On contra $e^{*} \theta$-continuous functions

En funciones contra $e^{*} \theta$-continuas
Burcu Sünbül Ayhan (brcyhn@gmail.com)
Murad Özkoç (murad.ozkoc@mu.edu.tr)
Muğla Sitkı Koçman University
Faculty of Science Department of Mathematics
48000 Menteşe-Muğla/TURKEY

Abstract

The main goal of this paper is to introduce and study a new type of contra continuity called contra $e^{*} \theta$-continuity. Also, we obtain fundamental properties and several characterizations of contra $e^{*} \theta$-continuous functions via $e^{*}-\theta$-closed sets which are defined by Farhan and Yang [11]. Moreover, we investigate the relationships between contra $e^{*} \theta$-continuous functions and other related generalized forms of contra continuity.

Key words and phrases: $e^{*}-\theta$-open set, $e^{*}-\theta$-closed set, contra $e^{*} \theta$-continuity, $e^{*} \theta$ continuity, contra $e^{*} \theta$-closed graph.

Resumen

El objetivo principal de este documento es presentar y estudiar un nuevo tipo de contra continuidad llamada contra $e^{*} \theta$-continuidad. Además, obtenemos propiedades fundamentales y varias caracterizaciones de funciones contra $e^{*} \theta$-continuas a través de conjuntos $e^{*}-\theta$ cerrados que están definidos por Farhan y Yang [11]. Además, investigamos las relaciones entre las funciones contra continuas y otras formas generalizadas relacionadas de $e^{*} \theta$-continuidad de contra.

Palabras y frases clave: $e^{*}-\theta$-conjunto abierto, $e^{*}-\theta$-conjunto cerrado, contra $e^{*} \theta$ continuidad, $e^{*} \theta$-continuidad, contra $e^{*} \theta$-gráfico cerrado.

1 Introduction

In 1996, the concept of contra continuity [6], which is stronger than contra α-continuity [12], contra precontinuity [13], contra semicontinuity [7], contra b-continuity [17], contra β-continuity [5], is defined by Dontchev. Many results have been obtained related to the notions mentioned above recently. In this paper, we define and study the notion of contra $e^{*} \theta$-continuity which is stronger than contra e^{*}-continuity [10] and weaker than contra $\beta \theta$-continuity [4]. Also, we obtain several characterizations of contra $e^{*} \theta$-continuous functions and investigate their some fundamental properties. Moreover, we investigate the relationships between contra $e^{*} \theta$-continuous functions and seperation axioms and contra $e^{*} \theta$-closedness of graphs of functions.

[^0]
2 Preliminaries

Throughout this present paper, X and Y represent topological spaces. For a subset A of a space $X, \operatorname{cl}(A)$ and $\operatorname{int}(A)$ denote the closure of A and the interior of A, respectively. The family of all closed (resp. open, clopen) sets of X is denoted $C(X)($ resp. $O(X), C O(X))$. A subset A is said to be regular open [23] (resp. regular closed [23]) if $A=\operatorname{int}(\operatorname{cl}(A))($ resp. $A=\operatorname{cl}(\operatorname{int}(A)))$. A point $x \in X$ is said to be δ-cluster point [24] of A if $\operatorname{int}(c l(U)) \cap A \neq \emptyset$ for each open neighbourhood U of x. The set of all δ-cluster points of A is called the δ-closure [24] of A and is denoted by $c l_{\delta}(A)$. If $A=c l_{\delta}(A)$, then A is called δ-closed [24], and the complement of a δ-closed set is called δ-open [24]. The set $\{x \mid(U \in O(X, x))(\operatorname{int}(\operatorname{cl}(U)) \subseteq A)\}$ is called the δ-interior of A and is denoted by int $_{\delta}(A)$.

A subset A is called α-open [18] (resp. semiopen [14], preopen [15], b-open [2], β-open [1], e-open [8], e^{*}-open [9]) if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))(\operatorname{resp} . A \subseteq \operatorname{cl}(\operatorname{int}(A)), A \subseteq \operatorname{int}(\operatorname{cl}(A)), A \subseteq$ $\operatorname{int}\left(\operatorname{cl} l_{\delta}(A)\right), A \subseteq \operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(\operatorname{cl}(A)), A \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))), A \subseteq \operatorname{cl}\left(\operatorname{int}_{\delta}(A)\right) \cup \operatorname{int}\left(\operatorname{cl}_{\delta}(A)\right), A$ $\left.\subseteq c l\left(\operatorname{int}\left(c l_{\delta}(A)\right)\right)\right)$. The complement of an α-open (resp. semiopen, preopen, b-open, β-open, e open, e^{*}-open) set is called α-closed [18] (resp. semiclosed [14], preclosed [15], b-closed [2], β-open [1], e-closed [8], e^{*}-closed [9]). The intersection of all e^{*}-closed (resp. semi-closed, pre-closed) sets of X containing A is called the e^{*}-closure [9] (resp. semi-closure [14], pre-closure [15]) of A and is denoted by $e^{*}-\operatorname{cl}(A)($ resp. $\operatorname{scl}(A), \operatorname{pcl}(A))$. The union of all e^{*}-open (resp. semiopen, preopen) sets of X contained in A is called the e^{*}-interior [9] (resp. semi-interior [14], pre-interior [15]) of A and is denoted by $e^{*}-\operatorname{int}(A)($ resp. $\operatorname{sint}(A), \operatorname{pint}(A))$.

The union of all e^{*}-open sets of X contained in A is called the e^{*}-interior [9] of A and is denoted by $e^{*}-\operatorname{int}(A)$. A subset A is said to be e^{*}-regular [11] if it is e^{*}-open and e^{*}-closed. The family of all e^{*}-regular subsets of X is denoted by $e^{*} R(X)$.

