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Abstract

In this paper we propose new fractional derivatives which, from the theoretical viewpoint,
improve the Riemann-Liouville and Caputo fractional derivatives. Furthermore, some useful
properties of the new fractional derivatives are presented.
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Resumen

En este trabajo se proponen nuevas derivadas fraccionarias que, desde el punto de vista
teórico, mejoran las derivadas fraccionarias de Riemann-Liouville y Caputo. Por otro lado,
se introducen algunas propiedades importantes de estas nuevas derivadas fraccionarias.
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1 Introduction

Fractional calculus (FC) is an extension of ordinary calculus with more than 300 years of his-
tory. The history of the Fractional Calculus goes back to seventeenth century, when in 1695 the
derivative of order α = 1

2 was described by Leibnitz in his letter to L’Hospital (cf. [2]). That
date is regarded as the exact birthday of the fractional calculus. Since then this branch has
been treated by eminent mathematicians, such as Euler, Laplace, Fourier, Liouville, Riemann,
Laurent, Weyl and Abel. Therefore many definitions of fractional derivative have been proposed
(cf. [1, 3, 7, 10, 11], [13]-[20] and [4, 5, 6, 8, 9, 12]), as follows (just to name a few):

Definition 1.1. The Grunwald and Letnikov fractional derivative is given by the formula

(Dαf)(x) = lim
n→0

(∇αhf)(x)

hα
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where

(∇αhf)(x) =

n∑
j=0

(−1)j
(
α

j

)
f(x− jh)

with n = [α], where [α] denotes the integer part of a real number α.

Definition 1.2. Suppose α, a, t ∈ R, with α > 0 and t > a. The Riemann-Liouville fractional
integral of order α > 0 is defined by

Iαatf(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds

where Γ is the gamma function, given by Γ(α) =

∫ ∞
0

e−ssα−1ds.

Definition 1.3. Suppose α, a, t ∈ R, with α > 0 and t > a. The Riemann-Liouville fractional
derivative of order α > 0 is defined by

RLDα
atf(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−(1+α)f(s)ds (1)

where n = [α] + 1.

Definition 1.4. Suppose α, a, t ∈ R, with α > 0 and t > a. The Caputo fractional derivative of
order α > 0 is defined by

CDα
atf(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−(1+α)f (n)(s)ds (2)

where n = [α] + 1.

In the present work, we shall introduce new fractional derivatives to improve theoretically the
Riemann-Liouville and Caputo fractional derivatives. The outline of the paper is as follows: in
section 2, new definitions of fractional derivative are introduced. Section 3 presents properties of
new fractional derivatives. Finally, conclusions are summarized in section 4.

2 New fractional derivatives

Our new definitions are motivated by the following reasoning. Integrating (1) and (2) by parts
for n = 1, we have

RLDα
atf(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αf(s)ds

=
1

Γ(1− α)

[
0−αf(t)− α

t∫
a

(t− s)−(α+1)f(s)ds
]

(3)
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and

CDα
atf(t) =

1

Γ(1− α)

∫ t

a

(t− s)−αf (1)(s)ds

=
1

Γ(1− α)

[
0−αf(t)− (t− a)−αf(a)− α

t∫
a

(t− s)−(α+1)f(s)ds
]

(4)

respectively. Considering the first term in (3) and (4), we can see that both definitions loose
sense. To avoid this issue, we propose the following definitions:

Definition 2.1. Suppose α, a, t ∈ R, with α > 0 and t > a, then the new fractional derivative
(Asumu fractional derivative in Riemann-Liouville sense) is given as:

ARLDα
atf(t) :=


1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−(1−α)f(s)ds, n− 1 < α < n

dn

dtn
f(t), α = n

Definition 2.2. Suppose α, a, t ∈ R, with α > 0 and t > a, then the new fractional derivative
(Asumu fractional derivative in Caputo sense) is given as:

ACDα
atf(t) :=


1

Γ(n− α)

∫ t

a

(t− s)n−(1−α)f (n)(s)ds, n− 1 < α < n

dn

dtn
f(t), α = n

3 Basic properties of new fractional order derivatives

Before we establish the main properties of the new fractional derivatives, we present their Laplace
transform formulas in the following two theorems:

Theorem 3.1. Suppose that n − 1 < α < n and f such that f(0), f ′(0), · · · , f (n−1)(0) exist.
Then

