8], e∗-closed [9]). The intersection of all e∗-closed (resp. semi-closed, pre-closed) sets
of X containing A is called the e∗-closure [9] (resp. semi-closure [14], pre-closure [15]) of A and is
denoted by e∗-cl(A) (resp. scl(A), pcl(A)). The union of all e∗-open (resp. semiopen, preopen)
sets of X contained in A is called the e∗-interior [9] (resp. semi-interior [14], pre-interior [15]) of
A and is denoted by e∗-int(A) (resp. sint(A), pint(A)).

The union of all e∗-open sets of X contained in A is called the e∗-interior [9] of A and is
denoted by e∗-int(A). A subset A is said to be e∗-regular [11] if it is e∗-open and e∗-closed. The
family of all e∗-regular subsets of X is denoted by e∗R(X).

A point x of X is called an e∗-θ-cluster (β-θ-cluster) point of A if e∗-cl(U) ∩A 6= ∅ for every
e∗-open (resp. β-open) set U containing x. The set of all e∗-θ-cluster (β-θ-cluster) points of A
is called the e∗-θ-closure [11] (β-θ-closure [19]) of A and is denoted by e∗-clθ(A) (β-clθ(A)). A
subset A is said to be e∗-θ-closed [11] (β-θ-closed [19]) if A = e∗-clθ(A) (A = β-clθ(A)). The
complement of an e∗-θ-closed (β-θ-closed) set is called an e∗-θ-open [11] (β-θ-open [19]) set. A
point x of X is said to be an e∗-θ-interior [11] (β-θ-interior [19]) point of a subset A, denoted
by e∗-intθ(A) (β-intθ(A)), if there exists an e∗-open (β-open) set U of X containing x such that
e∗-cl(U) ⊆ A (β-cl(U) ⊆ A). Also it is noted in [11] that

e∗-regular⇒ e∗-θ-open⇒ e∗-open.

The family of all open (resp. closed, e∗-θ-open, e∗-θ-closed, e∗-open, e∗-closed, regular
open, regular closed, δ-open, δ-closed, semiopen, semiclosed, preopen, preclosed) subsets of
X is denoted by O(X) (resp. C(X), e∗θO(X), e∗θC(X), e∗O(X), e∗C(X), RO(X), RC(X),
δO(X), δC(X), SO(X), SC(X), PO(X), PC(X)). The family of all open (resp. closed, e∗-θ-
open, e∗-θ-closed, e∗-open, e∗-closed, regular open, regular closed, δ-open, δ-closed, semiopen,
semiclosed, preopen, preclosed) sets of X containing a point x of X is denoted by O(X,x)
(resp. C(X,x), e∗θO(X,x), e∗θC(X,x), e∗O(X,x), e∗C(X,x), RO(X,x), RC(X,x), δO(X,x),
δC(X,x), SO(X,x), SC(X,x), PO(X,x), PC(X,x)).

We shall use the well-known accepted language almost in the whole of the proofs of the
theorems in this article. The following basic properties of e∗-closure and e∗-interior are useful in
the sequel:

Lemma 2.1. [9] Let A be a subset of a space X, then the following hold:

Divulgaciones Matemáticas Vol. 19 No. 2 (2018), pp. 23�35



On contra e∗θ-continuous functions 25

(1) e∗-cl(X \A) = X \ e∗-int(A).

(2) x ∈ e∗-cl(A) if and only if A ∩ U 6= ∅ for every U ∈ e∗O(X,x).

(3) A is e∗C(X) if and only if A = e∗-cl(A).

(4) e∗-cl(A) ∈ e∗C(X).

(5) e∗-int(A) = A ∩ cl(int(clδ(A))).

Lemma 2.2. [11] For the e∗θ-closure of a subset A of a topological space X, the following
properties are hold:

(1) A ⊆ e∗-cl(A) ⊆ e∗-clθ(A).

(2) If A ∈ e∗θO(X), then e∗-clθ(A) = e∗-cl(A).