A point x of X is called an $e^{*}-\theta$-cluster (β - θ-cluster) point of A if $e^{*}-c l(U) \cap A \neq \emptyset$ for every e^{*}-open (resp. β-open) set U containing x. The set of all $e^{*}-\theta$-cluster (β - θ-cluster) points of A is called the $e^{*}-\theta$-closure [11] (β - θ-closure [19]) of A and is denoted by $e^{*}-c l_{\theta}(A)\left(\beta-c l_{\theta}(A)\right)$. A subset A is said to be e^{*} - θ-closed [11] ($\beta-\theta$-closed [19]) if $A=e^{*}-c l_{\theta}(A)\left(A=\beta-c l_{\theta}(A)\right)$. The complement of an $e^{*}-\theta$-closed ($\beta-\theta$-closed) set is called an $e^{*}-\theta$-open [11] (β - θ-open [19]) set. A point x of X is said to be an $e^{*}-\theta$-interior [11] ($\beta-\theta$-interior [19]) point of a subset A, denoted by $e^{*}-\operatorname{int}_{\theta}(A)\left(\beta\right.$-int $\left.t_{\theta}(A)\right)$, if there exists an e^{*}-open $(\beta$-open) set U of X containing x such that $e^{*}-\operatorname{cl}(U) \subseteq A(\beta-\operatorname{cl}(U) \subseteq A)$. Also it is noted in [11] that

$$
e^{*} \text {-regular } \Rightarrow e^{*}-\theta \text {-open } \Rightarrow e^{*} \text {-open. }
$$

The family of all open (resp. closed, $e^{*}-\theta$-open, $e^{*}-\theta$-closed, e^{*}-open, e^{*}-closed, regular open, regular closed, δ-open, δ-closed, semiopen, semiclosed, preopen, preclosed) subsets of X is denoted by $O(X)$ (resp. $C(X), e^{*} \theta O(X), e^{*} \theta C(X), e^{*} O(X), e^{*} C(X), R O(X), R C(X)$, $\delta O(X), \delta C(X), S O(X), S C(X), P O(X), P C(X)$). The family of all open (resp. closed, $e^{*}-\theta-$ open, $e^{*}-\theta$-closed, e^{*}-open, e^{*}-closed, regular open, regular closed, δ-open, δ-closed, semiopen, semiclosed, preopen, preclosed) sets of X containing a point x of X is denoted by $O(X, x)$ (resp. $C(X, x), e^{*} \theta O(X, x), e^{*} \theta C(X, x), e^{*} O(X, x), e^{*} C(X, x), R O(X, x), R C(X, x), \delta O(X, x)$, $\delta C(X, x), S O(X, x), S C(X, x), P O(X, x), P C(X, x))$.

We shall use the well-known accepted language almost in the whole of the proofs of the theorems in this article. The following basic properties of e^{*}-closure and e^{*}-interior are useful in the sequel:

Lemma 2.1. [9] Let A be a subset of a space X, then the following hold:
(1) $e^{*}-\operatorname{cl}(X \backslash A)=X \backslash e^{*}-\operatorname{int}(A)$.
(2) $x \in e^{*}-c l(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in e^{*} O(X, x)$.
(3) A is $e^{*} C(X)$ if and only if $A=e^{*}-\operatorname{cl}(A)$.
(4) $e^{*}-c l(A) \in e^{*} C(X)$.
(5) $e^{*}-\operatorname{int}(A)=A \cap c l\left(\operatorname{int}\left(c_{\delta}(A)\right)\right)$.

Lemma 2.2. [11] For the $e^{*} \theta$-closure of a subset A of a topological space X, the following properties are hold:
(1) $A \subseteq e^{*}-c l(A) \subseteq e^{*}-c_{\theta}(A)$.
(2) If $A \in e^{*} \theta O(X)$, then $e^{*}-c_{\theta}(A)=e^{*}-\operatorname{cl}(A)$.
(3) If $A \subseteq B$, then $e^{*}-c_{\theta}(A) \subseteq e^{*}-c l_{\theta}(B)$.
(4) $e^{*}-c l_{\theta}(A) \in e^{*} \theta C(X)$ and $e^{*}-c l_{\theta}\left(e^{*}-c l_{\theta}(A)\right)=e^{*}-c l_{\theta}(A)$.
(5) If $A_{\alpha} \in e^{*} \theta C(X)$ for each $\alpha \in \Lambda$, then $\cap\left\{A_{\alpha} \mid \alpha \in \Lambda\right\} \in e^{*} \theta C(X)$.
(6) If $A_{\alpha} \in e^{*} \theta O(X)$ for each $\alpha \in \Lambda$, then $\bigcup\left\{A_{\alpha} \mid \alpha \in \Lambda\right\} \in e^{*} \theta O(X)$.
(7) $e^{*}-\operatorname{cl}_{\theta}(X \backslash A)=X \backslash e^{*}-\operatorname{int}_{\theta}(A)$.
(8) $e^{*}-c l_{\theta}(A)=\cap\left\{U \mid(A \subseteq U)\left(U \in e^{*} \theta C(X)\right)\right\}$.
(9) $A \in e^{*} O(X)$, then $e^{*}-c_{\theta}(A) \in e^{*} R(X)$.
(10) $A \in e^{*} R(X)$ if and only if $A \in e^{*} \theta O(X) \cap e^{*} \theta C(X)$.

Lemma 2.3. Let A be a subset of a topological space X and $x \in X$. The point x of X is an $e^{*}-\theta$-cluster point of A if and only if $U \cap A \neq \emptyset$ for all $e^{*}-\theta$-open U containing x.

Proof. Let $x \notin e^{*}-c l_{\theta}(A)$.

$$
\begin{aligned}
x \notin e^{*}-c l_{\theta}(A) & \Leftrightarrow\left(\exists U \in e^{*} \theta C(X)\right)(A \subseteq U)(x \notin U) \\
& \Leftrightarrow\left(\exists \backslash U \in e^{*} \theta O(X)\right)(\backslash U \subseteq \backslash A)(x \in \backslash U) \\
& \Leftrightarrow\left(\exists V:=\backslash U \in e^{*} \theta O(X, x)\right)(V \subseteq \backslash A) \\
& \Leftrightarrow\left(\exists V \in e^{*} \theta O(X, x)\right)(V \cap A=\emptyset) \\
& \Leftrightarrow x \notin\left\{x \mid\left(\forall U \in e^{*} \theta O(X, x)\right)(U \cap A=\emptyset)\right\} .
\end{aligned}
$$

Definition 2.1. A function $f: X \rightarrow Y$ is said to be contra continuous [6] (resp. contra α continuous [12], contra precontinuous [13], contra semicontinuous [7], contra b-continuous [17], contra β-continuous [5], contra $\beta \theta$-continuous [4], contra e^{*}-continuous [10]) if $f^{-1}[V]$ is closed (resp. α-closed, preclosed, semiclosed, b-closed, β-closed, β - θ-closed, e^{*}-closed) in X for every open set V in Y.
Definition 2.2. Let A be a subset of a space X. The intersection of all open sets in X containing A is called the kernel of $A[16]$ and is denoted by $\operatorname{ker}(A)$.

Lemma 2.4. [16] The following properties hold for subsets A and B of a space X.
(1) $x \in \operatorname{ker}(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$.
(2) $A \subseteq \operatorname{ker}(A)$.
(3) If A is open in X, then $A=\operatorname{ker}(A)$.
(4) If $A \subseteq B$, then $\operatorname{ker}(A) \subseteq \operatorname{ker}(B)$.