L{ACDα
0tf(t)} =

Γ(n+ α)

sn+α · Γ(n− α)

{
snL{f(t)} −

n−1∑
i=0

sn−i−1f (i)(0)

}
(5)

Proof. From Definition 2.2 we have

L{ACDα
0tf(t)} =

1

Γ(n− α)
· L
{∫ t

a

(t− s)n−(1−α)f (n)(s)ds
}

=
1

Γ(n− α)
· L
{
tn−(1−α) ∗ f (n)(t)

}
=

1

Γ(n− α)
· L
{
tn−(1−α)

}
· L
{
f (n)(t)

}
=

Γ(n+ α)

sn+α · Γ(n− α)
·
{
sn · L

{
f
}
−
n−1∑
i=0

sn−1−i · f (i)(0)
}

as required.
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Theorem 3.2. Suppose that n− 1 < α < n. Then

L{ARLDα
0tf(t)} =

1

Γ(n− α)
·

{
Γ(n+ α)

sα
· L
{
f
}
−
n−1∑
i=0

sn−1−i

· d
i

dti

{∫ t

0

(t− s)n−(1−α)f(s)ds

}
(0)

}
(6)

Proof. By Definition 2.1 we have that

L{ARLDα
0tf(t)} =

1

Γ(n− α)
· L
{
dn

dtn

∫ t

0

(t− s)n−(1−α)f(s)ds

}

=
1

Γ(n− α)
·

{
sn · L

{∫ t

0

(t− s)n−(1−α)f(s)ds

}

−
n−1∑
i=0

sn−1−i · d
i

dti

{∫ t

0

(t− s)n−(1−α)f(s)ds

}
(0)

}

=
1

Γ(n− α)
·

{
snΓ(n+ α)

sn+α
· L
{
f
}
−
n−1∑
i=0

sn−1−i

· d
i

dti

{∫ t

0

(t− s)n−(1−α)f(s)ds

}
(0)

}

This completes the proof

The following two theorems permit us to write the new fractional derivatives in other way:

Theorem 3.3. Let n ∈ N, a, α ∈ R such that n−1 < α < n and f(a), f ′(a), · · · , f (n−1)(a) exist.
Then

ACDα
atf(t) = − 1

Γ(n− α)

n−1∑
i=0

(α+ n− 1)!

(α+ n− 1− i)!
(t− a)n−1+α−if (n−1−i)(a)

+
1

Γ(n− α)
·
[ n−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds (7)

Proof. We will use the principle of mathematical induction. Let P (n) be

P (n) ≡AC Dα
atf(t)

= − 1

Γ(n− α)

n−1∑
i=0

(α+ n− 1)!

(α+ n− 1− i)!
(t− a)n−1+α−if (n−1−i)(a)

+
1

Γ(n− α)
·
[ n−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds
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For our base case, we need to show P (1) is true, meaning that

ACDα
atf(t) =

1

Γ(1− α)

[
−

1−1∑
i=0

(α+ 0)!

(α+ 0− i)!
(t− a)0+α−if (0−i)(a)

+

[ 1−1∏
i=0

(i+ α)

] ∫ t

a

(t− s)α−1f(s)ds

]
,

This is trivial, since

ACDα
atf(t) =

1

Γ(1− α)

∫ t

a

(t− s)αf (1)(s)ds

=
1

Γ(1− α)

[
− (t− a)αf(a) + α

∫ t

a

(t− s)α−1f(s)ds

]

=
1

Γ(1− α)

[
−

1−1∑
i=0

(α+ 0)!

(α+ 0− i)!
(t− a)0+α−if (0−i)(a)

+

[ 1−1∏
i=0

(i+ α)

] ∫ t

a

(t− s)α−1f(s)ds

]
,

For the inductive step, assume that for some n, P (n) holds, so

ACDα
atf(t) =

1

Γ(k − α)

∫ t

a

(t− s)k−(1−α)f (k)(s)ds

=
1

Γ(k − α)

[
−
k−1∑
i=0

(α+ k − 1)!

(α+ k − 1− i)!
(t− a)k−1+α−if (k−1−i)(a)

+

[ k−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds

]
(8)

We need to show that P (n+ 1) holds, meaning that

ACDα
atf(t) = − 1

Γ(n+ 1− α)

n∑
i=0

(α+ n)!