(3) If A ⊆ B, then e∗-clθ(A) ⊆ e∗-clθ(B).

(4) e∗-clθ(A) ∈ e∗θC(X) and e∗-clθ(e
∗-clθ(A)) = e∗- clθ(A).

(5) If Aα ∈ e∗θC(X) for each α ∈ Λ, then ∩{Aα|α ∈ Λ} ∈ e∗θC(X).

(6) If Aα ∈ e∗θO(X) for each α ∈ Λ, then
⋃
{Aα|α ∈ Λ} ∈ e∗θO(X).

(7) e∗-clθ(X \A) = X \ e∗-intθ(A).

(8) e∗-clθ(A) = ∩{U |(A ⊆ U)(U ∈ e∗θC(X))}.

(9) A ∈ e∗O(X), then e∗-clθ(A) ∈ e∗R(X).

(10) A ∈ e∗R(X) if and only if A ∈ e∗θO(X) ∩ e∗θC(X).

Lemma 2.3. Let A be a subset of a topological space X and x ∈ X. The point x of X is an
e∗-θ-cluster point of A if and only if U ∩A 6= ∅ for all e∗-θ-open U containing x.

Proof. Let x /∈ e∗-clθ(A).

x /∈ e∗-clθ(A) ⇔ (∃U ∈ e∗θC(X))(A ⊆ U)(x /∈ U)

⇔ (∃ \ U ∈ e∗θO(X))(\U ⊆ \A)(x ∈ \U)

⇔ (∃V := \U ∈ e∗θO(X,x))(V ⊆ \A)

⇔ (∃V ∈ e∗θO(X,x))(V ∩A = ∅)
⇔ x /∈ {x|(∀U ∈ e∗θO(X,x))(U ∩A = ∅)}.

De�nition 2.1. A function f : X → Y is said to be contra continuous [6] (resp. contra α-
continuous [12], contra precontinuous [13], contra semicontinuous [7], contra b-continuous [17],
contra β-continuous [5], contra βθ-continuous [4], contra e∗-continuous [10]) if f−1[V ] is closed
(resp. α-closed, preclosed, semiclosed, b-closed, β-closed, β-θ-closed, e∗-closed) in X for every
open set V in Y.

De�nition 2.2. Let A be a subset of a space X. The intersection of all open sets in X containing
A is called the kernel of A [16] and is denoted by ker(A).
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Lemma 2.4. [16] The following properties hold for subsets A and B of a space X.

(1) x ∈ ker(A) if and only if A ∩ F 6= ∅ for any F ∈ C(X,x).

(2) A ⊆ ker(A).

(3) If A is open in X, then A = ker(A).

(4) If A ⊆ B, then ker(A) ⊆ ker(B).

3 Contra e∗θ-continuous functions

De�nition 3.1. A function f : X → Y is said to be contra e∗θ-continuous (brie�y c.e∗θ.c.) if
f−1[V ] is e∗-θ-closed in X for every open set V of Y .

Theorem 3.1. For a function f : X → Y, the following properties are equivalent:

(1) f is contra e∗θ-continuous;

(2) The inverse image of every closed set of Y is e∗-θ-open in X;

(3) For each point x ∈ X and each and each V ∈ C(Y, f(x)), there exists U ∈ e∗θO(X,x) such
that f [U ] ⊆ V ;

(4) f [e∗-clθ(A)] ⊆ ker(f [A]) for every subset A of X;

(5) e∗-clθ(f
−1[B])] ⊆ f−1[ker(B)] for every subset B of Y .

Proof.
(1)⇒ (2) : Let V ∈ C(Y ).

V ∈ C(Y )⇒ \V ∈ O(Y )
(1)

}
⇒ \f−1 [V ] = f−1 [\V ] ∈ e∗θC(X)⇒ f−1 [V ] ∈ e∗θO(X)

(2)⇒ (3) : Let x ∈ X and V ∈ C(Y, f(x)).