3 Contra $e^{*} \theta$-continuous functions

Definition 3.1. A function $f: X \rightarrow Y$ is said to be contra $e^{*} \theta$-continuous (briefly c.e ${ }^{*} \theta$.c.) if $f^{-1}[V]$ is $e^{*}-\theta$-closed in X for every open set V of Y.

Theorem 3.1. For a function $f: X \rightarrow Y$, the following properties are equivalent:
(1) f is contra $e^{*} \theta$-continuous;
(2) The inverse image of every closed set of Y is $e^{*}-\theta$-open in X;
(3) For each point $x \in X$ and each and each $V \in C(Y, f(x))$, there exists $U \in e^{*} \theta O(X, x)$ such that $f[U] \subseteq V$;
(4) $f\left[e^{*}-c l_{\theta}(A)\right] \subseteq k e r(f[A])$ for every subset A of X;
(5) $\left.e^{*}-c l_{\theta}\left(f^{-1}[B]\right)\right] \subseteq f^{-1}[\operatorname{ker}(B)]$ for every subset B of Y.

Proof.
$(1) \Rightarrow(2):$ Let $V \in C(Y)$.

$$
V \in C(Y) \Rightarrow \backslash V \in O(Y),(1)\} \Rightarrow \backslash f^{-1}[V]=f^{-1}[\backslash V] \in e^{*} \theta C(X) \Rightarrow f^{-1}[V] \in e^{*} \theta O(X)
$$

$(2) \Rightarrow(3):$ Let $x \in X$ and $V \in C(Y, f(x))$.

$$
\left.\left.\begin{array}{r}
(x \in X)(V \in C(Y, f(x))) \\
(2)
\end{array}\right\} \Rightarrow \begin{array}{r}
f^{-1}[V] \in e^{*} \theta O(X, x) \\
U:=f^{-1}[V]
\end{array}\right\} \Rightarrow\left(U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq V)
$$

$(3) \Rightarrow(4):$ Let $A \subseteq X$ and $x \notin f^{-1}[k e r(f[A])]$.

$$
\begin{aligned}
& x \notin f^{-1}[\operatorname{ker}(f[A])] \Rightarrow f(x) \notin \operatorname{ker}(f[A]) \Rightarrow(\exists F \in C(Y, f(x)))(F \cap f[A]=\emptyset) \\
& \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq F)(F \cap f[A]=\emptyset) \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U \cap A] \subseteq f[U] \cap f[A]=\emptyset) \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(U \cap A=\emptyset) \\
& \Rightarrow x \notin e^{*}-c_{\theta}(A)
\end{aligned}
$$

(4) \Rightarrow (5) : Let $B \subseteq Y$.

$$
\begin{gathered}
\left.B \subseteq Y \Rightarrow f^{-1}[B] \subseteq \begin{array}{r}
X \\
(4)
\end{array}\right\} \Rightarrow f\left[e^{*}-c l_{\theta}\left(f^{-1}[B]\right)\right] \subseteq \operatorname{ker}\left(f\left[f^{-1}[B]\right]\right) \subseteq \operatorname{ker}(B) \Rightarrow \\
\Rightarrow e^{*}-c_{\theta}\left(f^{-1}[B]\right) \subseteq f^{-1}[\operatorname{ker}(B)] .
\end{gathered}
$$

$(5) \Rightarrow(1):$ Let $V \in O(Y)$.

$$
\left.\begin{array}{r}
V \in O(Y) \\
(5)
\end{array}\right\} \Rightarrow e^{*}-\operatorname{cl}_{\theta}\left(f^{-1}[V]\right) \subseteq f^{-1}[\operatorname{ker}(V)]=f^{-1}[V] \Rightarrow f^{-1}[V] \in e^{*} \theta C(X) .
$$

Remark 3.1. From Definitions 3.1 and 2.1, we have the following diagram. None of these implications is reversible as shown by the following example:

Notation 3.1. c.c. $=$ contra continuity, c. $\alpha . \mathrm{c} .=$ contra α-continuity, c.p.c. $=$ contra precontinuity, c.s.c. $=$ contra semicontinuity, c.b.c. $=$ contra b-continuity, c. $\beta . c .=$ contra β-continuity, c. e^{*}.c. $=$ contra e^{*}-continuity, c. $\beta \theta$.c. $=$ contra $\beta \theta$-continuity, c. $e^{*} \theta . \mathrm{c} .=$ contra $e^{*} \theta$-continuity.
Example 3.1. Let $X=\{a, b, c, d\}$ and $\tau=\{\emptyset, X,\{a\},\{b\},\{a, b\},\{a, c\},\{a, b, c\}$, $\{a, b, d\}\}$. It is not difficult to see that

$$
e^{*} \theta O(X)=e^{*} O(X)=2^{X} \backslash\{\{d\}\} \text { and } \beta \theta C(X)=\{\emptyset, X,\{a, c, d\},\{b, d\},\{a, c\},\{c\},\{d\}\} .
$$

Define the function $f: X \rightarrow X$ by $f=\{(a, c),(b, b),(c, a),(d, b)\}$. Then f is contra $e^{*} \theta$ continuous but it is not contra $\beta \theta$-continuous.

Other examples can be found related articles.
Definition 3.2. A function $f: X \rightarrow Y$ is said to be:
a) $e^{*} \theta$-semiopen if $f[U] \in S O(Y)$ for every e^{*} - θ-open set U of X.
b) contra $I\left(e^{*} \theta\right)$-continuous if for each x in X and each $V \in C(Y, f(x))$, there exists $U \in$ $e^{*} \theta O(X, x)$ such that $\operatorname{int}(f[U]) \subseteq V$.
c) $e^{*} \theta$-continuous [11] if $f^{-1}[V]$ is $e^{*} \theta$-closed in X for every closed set V of Y.
d) e^{*}-continuous [9] if $f^{-1}[V]$ is e^{*}-closed in X for every closed set V of Y.

Theorem 3.2. Let $f: X \rightarrow Y$ be a function. If f is contra $I\left(e^{*} \theta\right)$-continuous and $e^{*} \theta$-semiopen, then f is contra $e^{*} \theta$-continuous.
Proof. Let $x \in X$ and $V \in C(Y, f(x))$.

$$
\left.\begin{array}{r}
\left.\begin{array}{r}
(x \in X)(V \in C(Y, f(x))) \\
\text { s contra } I\left(e^{*} \theta\right) \text {-continuous }
\end{array}\right\} \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(\operatorname{int}(f[U]) \subseteq V=c l(V)) \\
f \text { is } e^{*} \theta \text {-semiopen }
\end{array}\right\} \Rightarrow \text { } \begin{gathered}
\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \in S O(Y))(\operatorname{int}(f[U]) \subseteq V=c l(V)) \\
\Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq \operatorname{cl}(\operatorname{int}(f[U])) \subseteq V) . \quad \square
\end{gathered}
$$

Theorem 3.3. Let $f: X \rightarrow Y$ be a function. If f is contra $e^{*} \theta$-continuous and Y is regular, then f is $e^{*} \theta$-continuous.