(α+ n− i)!
(t− a)n+α−if (n−i)(a)

+
1

Γ(n+ 1− α)
·
[ n∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds
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To see this, note that

ACDα
atf(t)

=
1

Γ(k + 1− α)

∫ t

a

(t− s)k+1−(1−α)f (k+1)(s)ds

=
1

Γ(k + 1− α)

[
− (t− a)k+αf (k)(a) + (k + α)

∫ t

a

(t− s)k+α−1f (k)(s)ds
]

=
1

Γ(k + 1− α)

{
− (t− a)k+αf (k)(a) + (k + α)

[
−
k−1∑
i=0

(α+ k − 1)!

(α+ k − 1− i)!
(t

− a)k−1+α−if (k−1−i)(a) +

[ k−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds

]}

=
1

Γ(k + 1− α)

[
− (t− a)k+αf (k)(a)−

k∑
i=1

(α+ k)!

(α+ k − i)!
(t

− a)k+α−if (k−i)(a) +

[ k∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds

]

=
1

Γ(k + 1− α)

[
−

k∑
i=0

(α+ k)!

(α+ k − i)!
(t− a)k+α−if (k−i)(a)

+

[ k∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds

]
(9)

Thus P (n+ 1) holds when P (n) is true, so P (n) is true for all natural numbers n.

Theorem 3.4. Let n ∈ N, a, α ∈ R such that n− 1 < α < n. Then

ARLDα
atf(t) =

1

Γ(n− α)
·
[ n−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds (10)

Proof. Let P (n) be

P (n) ≡ARL Dα
atf(t) =

1

Γ(n− α)
·
[ n−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds.

We will show, by induction, that P (n) holds for all n ∈ N. We note that

ARLDα
atf(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− s)αf(s)ds

=
1

Γ(1− α)
· α
∫ t

a

(t− s)α−1f(s)ds

=
1

Γ(1− α)

[ 1−1∏
i=0

(i+ α)

] ∫ t

a

(t− s)α−1f(s)ds.
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Thus, P (1) is true. Asume that P (n) is true for some natural number n, i.e.,

ARLDα
atf(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−(1−α)f(s)ds

=
1

Γ(n− α)
·
[ n−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds

We need to proof that P (n+ 1) is true whenever P (n) is true. We have

ARLDα
atf(t) =

1

Γ(n+ 1− α)

dn+1

dtn+1

∫ t

a

(t− s)n+1−(1−α)f(s)ds

=
1

Γ(n+ 1− α)

dn

dtn

[
d

dt

∫ t

a

(t− s)n+αf(s)ds

]
=

n+ α

Γ(n+ 1− α)

dn

dtn

∫ t

a

(t− s)n−(1−α)f(s)ds

=
n+ α

Γ(n+ 1− α)
·
[ n−1∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds

=
1

Γ(n+ 1− α)
·
[ n∏
i=0

(i+ α)

]
·
∫ t

a

(t− s)α−1f(s)ds.

Thus, we get what we want. Hence, by the principle of mathematical induction, P (n) is true for
all natural numbers n.

The following theorem can therefore be established:

Theorem 3.5. Let n ∈ N, a, α ∈ R such that n−1 < α < n and f(a), f ′(a), · · · , f (n−1)(a) exist.
Then, the following relation is obtained

ARLDα
atf(t) =AC Dα

atf(t) +
1

Γ(n− α)

n−1∑
i=0

(α+ n− 1)!

(α+ n− 1− i)!
(t− a)n−1+α−if (n−1−i)(a). (11)

Proof. In terms of (7) and (10), then it follows (11).

The following two theorems characterize the well-posed of the new fractional derivatives:

Theorem 3.6. Let f such that Iαatf(t) exists, then the operator ARLDα
atf(t) is well-defined.

Proof. The proof follows from Theorem 3.4.

Theorem 3.7. Let f such that f(a), f ′(a), · · · , f (n−1)(a) and Iαatf(t) exist, then the operator
ACDα

atf(t) is well-defined.

Proof. The proof follows from Theorem 3.3.
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4 Conclusions

The aim of this paper was to suggest new fractional derivatives to improve theoretically the
Riemann-Liouville and Caputo fractional derivatives. In this sense, one of the derivative is based
upon the Riemann-Liouville viewpoint and the other one on the Caputo approach. Also we have
given some properties of the proposed new fractional derivatives.
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