(x ∈ X)(V ∈ C(Y, f(x)))
(2)

}
⇒ f−1 [V ] ∈ e∗θO(X,x)

U := f−1 [V ]

}
⇒ (U ∈ e∗θO(X,x))(f [U ] ⊆ V ).

(3)⇒ (4) : Let A ⊆ X and x /∈ f−1[ker(f [A])].

x /∈ f−1[ker(f [A])]⇒ f(x) /∈ ker(f [A])⇒ (∃F ∈ C(Y, f(x)))(F ∩ f [A] = ∅)
(3)

}
⇒

⇒ (∃U ∈ e∗θO(X,x))(f [U ] ⊆ F )(F ∩ f [A] = ∅)
⇒ (∃U ∈ e∗θO(X,x))(f [U ∩A] ⊆ f [U ] ∩ f [A] = ∅)
⇒ (∃U ∈ e∗θO(X,x))(U ∩A = ∅)
⇒ x /∈ e∗-clθ(A).
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(4)⇒ (5) : Let B ⊆ Y.

B ⊆ Y ⇒ f−1[B] ⊆ X
(4)

}
⇒ f [e∗-clθ(f

−1 [B])] ⊆ ker(f
[
f−1 [B]

]
) ⊆ ker(B)⇒

⇒ e∗-clθ(f
−1 [B]) ⊆ f−1 [ker(B)] .

(5)⇒ (1) : Let V ∈ O(Y ).

V ∈ O(Y )
(5)

}
⇒ e∗-clθ(f

−1 [V ]) ⊆ f−1 [ker(V )] = f−1 [V ]⇒ f−1 [V ] ∈ e∗θC(X).

Remark 3.1. From De�nitions 3.1 and 2.1, we have the following diagram. None of these impli-
cations is reversible as shown by the following example:

c.p.c. c.β.c. ← c.βθ.c.
↗ ↘ ↗

c.α.c. ← c.c. c.b.c. ↓ ↓
↘ ↗ ↘

c.s.c. c.e∗.c. ← c.e∗θ.c.

Notation 3.1. c.c.=contra continuity, c.α.c.=contra α-continuity, c.p.c.=contra precontinuity,
c.s.c.=contra semicontinuity, c.b.c.=contra b-continuity, c.β.c.= contra β-continuity, c.e∗.c.=contra
e∗-continuity, c.βθ.c.=contra βθ-continuity, c.e∗θ.c.=contra e∗θ-continuity.

Example 3.1. Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, c}, {a, b, c},
{a, b, d}}. It is not di�cult to see that

e∗θO(X) = e∗O(X) = 2X \ {{d}} and βθC(X) = {∅, X, {a, c, d}, {b, d}, {a, c}, {c}, {d}}.

De�ne the function f : X → X by f = {(a, c), (b, b), (c, a), (d, b)}. Then f is contra e∗θ-
continuous but it is not contra βθ-continuous.

Other examples can be found related articles.

De�nition 3.2. A function f : X → Y is said to be:

a) e∗θ-semiopen if f [U ] ∈ SO(Y ) for every e∗-θ-open set U of X.

b) contra I(e∗θ)-continuous if for each x in X and each V ∈ C(Y, f(x)), there exists U ∈
e∗θO(X,x) such that int(f [U ]) ⊆ V .

c) e∗θ-continuous [11] if f−1[V ] is e∗θ-closed in X for every closed set V of Y .

d) e∗-continuous [9] if f−1[V ] is e∗-closed in X for every closed set V of Y .

Theorem 3.2. Let f : X → Y be a function. If f is contra I(e∗θ)-continuous and e∗θ-semiopen,
then f is contra e∗θ-continuous.

Proof. Let x ∈ X and V ∈ C(Y, f(x)).