Proof. Let $x \in X$ and $V \in O(Y, f(x))$.

$$
\left.\left.\begin{array}{rl}
(x \in X)(V \in O(Y, f(x))) \\
Y & \text { is regular }
\end{array}\right\} \Rightarrow \begin{array}{r}
(\exists W \in O(Y, f(x)))(c l(W) \subseteq V) \\
f \text { is contra } e^{*} \theta \text {-continuous }
\end{array}\right\} \Rightarrow
$$

Theorem 3.4. Let $\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ be any family of topological spaces. If a function $f: X \rightarrow \Pi X_{\alpha}$ is a contra $e^{*} \theta$-continuous function, then $\operatorname{Pr}_{\alpha} \circ f: X \rightarrow X_{\alpha}$ is contra $e^{*} \theta$-continuous for each $\alpha \in \Lambda$, where $P r_{\alpha}$ is the projection of ΠX_{α} onto X_{α}.

Proof. Let $\alpha \in \Lambda$ and $U_{\alpha} \in R O\left(X_{\alpha}\right)$.

$$
\begin{aligned}
& \left.\left.\begin{array}{r}
\alpha \in \Lambda \Rightarrow \operatorname{Pr}_{\alpha} \text { is continuous } \\
U_{\alpha} \in O\left(X_{\alpha}\right)
\end{array}\right\} \Rightarrow \operatorname{Pr}_{\alpha}^{-1}\left[U_{\alpha}\right] \in O\left(\Pi X_{\alpha}\right), \begin{array}{r}
\text { is c.e }{ }^{*} \theta . c .
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\operatorname{Pr}_{\alpha} \circ f\right)^{-1}\left[U_{\alpha}\right]=f^{-1}\left[\operatorname{Pr}_{\alpha}^{-1}\left[U_{\alpha}\right]\right] \in e^{*} \theta C(X) .
\end{aligned}
$$

Definition 3.3. A function $f: X \rightarrow Y$ is called weakly e^{*}-irresolute [20] (resp. strongly e^{*} irresolute [20]) if $f^{-1}[A]$ is $e^{*}-\theta$-open in X (resp. $e^{*}-\theta$-open) for every $e^{*}-\theta$-open (resp. e^{*}-open) set A of Y.

Theorem 3.5. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ and $g \circ f: X \rightarrow Z$ functions. Then the following properties hold:
(1) If f is contra $e^{*} \theta$-continuous and g is continuous, then $g \circ f$ is contra $e^{*} \theta$-continuous.
(2) If f is $e^{*} \theta$-continuous and g is contra-continuous, then $g \circ f$ is contra $e^{*} \theta$-continuous.
(3) If f is contra $e^{*} \theta$-continuous and g is contra-continuous, then $g \circ f$ is $e^{*} \theta$-continuous.
(4) If f is weakly e^{*}-irresolute and g is contra $e^{*} \theta$-continuous, then $g \circ f$ is contra $e^{*} \theta$ continuous.
(5) If f is strongly e^{*}-irresolute and g is contra e^{*}-continuous, then $g \circ f$ is contra $e^{*} \theta$ continuous.

Proof. Straightforward.

4 Some fundamental properties of contra $e^{*} \theta$-continuous functions

Definition 4.1. A topological space X is said to be:
a) $e^{*} \theta-T_{0}$ [3] if for any distinct pair of points x and y in X, there is an $e^{*} \theta$-open set U in X containing x but not y or an $e^{*} \theta$-open set V in X containing y but not x.
b) $e^{*} \theta-T_{1}[3]$ if for any distinct pair of points x and y in X, there is an $e^{*} \theta$-open set U in X containing x but not y and an $e^{*} \theta$-open set V in X containing y but not x.
c) $e^{*} \theta-T_{2}$ [3] (resp. $e^{*}-T_{2}$ [10]) if for every pair of distinct points x and y, there exist two $e^{*} \theta$-open (resp. e^{*}-open) sets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$.

Lemma 4.1. [3] For a topological space X, the following properties are equivalent:
(1) (X, τ) is $e^{*} \theta-T_{0}$.
(2) (X, τ) is $e^{*} \theta-T_{1}$.
(3) (X, τ) is $e^{*} \theta-T_{2}$.
(4) (X, τ) is $e^{*}-T_{2}$.
(5) For every pair of distinct points $x, y \in X$, there exist $U \in e^{*} O(X, x)$ and $V \in e^{*} O(X, y)$ such that $e^{*}-c l(U) \cap e^{*}-c l(V)=\emptyset$.
(6) For every pair of distinct points $x, y \in X$, there exist $U \in e^{*} R(X, x)$ and $V \in e^{*} R(X, y)$ such that $U \cap V=\emptyset$.
(7) For every pair of distinct points $x, y \in X$, there exist $U \in e^{*} \theta O(X, x)$ and $V \in e^{*} \theta O(X, y)$ such that $e^{*}-c l_{\theta}(U) \cap e^{*}-c l_{\theta}(V)=\emptyset$.

Theorem 4.1. A topological space X is $e^{*} \theta-T_{2}$ if and only if the singletons are $e^{*}-\theta$-closed sets.
Proof. Necessity. Let $x \in X$ and X is $e^{*} \theta-T_{2}$.

$$
\left.\begin{array}{c}
\left.\begin{array}{r}
y \notin\{x\} \Rightarrow x \neq y \\
X \text { is } e^{*} \theta-T_{2}
\end{array}\right\} \Rightarrow\left(\exists U_{y} \in e^{*} \theta O(X, y)\right)\left(\exists V_{y} \in e^{*} \theta O(X, x)\right)\left(U_{y} \cap V_{y}=\emptyset\right) \\
\Rightarrow\left(\exists U_{y} \in e^{*} \theta O(X, y)\right)\left(x \notin U_{y}\right) \\
\mathcal{A}:=\left\{U_{y} \mid y \notin\{x\} \Rightarrow\left(\exists U_{y} \in e^{*} \theta O(X, y)\right)\left(x \notin U_{y}\right)\right\} \subseteq e^{*} \theta O(X)
\end{array}\right\} \Rightarrow{ }_{c} \begin{gathered}
\Rightarrow X \backslash\{x\}=\bigcup \mathcal{A} \in e^{*} \theta O(X) \Rightarrow\{x\} \in e^{*} \theta C(X) .
\end{gathered}
$$

$$
\left.\begin{array}{r}
x \neq y \Rightarrow y \in X \backslash\{x\} \\
x \in X \Rightarrow\{x\} \in e^{*} \theta C(X)
\end{array}\right\} \Rightarrow X \backslash\{x\} \in e^{*} \theta O(X, y) .
$$

Then X is $e^{*} \theta-T_{0}$. On the other hand, the notions of $e^{*} \theta-T_{0}$ and $e^{*} \theta-T_{1}$ are equivalent from Lemma 4.1. Thus X is $e^{*} \theta-T_{1}$.

Theorem 4.2. If f is a contra $e^{*} \theta$-continuous injection of a topological space X into a Urysohn space Y, then X is $e^{*} \theta-T_{2}$.

Proof. Let $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$.

$$
\left.\left.\begin{array}{r}
x_{1} \neq x_{2} \\
f \text { is injective }
\end{array}\right\} \Rightarrow \begin{array}{c}
f\left(x_{1}\right) \neq f\left(x_{2}\right) \\
Y \text { is Urysohn }
\end{array}\right\} \Rightarrow
$$

$$
\left.\begin{array}{c}
\Rightarrow\left(\exists U \in O\left(Y, y_{1}\right)\right)\left(\exists V \in O\left(Y, y_{2}\right)\right)(c l(U) \cap \operatorname{cl}(V)=\emptyset) \\
f \text { is c.e } e^{*} \theta . c . \text { at } x_{1} \text { and } x_{2}
\end{array}\right\} \Rightarrow \text { } \begin{gathered}
\Rightarrow\left(\exists A \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(\exists B \in e^{*} \theta O\left(X, x_{2}\right)\right)(f[A] \cap f[B] \subseteq \operatorname{cl}(U) \cap \operatorname{cl}(V)=\emptyset) \\
\Rightarrow\left(\exists A \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(\exists B \in e^{*} \theta O\left(X, x_{2}\right)\right)(A \cap B=\emptyset) .
\end{gathered}
$$

Definition 4.2. A topological space X is said to be:
a) Weakly Hausdorff [21] (briefly weakly- T_{2}) if every point of X is an intersection of regularly closed sets of X.
b) Ultra Hausdorff [22] if for each pair of distinct points x and y in X, there exist clopen sets U and V containing x and y, respectively such that $U \cap V=\emptyset$.

Theorem 4.3. Let $f: X \rightarrow Y$ be a function. Then the following properties are hold:
(1) If f is a contra $e^{*} \theta$-continuous injection and Y is T_{0}, then X is $e^{*} \theta-T_{2}$.
(2) If f is a contra $e^{*} \theta$-continuous injection and Y is Ultra Hausdorff, then X is $e^{*} \theta-T_{2}$.

Proof. (1) Let $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$.

$$
\left.\left.\left.\begin{array}{c}
\left(x_{1}, x_{2} \in X\right)\left(x_{1} \neq x_{2}\right) \\
f \text { is injective }
\end{array}\right\} \Rightarrow \begin{array}{c}
f\left(x_{1}\right) \neq f\left(x_{2}\right) \\
Y \text { is } T_{0}
\end{array}\right\} \Rightarrow \begin{array}{r}
\Rightarrow\left[\left(\exists V \in O\left(Y, f\left(x_{1}\right)\right)\right)\left(f\left(x_{2}\right) \in V\right) \vee\left(\exists U \in O\left(Y, f\left(x_{2}\right)\right)\right)\left(f\left(x_{1}\right) \in U\right)\right] \\
\Rightarrow\left(f\left(x_{1}\right) \notin Y \backslash V\right)\left(Y \backslash V \in C\left(Y, f\left(x_{2}\right)\right)\right) \\
f \text { is c.e* } \theta . c .
\end{array}\right\} \Rightarrow x_{1} \notin f^{-1}[Y \backslash V] \in e^{*} \theta O\left(X, x_{2}\right) .
$$

Therefore X is $e^{*} \theta-T_{0}$ and by Theorem $4.1 X$ is $e^{*} \theta-T_{2}$.
(2) It is not difficult to see that this item is immediate consequence of (1) by Lemma 4.1.

Definition 4.3. A space X is said to be:
a) $e^{*} \theta$-connected if X cannot be expressed as the disjoint union of two non-empty $e^{*}-\theta$-open sets.
b) $e^{*} \theta$-normal if for each pair of non-empty disjoint closed sets can be separated by disjoint $e^{*}-\theta$-open sets.

Theorem 4.4. If $f: X \rightarrow Y$ is a contra $e^{*} \theta$-continuous surjection and X is $e^{*} \theta$-connected, then Y is connected.

Proof. Suppose that Y is not connected.

$$
\begin{gathered}
Y \text { is not connected } \Rightarrow\left(\exists U_{1}, U_{2} \in O(Y) \backslash\{\emptyset\}\right)\left(U_{1} \cap U_{2}=\emptyset\right)\left(U_{1} \cup U_{2}=Y\right) \\
\Rightarrow U_{1}, U_{2} \in C O(Y) \\
\left.f \text { is c. } e^{*} \theta . \text { c. surjection }\right\} \Rightarrow \\
\Rightarrow\left(f^{-1}\left[U_{1}\right], f^{-1}\left[U_{2}\right] \in e^{*} \theta O(X) \backslash\{\emptyset\}\right)\left(f^{-1}\left[U_{1}\right] \cap f^{-1}\left[U_{2}\right]=\emptyset\right)\left(f^{-1}\left[U_{1}\right] \cup f^{-1}\left[U_{2}\right]=X\right) .
\end{gathered}
$$

This is a contradiction to the fact that X is $e^{*} \theta$-connected.