(x ∈ X)(V ∈ C(Y, f(x)))
f is contra I(e∗θ)-continuous

}
⇒ (∃U ∈ e∗θO(X,x))(int(f [U ]) ⊆ V = cl(V ))

f is e∗θ-semiopen

}
⇒

⇒ (∃U ∈ e∗θO(X,x))(f [U ] ∈ SO(Y ))(int(f [U ]) ⊆ V = cl(V ))

⇒ (∃U ∈ e∗θO(X,x))(f [U ] ⊆ cl(int(f [U ])) ⊆ V ).
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Theorem 3.3. Let f : X → Y be a function. If f is contra e∗θ-continuous and Y is regular,
then f is e∗θ-continuous.

Proof. Let x ∈ X and V ∈ O(Y, f(x)).

(x ∈ X)(V ∈ O(Y, f(x)))
Y is regular

}
⇒ (∃W ∈ O(Y, f(x)))(cl(W ) ⊆ V )

f is contra e∗θ-continuous

}
⇒

⇒ (∃U ∈ e∗θO(X,x))(f [U ] ⊆ cl(W ) ⊆ V ).

Theorem 3.4. Let {Xα|α ∈ Λ} be any family of topological spaces. If a function f : X → ΠXα

is a contra e∗θ-continuous function, then Prα ◦ f : X → Xα is contra e∗θ-continuous for each
α ∈ Λ, where Prα is the projection of ΠXα onto Xα.

Proof. Let α ∈ Λ and Uα ∈ RO(Xα).

α ∈ Λ⇒ Prα is continuous
Uα ∈ O(Xα)

}
⇒ Pr−1

α [Uα] ∈ O(ΠXα)
f is c.e∗θ.c.

}
⇒

⇒ (Prα ◦ f)−1[Uα] = f−1[Pr−1
α [Uα]] ∈ e∗θC(X).

De�nition 3.3. A function f : X → Y is called weakly e∗-irresolute [20] (resp. strongly e∗-
irresolute [20]) if f−1[A] is e∗-θ-open in X (resp. e∗-θ-open) for every e∗-θ-open (resp. e∗-open)
set A of Y .

Theorem 3.5. Let f : X → Y and g : Y → Z and g ◦ f : X → Z functions. Then the following
properties hold:

(1) If f is contra e∗θ-continuous and g is continuous, then g ◦ f is contra e∗θ-continuous.

(2) If f is e∗θ-continuous and g is contra-continuous, then g ◦ f is contra e∗θ-continuous.

(3) If f is contra e∗θ-continuous and g is contra-continuous, then g ◦ f is e∗θ-continuous.

(4) If f is weakly e∗-irresolute and g is contra e∗θ-continuous, then g ◦ f is contra e∗θ-
continuous.

(5) If f is strongly e∗-irresolute and g is contra e∗-continuous, then g ◦ f is contra e∗θ-
continuous.

Proof. Straightforward.

4 Some fundamental properties of contra e∗θ-continuous func-
tions

De�nition 4.1. A topological space X is said to be:

a) e∗θ-T0 [3] if for any distinct pair of points x and y in X, there is an e∗θ-open set U in X
containing x but not y or an e∗θ-open set V in X containing y but not x.
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b) e∗θ-T1 [3] if for any distinct pair of points x and y in X, there is an e∗θ-open set U in X
containing x but not y and an e∗θ-open set V in X containing y but not x.

c) e∗θ-T2 [3] (resp. e∗-T2 [10]) if for every pair of distinct points x and y, there exist two
e∗θ-open (resp. e∗-open) sets U and V such that x ∈ U , y ∈ V and U ∩ V = ∅.

Lemma 4.1. [3] For a topological space X, the following properties are equivalent:

(1) (X, τ) is e∗θ-T0.

(2) (X, τ) is e∗θ-T1.

(3) (X, τ) is e∗θ-T2.

(4) (X, τ) is e∗-T2.

(5) For every pair of distinct points x, y ∈ X, there exist U ∈ e∗O(X,x) and V ∈ e∗O(X, y)
such that e∗-cl(U) ∩ e∗-cl(V ) = ∅.