Theorem 4．5．If $f: X \rightarrow Y$ is a contra $e^{*} \theta$－continuous closed injection and Y is normal，then X is $e^{*} \theta$－normal．

Proof．Let $F_{1}, F_{2} \in C(X)$ and $F_{1} \cap F_{2}=\emptyset$ ．

$$
\begin{aligned}
& \left.\begin{array}{r}
\left(F_{1}, F_{2} \in C(X)\right)\left(F_{1} \cap F_{2}=\emptyset\right) \\
f \text { is closed injection }
\end{array}\right\} \Rightarrow \\
& \left.\Rightarrow\left(f\left[F_{1}\right], f\left[F_{2}\right] \in C(Y)\right)\left(f\left[F_{1} \cap F_{2}\right]=f\left[F_{1}\right] \cap f\left[F_{2}\right]=\emptyset\right) ~ 子 ~ Y \text { is normal }\right\} \\
& \left.\left.\Rightarrow\left(\exists V_{1}, V_{2} \in O(Y)\right)\left(f\left[F_{1}\right] \subseteq V_{1}\right)\left(f\left[F_{2}\right] \subseteq V_{2}\right)\left(V_{1} \cap V_{2}=\emptyset\right) ~ Y \text { is normal }\right\}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists G_{1}, G_{2} \in O(Y)\right)\left(f\left[F_{1}\right] \subseteq G_{1} \subseteq \operatorname{cl}\left(G_{1}\right) \subseteq V_{1}\right)\left(f\left[F_{2}\right] \subseteq G_{2} \subseteq \operatorname{cl}\left(G_{2}\right) \subseteq V_{2}\right)\left(V_{1} \cap V_{2}=\emptyset\right) \\
f \text { is c.e }{ }^{*} \theta . c .
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(f^{-1}\left[c l\left(G_{1}\right)\right], f^{-1}\left[c l\left(G_{2}\right)\right] \in e^{*} \theta O(X)\right)\left(F_{1} \subseteq f^{-1}\left[c l\left(G_{1}\right)\right]\right)\left(F_{2} \subseteq f^{-1}\left[c l\left(G_{2}\right)\right]\right) \\
& \left(f^{-1}\left[c l\left(G_{1}\right)\right] \cap f^{-1}\left[c l\left(G_{2}\right)\right]=\emptyset\right) .
\end{aligned}
$$

Definition 4．4．A function $f: X \rightarrow Y$ has a contra $e^{*} \theta$－closed graph if for each $(x, y) \notin G(f)$ ， there exist $U \in e^{*} \theta O(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f)=\emptyset$ ．

Lemma 4．2．The graph $G(f)$ of a function $f: X \rightarrow Y$ is contra $e^{*} \theta$－closed in $X \times Y$ if and only if for each $(x, y) \notin G(f)$ ，there exist $U \in e^{*} \theta O(X, x)$ and $V \in C(Y, y)$ such that $f[U] \cap V=\emptyset$ ．

Proof．Straightforward．
Theorem 4．6．If $f: X \rightarrow Y$ is contra $e^{*} \theta$－continuous and Y is Urysohn，then f has a contra $e^{*} \theta$－closed graph．

Proof．Let $(x, y) \notin G(f)$ ．

$$
\begin{aligned}
& \left.\begin{array}{r}
(x, y) \notin G(f) \Rightarrow y \neq f(x) \\
Y \text { is Urysohn }
\end{array}\right\} \Rightarrow \\
& \Rightarrow(\exists V \in O(Y, f(x)))(\exists W \in O(Y, y))\left(\operatorname{cl}(V) \cap \begin{array}{rl}
c l(W)=\emptyset) \\
f \text { is c.e } e^{*} \theta . c .
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \subseteq \operatorname{cl}(V))(c l(V) \cap \operatorname{cl}(W)=\emptyset) \\
& \Rightarrow\left(\exists U \in e^{*} \theta O(X, x)\right)(f[U] \cap W \subseteq f[U] \cap c l(W)=\emptyset) .
\end{aligned}
$$

Theorem 4．7．Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$ the graph function of f ， defined by $g(x)=(x, f(x))$ for every $x \in X$ ．If g is contra $e^{*} \theta$－continuous，then f is contra $e^{*} \theta$－continuous．

Proof．Let $V \in O(Y)$ ．

$$
V \in O(Y) \Rightarrow X \times V \in O(X \times Y), ~ 子 f^{-1}[V]=g^{-1}[X \times V] \in e^{*} \theta C(X)
$$

Theorem 4．8．If $f: X \rightarrow Y$ has a contra $e^{*} \theta$－closed graph and injective，then X is $e^{*} \theta-T_{1}$ ．

Proof. Let $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$.

$$
\left.\begin{array}{r}
\left(x_{1}, x_{2} \in \begin{array}{r}
X)\left(x_{1} \neq x_{2}\right) \\
f \text { is injective }
\end{array}\right\} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right) \Rightarrow\left(x_{1}, f\left(x_{2}\right)\right) \notin G(f) \\
G(f) \text { is contra } e^{*} \theta \text {-closed }
\end{array}\right\} \Rightarrow \text { } \begin{gathered}
\Rightarrow\left(\exists U \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(\exists V \in O\left(Y, f\left(x_{2}\right)\right)\right)(f[U] \cap V=\emptyset) \\
\Rightarrow\left(\exists U \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(\exists V \in O\left(Y, f\left(x_{2}\right)\right)\right)\left(U \cap f^{-1}[V]=\emptyset\right) \\
\Rightarrow\left(\exists U \in e^{*} \theta O\left(X, x_{1}\right)\right)\left(x_{2} \notin U\right)
\end{gathered}
$$

Then X is $e^{*} \theta-T_{0}$. On the other hand, the notions of $e^{*} \theta-T_{0}$ and $e^{*} \theta-T_{1}$ are equivalent from Lemma 4.1. Thus X is $e^{*} \theta-T_{1}$.

Definition 4.5. A topological space X is said to be:
a) Strongly S-closed [6] if every closed cover of X has a finite subcover.
b) Strongly $e^{*} \theta C$-compact [3] if every $e^{*}-\theta$-closed cover of X has a finite subcover.
c) $e^{*} \theta$-compact if every $e^{*}-\theta$-open cover of X has a finite subcover.
d) $e^{*} \theta$-space if every $e^{*}-\theta$-closed set is closed.

Theorem 4.9. If $f: X \rightarrow Y$ has a contra $e^{*} \theta$-closed graph and X is an $e^{*} \theta$-space, then $f^{-1}[K]$ is closed in X for every strongly S-closed subset K of Y.

Proof. Let K is strongly S-closed in Y and let $x \notin f^{-1}[K]$.

$$
\begin{aligned}
& \left.\begin{array}{r}
x \notin f^{-1}[K] \Rightarrow f(x) \notin K \Rightarrow(\forall y \in K)(y \neq f(x)) \Rightarrow(x, y) \notin G(f) \\
G(f) \text { is } e^{*} \theta \text {-closed }
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists U_{y} \in e^{*} \theta O(X, x)\right)\left(\exists V_{y} \in C(Y, y)\right)\left(f\left[U_{y}\right] \cap V_{y}=\emptyset\right) \\
\mathcal{A}:=\left\{K \cap V_{y} \mid y \in K\right\}
\end{array}\right\} \Rightarrow \\
& \left.\left.\begin{array}{r}
\Rightarrow(\mathcal{A} \subseteq C(Y))(K=\bigcup \mathcal{A}) \\
K \text { is strongly } S \text {-closed in } Y
\end{array}\right\} \Rightarrow\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(K \subseteq \bigcup \mathcal{A}^{*}\right), \begin{array}{r}
X:=\cap\left\{U_{y} \mid U_{y} \in \mathcal{A}^{*}\right\}
\end{array}\right\} \stackrel{\text { is } e^{*} \theta \text {-space }}{\Rightarrow} \\
& \Rightarrow(U \in O(X, x))(f[U] \cap K=\emptyset) \Rightarrow(U \in O(X, x))\left(U \cap f^{-1}[K]=\emptyset\right) \Rightarrow \\
& \Rightarrow(U \in O(X, x))\left(U \subseteq \backslash f^{-1}[K]\right) \Rightarrow x \in \operatorname{int}\left(X \backslash f^{-1}[K]\right) \Rightarrow x \in X \backslash \operatorname{cl}\left(f^{-1}[K]\right) \Rightarrow x \notin \operatorname{cl}\left(f^{-1}[K]\right) \text {. }
\end{aligned}
$$

Theorem 4.10. If $f: X \rightarrow Y$ is a contra $e^{*} \theta$-continuous surjection and X is strongly $e^{*} \theta C$ compact, then Y is compact.
Proof. Let $\mathcal{B} \subseteq O(Y)$ and $Y=\bigcup \mathcal{B}$.

$$
\begin{aligned}
& \left.\left.\begin{array}{r}
(\mathcal{B} \subseteq O(Y))(Y=\bigcup \mathcal{B}) \\
f \text { is c. } e^{*} \theta . c .
\end{array}\right\} \Rightarrow\left(\mathcal{A}:=\left\{f^{-1}[B] \mid B \in \mathcal{B}\right\} \subseteq e^{*} \theta C(X)\right)(X=\bigcup \mathcal{A}) ~ 子 \begin{array}{r}
X \text { is strongly } e^{*} \theta C \text {-compact }
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(X=\bigcup \mathcal{A}^{*}\right) \quad\left\{\begin{aligned}
\\
f \text { is surjective }
\end{aligned}\right\} \Rightarrow\left(\mathcal{B}^{*}:=\left\{f[A] \mid A \in \mathcal{A}^{*}\right\} \subseteq \mathcal{B}\right)\left(\left|\mathcal{B}^{*}\right|<\aleph_{0}\right)\left(Y=\bigcup \mathcal{B}^{*}\right) .
\end{aligned}
$$

Theorem 4.11. Let $f: X \rightarrow Y$ be a function. Then the following properties are hold:
(1) If f is a contra $e^{*} \theta$-continuous surjection and X is $e^{*} \theta$-compact, then Y is strongly S-closed.
(2) If f is a contra $e^{*} \theta$-continuous surjection and X is $e^{*} \theta$-compact and $e^{*} \theta$-space, then Y is strongly $e^{*} \theta C$-compact.
Proof. (1) Let $\mathcal{B} \subseteq C(Y)$ and $Y=\bigcup \mathcal{B}$.

$$
\left.\begin{array}{c}
\left.\begin{array}{r}
(\mathcal{B} \subseteq C(Y))(Y=\bigcup \mathcal{B}) \\
f \text { is c. } e^{*} \theta . c .
\end{array}\right\} \Rightarrow\left(\mathcal{A}:=\left\{f^{-1}[B] \mid B \in \mathcal{B}\right\} \subseteq e^{*} \theta O(X)\right)(X=\bigcup \mathcal{A}) \\
\left.\begin{array}{c}
X \text { is } e^{*} \theta \text {-compact }
\end{array}\right\} \Rightarrow \\
\Rightarrow\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(X=\bigcup \mathcal{A}^{*}\right) \\
f \text { is surjective }
\end{array}\right\}, ~ \begin{gathered}
\Rightarrow\left(\mathcal{B}^{*}:=\left\{f[A] \mid A \in \mathcal{A}^{*}\right\} \subseteq \mathcal{B}\right)\left(\left|\mathcal{B}^{*}\right|<\aleph_{0}\right)\left(Y=\bigcup \mathcal{B}^{*}\right)
\end{gathered}
$$

(2) Let $\mathcal{B} \subseteq e^{*} \theta C(Y)$ and $Y=\bigcup \mathcal{B}$.

$$
\begin{aligned}
& \left.\begin{array}{r}
\left(\mathcal{B} \subseteq e^{*} \theta C(Y)\right)(Y=\bigcup \mathcal{B}) \\
X \text { is } e^{*} \theta \text {-space }
\end{array}\right\} \Rightarrow(\mathcal{B} \subseteq C(Y))(\bigcup \mathcal{B}=Y) \quad\{\text { is c.e* } \theta . c . ~\} \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(X=\bigcup \mathcal{A}^{*}\right) \\
f \text { is surjective }
\end{array}\right\} \Rightarrow\left(\mathcal{B}^{*}:=\left\{f[A] \mid A \in \mathcal{A}^{*}\right\} \subseteq \mathcal{B}\right)\left(\left|\mathcal{B}^{*}\right|<\aleph_{0}\right)\left(Y=\bigcup \mathcal{B}^{*}\right) .
\end{aligned}
$$

Theorem 4.12. If $f: X \rightarrow Y$ is a weakly e^{*}-irresolute surjection and X is strongly $e^{*} \theta C$ compact, then Y is strongly $e^{*} \theta C$-compact.

Proof. Let $\mathcal{B} \subseteq e^{*} \theta C(Y)$ and $Y=\bigcup \mathcal{B}$.

$$
\begin{aligned}
& \left.\left.\left.\begin{array}{r}
\left(\mathcal{B} \subseteq e^{*} \theta C(Y)\right)(Y=\bigcup \mathcal{B}) \\
f \text { is weakly } e^{*} \text {-irresolute }
\end{array}\right\} \Rightarrow\left(\mathcal{A}:=\left\{f^{-1}[B] \mid B \in \mathcal{B}\right\} \subseteq e^{*} \theta C(X)\right)(X=\bigcup \mathcal{A})\right\} \text { is strongly } e^{*} \theta C \text {-compact }\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(\exists \mathcal{A}^{*} \subseteq \mathcal{A}\right)\left(\left|\mathcal{A}^{*}\right|<\aleph_{0}\right)\left(X=\bigcup \mathcal{A}^{*}\right) \\
f \text { is surjective }
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\mathcal{B}^{*}:=\left\{f[A] \mid A \in \mathcal{A}^{*}\right\} \subseteq \mathcal{B}\right)\left(\left|\mathcal{B}^{*}\right|<\aleph_{0}\right)\left(Y=\bigcup \mathcal{B}^{*}\right) \text {. }
\end{aligned}
$$

We recall that the product space $X=X_{1} \times \ldots \times X_{n}$ has property $P_{e^{*} \theta}$ [3] if A_{i} is an $e^{*} \theta$-open set in a topological space X_{i} for $i=1,2, \ldots n$, then $A_{1} \times \ldots \times A_{n}$ is also $e^{*} \theta$-open in the product space $X=X_{1} \times \ldots \times X_{n}$.