(6) For every pair of distinct points x, y ∈ X, there exist U ∈ e∗R(X,x) and V ∈ e∗R(X, y)
such that U ∩ V = ∅.

(7) For every pair of distinct points x, y ∈ X, there exist U ∈ e∗θO(X,x) and V ∈ e∗θO(X, y)
such that e∗-clθ(U) ∩ e∗-clθ(V ) = ∅.

Theorem 4.1. A topological space X is e∗θ-T2 if and only if the singletons are e∗-θ-closed sets.

Proof. Necessity. Let x ∈ X and X is e∗θ-T2.

y /∈ {x} ⇒ x 6= y
X is e∗θ-T2

}
⇒ (∃Uy ∈ e∗θO(X, y))(∃Vy ∈ e∗θO(X,x))(Uy ∩ Vy = ∅)

⇒ (∃Uy ∈ e∗θO(X, y))(x /∈ Uy)
A := {Uy|y /∈ {x} ⇒ (∃Uy ∈ e∗θO(X, y))(x /∈ Uy)} ⊆ e∗θO(X)

}
⇒

⇒ X \ {x} =
⋃
A ∈ e∗θO(X)⇒ {x} ∈ e∗θC(X).

Su�ciency. Suppose that {x} is e∗-θ-closed for every x ∈ X. Let x, y ∈ X with x 6= y.

x 6= y ⇒ y ∈ X \ {x}
x ∈ X ⇒ {x} ∈ e∗θC(X)

}
⇒ X \ {x} ∈ e∗θO(X, y).

Then X is e∗θ-T0. On the other hand, the notions of e∗θ-T0 and e∗θ-T1 are equivalent from
Lemma 4.1. Thus X is e∗θ-T1.

Theorem 4.2. If f is a contra e∗θ-continuous injection of a topological space X into a Urysohn
space Y , then X is e∗θ-T2.

Proof. Let x1, x2 ∈ X and x1 6= x2.

x1 6= x2
f is injective

}
⇒ f(x1) 6= f(x2)

Y is Urysohn

}
⇒
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⇒ (∃U ∈ O(Y, y1))(∃V ∈ O(Y, y2))(cl(U) ∩ cl(V ) = ∅)
f is c.e∗θ.c. at x1 and x2

}
⇒

⇒ (∃A ∈ e∗θO(X,x1))(∃B ∈ e∗θO(X,x2))(f [A] ∩ f [B] ⊆ cl(U) ∩ cl(V ) = ∅)

⇒ (∃A ∈ e∗θO(X,x1))(∃B ∈ e∗θO(X,x2))(A ∩B = ∅).

De�nition 4.2. A topological space X is said to be:

a) Weakly Hausdor� [21] (brie�y weakly-T2) if every point of X is an intersection of regularly
closed sets of X.

b) Ultra Hausdor� [22] if for each pair of distinct points x and y in X, there exist clopen sets
U and V containing x and y, respectively such that U ∩ V = ∅.

Theorem 4.3. Let f : X → Y be a function. Then the following properties are hold:

(1) If f is a contra e∗θ-continuous injection and Y is T0, then X is e∗θ-T2.

(2) If f is a contra e∗θ-continuous injection and Y is Ultra Hausdor�, then X is e∗θ-T2.

Proof. (1) Let x1, x2 ∈ X and x1 6= x2.

(x1, x2 ∈ X)(x1 6= x2)
f is injective

}
⇒ f(x1) 6= f(x2)

Y is T0

}
⇒

⇒ [(∃V ∈ O(Y, f(x1)))(f(x2) ∈ V ) ∨ (∃U ∈ O(Y, f(x2)))(f(x1) ∈ U)]

⇒ (f(x1) /∈ Y \ V )(Y \ V ∈ C(Y, f(x2)))
f is c.e∗θ.c.

}
⇒ x1 /∈ f−1[Y \ V ] ∈ e∗θO(X,x2).

Therefore X is e∗θ-T0 and by Theorem 4.1 X is e∗θ-T2.
(2) It is not di�cult to see that this item is immediate consequence of (1) by Lemma 4.1.

De�nition 4.3. A space X is said to be:

a) e∗θ-connected if X cannot be expressed as the disjoint union of two non-empty e∗-θ-open
sets.

b) e∗θ-normal if for each pair of non-empty disjoint closed sets can be separated by disjoint
e∗-θ-open sets.

Theorem 4.4. If f : X → Y is a contra e∗θ-continuous surjection and X is e∗θ-connected, then
Y is connected.

Proof. Suppose that Y is not connected.

Y is not connected⇒ (∃U1, U2 ∈ O(Y ) \ {∅})(U1 ∩ U2 = ∅)(U1 ∪ U2 = Y )

⇒ U1, U2 ∈ CO(Y )
f is c.e∗θ.c. surjection

}
⇒

⇒ (f−1[U1], f−1[U2] ∈ e∗θO(X) \ {∅})(f−1[U1] ∩ f−1[U2] = ∅)(f−1[U1] ∪ f−1[U2] = X).

This is a contradiction to the fact that X is e∗θ-connected.
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Theorem 4.5. If f : X → Y is a contra e∗θ-continuous closed injection and Y is normal, then
X is e∗θ-normal.

Proof. Let F1, F2 ∈ C(X) and F1 ∩ F2 = ∅.

(F1, F2 ∈ C(X))(F1 ∩ F2 = ∅)
f is closed injection

}
⇒

⇒ (f [F1], f [F2] ∈ C(Y ))(f [F1 ∩ F2] = f [F1] ∩ f [F2] = ∅)
Y is normal

}
⇒

⇒ (∃V1, V2 ∈ O(Y ))(f [F1] ⊆ V1)(f [F2] ⊆ V2)(V1 ∩ V2 = ∅)
Y is normal

}
⇒

⇒ (∃G1, G2 ∈ O(Y ))(f [F1] ⊆ G1 ⊆ cl(G1) ⊆ V1)(f [F2] ⊆ G2 ⊆ cl(G2) ⊆ V2)(V1 ∩ V2 = ∅)
f is c.e∗θ.c.

}
⇒

⇒ (f−1[cl(G1)], f−1[cl(G2)] ∈ e∗θO(X))(F1 ⊆ f−1[cl(G1)])(F2 ⊆ f−1[cl(G2)])
(f−1[cl(G1)] ∩ f−1[cl(G2)] = ∅).

De�nition 4.4. A function f : X → Y has a contra e∗θ-closed graph if for each (x, y) /∈ G(f),
there exist U ∈ e∗θO(X,x) and V ∈ C(Y, y) such that (U × V ) ∩G(f) = ∅.

Lemma 4.2. The graph G(f) of a function f : X → Y is contra e∗θ-closed in X×Y if and only
if for each (x, y) /∈ G(f), there exist U ∈ e∗θO(X,x) and V ∈ C(Y, y) such that f [U ] ∩ V = ∅.

Proof. Straightforward.

Theorem 4.6. If f : X → Y is contra e∗θ-continuous and Y is Urysohn, then f has a contra
e∗θ-closed graph.

Proof. Let (x, y) /∈ G(f).
(x, y) /∈ G(f)⇒ y 6= f(x)

Y is Urysohn

}
⇒

⇒ (∃V ∈ O(Y, f(x)))(∃W ∈ O(Y, y))(cl(V ) ∩ cl(W ) = ∅)
f is c.e∗θ.c.

}
⇒

⇒ (∃U ∈ e∗θO(X,x))(f [U ] ⊆ cl(V ))(cl(V ) ∩ cl(W ) = ∅)

⇒ (∃U ∈ e∗θO(X,x))(f [U ] ∩W ⊆ f [U ] ∩ cl(W ) = ∅).