Theorem 4.13. Let $f: X_{1} \rightarrow Y$ and $g: X_{2} \rightarrow Y$ be two functions, where
(i) $X=X_{1} \times X_{2}$ has the property $P_{e^{*} \theta}$,
(ii) Y is a Urysohn space,
(iii) f and g are contra $e^{*} \theta$-continuous,
then $\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}\right)=g\left(x_{2}\right)\right\}$ is $e^{*} \theta$-closed in the product space $X=X_{1} \times X_{2}$.
Proof. Let $\left(x_{1}, x_{2}\right) \notin A:=\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}\right)=g\left(x_{2}\right)\right\}$.

$$
\begin{aligned}
& \left.\begin{array}{r}
\Rightarrow\left(\exists V_{1} \in O\left(Y, f\left(x_{1}\right)\right)\right)\left(\exists V_{2} \in O\left(Y, g\left(x_{2}\right)\right)\right)\left(c l\left(V_{1}\right) \cap \operatorname{cl}\left(V_{2}\right)=\emptyset\right)\left(c l\left(V_{1}\right), \operatorname{cl}\left(V_{2}\right) \in R C(Y)\right) \\
f \text { and } g \text { are c.e* } \theta . c .
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{r}
\Rightarrow\left(f^{-1}\left[c l\left(V_{1}\right)\right] \in e^{*} \theta O\left(X_{1}, x_{1}\right)\right)\left(g^{-1}\left[c l\left(V_{2}\right)\right] \in e^{*} \theta O\left(X_{2}, x_{2}\right)\right) \\
X=X_{1} \times X_{2} \text { has the Property } P_{e^{*} \theta}
\end{array}\right\} \Rightarrow \\
& \Rightarrow\left(\left(x_{1}, x_{2}\right) \in f^{-1}\left[c l\left(V_{1}\right)\right] \times g^{-1}\left[c l\left(V_{2}\right)\right] \in e^{*} \theta O\left(X_{1} \times X_{2}\right)\right)\left(f^{-1}\left[c l\left(V_{1}\right)\right] \times g^{-1}\left[c l\left(V_{2}\right)\right] \subseteq \backslash A\right) \Rightarrow \\
& \Rightarrow \backslash A \in e^{*} \theta O\left(X_{1} \times X_{2}\right) \Rightarrow A \in e^{*} \theta C\left(X_{1} \times X_{2}\right) .
\end{aligned}
$$

5 Acknowledgements

This work is supported by the Scientific Research Proyect Fund of Muğla Sitki Koçman University under the project number $17 / 277$.

References

[1] Abd El-Monsef, M. E.; El-Deeb, S. N. and Mahmoud, R. A. β-open sets and β-continuous mappings, Bull. Fac. Sci., Assiut Univ. 12 (1983), 77-90.
[2] Andrijević, D. On b-open sets, Mat. Vesnik 48 (1996), 59-64.
[3] Ayhan, B.S. and Özkoç, M. On almost contra $e^{*} \theta$-continuous functions. Jordan Journal of Mathematics and Statistics, 11(4) (2018), 383-408.
[4] Caldas, M. On Contra $\beta \theta$-Continuous Functions, Proyecciones J. Math., 32(4) (2013), 333346.
[5] Caldas, M. and Jafari, S. Some properties of contra- β-continuous functions, Mem. Fac. Sci. Koch Univ. (Math) 22 (2001), 19-28.
[6] Dontchev, J. Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303-310.
[7] Dontchev, J. and Noiri, T. Contra-semicontinuous functions, Math. Pannonica 10 (1999), 159-168.
[8] Ekici, E. On e-open sets, $\mathcal{D P}^{*}$-sets and $\mathcal{D P} \mathcal{E}^{*}$-sets and decompositions of continuity, Arabian J. Sci. Eng. 33(2A) (2008), 269-282.
[9] Ekici, E. On e^{*}-open sets and $(\mathcal{D}, \mathcal{S})^{*}$-sets, Math. Morav. 13(1) (2009), 29-36.
[10] Ekici, E. New forms of contra-continuity, Carpathian J. Math. 24(1) (2008), 37-45.
[11] Farhan, A. M. and Yang, X. S. New types of strongly continuous functions in topological spaces via δ - β-open sets, Eur. J. Pure Appl. Math., 8(2) (2015), 185-200.
[12] Jafari, S. and Noiri, T. Contra- α-continuous functions between topological spaces, Iran. Int. J. Sci., 2 (2001), 153-167.
[13] Jafari, S. and Noiri, T. On contra precontinuous functions, Bull. Malaysian Math. Sci. Soc., 25 (2002), 115-128.
[14] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963),36-41.
[15] Mashhour, A. S.; Abd El-Monsef, M. E. and El-Deeb, S. N. On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
[16] Mrsevic, M. On pairwise R_{0} and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math RS Roumano, (N.S.) 30(78) (1986), 141-148.
[17] Nasef, A. A. Some properties of contra- γ-continuous functions, Chaos Solitons and Fractals 24 (2005), 471-477.
[18] Njastad, O. On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
[19] Noiri, T. Weak and strong forms of β-irresolute functions, Acta Math. Hungar., 99 (2003), 315-328.
[20] Özkoç, M. and Atasever, K. S. On some forms of e^{*}-irresoluteness (Accepted in JLTA).
[21] Soundararajan, T. Weakly Hausdorff space and the cardinality of topological spaces, General Topology and its Relation to Modern Analysis and Algebra III, Proc. Conf. Kampur, 168, Acad. Prague (1971), 301-306.
[22] Staum, R. The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169-85.
[23] Stone, M. H. Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.
[24] Veličko, N. V. H-closed topological spaces, Amer. Math. Soc. Transl. (2) 78 (1968), 103-118.

[^0]: Received 28/05/2018. Revised 15/08/2019. Accepted 25/11/2018.
 MSC (2000): Primary 54C08, 54C10; Secondary 54C05.
 Corresponding author: Murad Özkoç