Theorem 4.7. Let f : X → Y be a function and g : X → X × Y the graph function of f ,
de�ned by g(x) = (x, f(x)) for every x ∈ X. If g is contra e∗θ-continuous, then f is contra
e∗θ-continuous.

Proof. Let V ∈ O(Y ).

V ∈ O(Y )⇒ X × V ∈ O(X × Y )
g is c.e∗θ.c.

}
⇒ f−1[V ] = g−1[X × V ] ∈ e∗θC(X).

Theorem 4.8. If f : X → Y has a contra e∗θ-closed graph and injective, then X is e∗θ-T1.
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Proof. Let x1, x2 ∈ X and x1 6= x2.

(x1, x2 ∈ X)(x1 6= x2)
f is injective

}
⇒ f(x1) 6= f(x2)⇒ (x1, f(x2)) /∈ G(f)

G(f) is contra e∗θ-closed

}
⇒

⇒ (∃U ∈ e∗θO(X,x1))(∃V ∈ O(Y, f(x2)))(f [U ] ∩ V = ∅)
⇒ (∃U ∈ e∗θO(X,x1))(∃V ∈ O(Y, f(x2)))(U ∩ f−1[V ] = ∅)

⇒ (∃U ∈ e∗θO(X,x1))(x2 /∈ U)

Then X is e∗θ-T0. On the other hand, the notions of e∗θ-T0 and e∗θ-T1 are equivalent from
Lemma 4.1. Thus X is e∗θ-T1.

De�nition 4.5. A topological space X is said to be:

a) Strongly S-closed [6] if every closed cover of X has a �nite subcover.

b) Strongly e∗θC-compact [3] if every e∗-θ-closed cover of X has a �nite subcover.

c) e∗θ-compact if every e∗-θ-open cover of X has a �nite subcover.

d) e∗θ-space if every e∗-θ-closed set is closed.

Theorem 4.9. If f : X → Y has a contra e∗θ-closed graph and X is an e∗θ-space, then f−1[K]
is closed in X for every strongly S-closed subset K of Y .

Proof. Let K is strongly S-closed in Y and let x /∈ f−1[K].

x /∈ f−1[K]⇒ f(x) /∈ K ⇒ (∀y ∈ K)(y 6= f(x))⇒ (x, y) /∈ G(f)
G(f) is e∗θ-closed

}
⇒

⇒ (∃Uy ∈ e∗θO(X,x))(∃Vy ∈ C(Y, y))(f [Uy] ∩ Vy = ∅)
A := {K ∩ Vy|y ∈ K}

}
⇒

⇒ (A ⊆ C(Y ))(K =
⋃
A)

K is strongly S-closed in Y

}
⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(K ⊆

⋃
A∗)

U := ∩{Uy|Uy ∈ A∗}

}
X is e∗θ-space⇒

⇒ (U ∈ O(X,x))(f [U ] ∩K = ∅)⇒ (U ∈ O(X,x))(U ∩ f−1[K] = ∅)⇒
⇒ (U ∈ O(X,x))(U ⊆ \f−1[K])⇒ x ∈ int(X \ f−1[K])⇒x ∈ X \ cl(f−1[K])⇒ x /∈ cl(f−1[K]).

Theorem 4.10. If f : X → Y is a contra e∗θ-continuous surjection and X is strongly e∗θC-
compact, then Y is compact.

Proof. Let B ⊆ O(Y ) and Y =
⋃
B.

(B ⊆ O(Y ))(Y =
⋃
B)

f is c.e∗θ.c.

}
⇒ (A := {f−1[B]|B ∈ B} ⊆ e∗θC(X))(X =

⋃
A)

X is strongly e∗θC-compact

}
⇒

⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(X =
⋃
A∗)

f is surjective

}
⇒ (B∗ := {f [A]|A ∈ A∗} ⊆ B)(|B∗| < ℵ0)(Y =

⋃
B∗).
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Theorem 4.11. Let f : X → Y be a function. Then the following properties are hold:

(1) If f is a contra e∗θ-continuous surjection and X is e∗θ-compact, then Y is strongly S-closed.

(2) If f is a contra e∗θ-continuous surjection and X is e∗θ-compact and e∗θ-space, then Y is
strongly e∗θC-compact.

Proof. (1) Let B ⊆ C(Y ) and Y =
⋃
B.

(B ⊆ C(Y ))(Y =
⋃
B)

f is c.e∗θ.c.

}
⇒ (A := {f−1[B]|B ∈ B} ⊆ e∗θO(X))(X =

⋃
A)

X is e∗θ-compact

}
⇒

⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(X =
⋃
A∗)

f is surjective

}
⇒ (B∗ := {f [A]|A ∈ A∗} ⊆ B)(|B∗| < ℵ0)(Y =

⋃
B∗)

(2) Let B ⊆ e∗θC(Y ) and Y =
⋃
B.

(B ⊆ e∗θC(Y ))(Y =
⋃
B)

X is e∗θ-space

}
⇒ (B ⊆ C(Y ))(

⋃
B = Y )

f is c.e∗θ.c.

}
⇒

⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(X =
⋃
A∗)

f is surjective

}
⇒ (B∗ := {f [A]|A ∈ A∗} ⊆ B)(|B∗| < ℵ0)(Y =

⋃
B∗).

Theorem 4.12. If f : X → Y is a weakly e∗-irresolute surjection and X is strongly e∗θC-
compact, then Y is strongly e∗θC-compact.

Proof. Let B ⊆ e∗θC(Y ) and Y =
⋃
B.

(B ⊆ e∗θC(Y ))(Y =
⋃
B)

f is weakly e∗-irresolute

}
⇒ (A := {f−1[B]|B ∈ B} ⊆ e∗θC(X))(X =

⋃
A)

X is strongly e∗θC-compact

}
⇒

⇒ (∃A∗ ⊆ A)(|A∗| < ℵ0)(X =
⋃
A∗)

f is surjective

}
⇒

⇒ (B∗ := {f [A]|A ∈ A∗} ⊆ B)(|B∗| < ℵ0)(Y =
⋃
B∗).

We recall that the product space X = X1× . . .×Xn has property Pe∗θ [3] if Ai is an e∗θ-open
set in a topological space Xi for i = 1, 2, . . . n, then A1× . . .×An is also e∗θ-open in the product
space X = X1 × . . .×Xn.

Theorem 4.13. Let f : X1 → Y and g : X2 → Y be two functions, where

(i) X = X1 ×X2 has the property Pe∗θ,

(ii) Y is a Urysohn space,

(iii) f and g are contra e∗θ-continuous,

Divulgaciones Matemáticas Vol. 19 No. 2 (2018), pp. 23�35



34 B. S. Ayhan � M. Özkoç

then {(x1, x2)|f(x1) = g(x2)} is e∗θ-closed in the product space X = X1 ×X2.

Proof. Let (x1, x2) /∈ A := {(x1, x2)|f(x1) = g(x2)}.

(x1, x2) /∈ A⇒ f(x1) 6= g(x2)
Y is Urysohn

}
⇒

⇒ (∃V1 ∈ O(Y, f(x1)))(∃V2 ∈ O(Y, g(x2)))(cl(V1) ∩ cl(V2) = ∅)(cl(V1), cl(V2) ∈ RC(Y ))
f and g are c.e∗θ.c.

}
⇒

⇒ (f−1[cl(V1)] ∈ e∗θO(X1, x1))(g−1[cl(V2)] ∈ e∗θO(X2, x2))
X = X1 ×X2 has the Property Pe∗θ

}
⇒

⇒ ((x1, x2) ∈ f−1[cl(V1)]× g−1[cl(V2)] ∈ e∗θO(X1 ×X2))(f−1[cl(V1)]× g−1[cl(V2)] ⊆ \A)⇒

⇒ \A ∈ e∗θO(X1 ×X2)⇒ A ∈ e∗θC(X1 ×X2).
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