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Abstract

Let (Pn)n>0 be the Padovan sequence given by P0 = 0, P1 = P2 = 1 and the recurrence

formula Pn+3 = Pn+1 + Pn for all n > 0. Let (Tn)n>0 be the Tribonacci sequence given by

T0 = 0, T1 = T2 = 1 and the recurrence formula Tn+3 = Tn+2 + Tn+1 + Tn for all n > 0. In
this note we solve the Diophantine equation

Pn = Tm

in non-negative integers n, m. In particular, we �nd all the elements in the intersection of

the Padovan and Tribonacci sequences.
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Resumen

Sea (Pn)n>0 la sucesión de Padovan de�nida mediante P0 = 0, P1 = P2 = 1 y la fórmula

de recurrencia Pn+3 = Pn+1 + Pn para todo n > 0. Sea (Tn)n>0 la sucesión de Tribonacci

de�nida mediante T0 = 0, T1 = T2 = 1 y la fórmula de recurrencia Tn+3 = Tn+2 +Tn+1 +Tn

para todo n > 0. En este escrito resolvemos la ecuación Diofántica

Pn = Tm

en enteros no negativos n,m. En particular, encontramos todos los elementos en la intersec-

ción de las sucesiones de Padovan y Tribonacci.
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1 Introduction

Let (Pn)n>0 be the Padovan sequence, named after the architect R. Padovan, given by P0 = 0,
P1 = P2 = 1 and the recurrence formula

Pn+3 = Pn+1 + Pn, for all n > 0. (1.1)

This is sequence A000931 in [12]. The �rst few terms of this sequence are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, . . .

Recently, some arithmetic properties of the Padovan sequence have been studied. Indeed,
let (Fn)n>0 be the Fibonacci sequence given by the initial conditions F0 = 0, F1 = 1 and the
recurrence formula Fn+2 = Fn+1 + Fn for all n > 0. In [13], Stewart asks for the intersection
of the Fibonacci and the Padovan sequences. In [14] De Weger solves this problem. He actually
proves that the distance between Fibonacci and Padovan numbers growths exponentially. In [7]
it is solved the problem of the intersection of the Padovan sequence and the powers of 2 and also
the powers of 2 which can be written as sum of two terms of the Padovan sequence.

Now, let (Tn)n>0 be the Tribonacci sequence de�ned by T0 = 0, T1 = T2 = 1 and the
recurrence formula

Tn+3 = Tn+2 + Tn+1 + Tn (1.2)

holds for all n > 0. The �rst few terms of this sequence are

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, . . .

In this note, as a natural generalization of Stewart problem, we shall study the problem of the
intersection of the Padovan and the Tribonacci sequences. More precisely, we will study the
Diophantine equation

Pn = Tm (1.3)

in non-negative integers n,m. Since P1 = P2 = P3 = 1, P4 = P5 = 2 we assume that n 6= 1, 2, 4.
That is, whenever we think of 1 and 2 as members of the Padovan sequence, we think of them
as being P3 and P5, respectively. In the same way, as T1 = T2 = 1 we assume that m 6= 1. With
these conventions, we prove the following result:

Theorem 1.1. All non-negative solutions (n,m) of equation (1.3) belong to the set

{(0, 0), (3, 2), (5, 3), (7, 4), (9, 5)}.

The intersection of the Tribonacci sequence with the Fibonacci one is studied in [9] and, it
is a particular case in [3]. There are general results concerning the intersection of two linear
recurrence sequences, see for example [11] and [2].

2 Tools

In this section, we gather the tools we need to prove Theorem 1.1. Let α be an algebraic
number of degree d. Let a be the leading coe�cient of its minimal polynomial over Z and let
α(1) = α, . . . , α(d) denote the conjugates of α. The logarithmic height of α is de�ned as

h(α) =
1

d

(
log a+

d∑
i=1

log max{
∣∣∣α(i)

∣∣∣ , 1}) .
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This height has the following basic properties. For α, β algebraic numbers and m ∈ Z, we have:

� h(α+ β) 6 h(α) + h(β) + log 2.

� h(αβ) 6 h(α) + h(β).

� h(αm) = |m|h(α).

Now let L be a real number �eld of degree dL, α1, . . . , α` ∈ L with αi > 0, i = 1, . . . , `, and
b1, . . . , b` ∈ Z\{0}. Let B > max{|b1|, . . . , |b`|} and

Λ = αb1
1 · · ·α

b`
` − 1.

Let A1, . . . , A` be real numbers such that

Ai > max{dLh(αi), | logαi|, 0.16} for all i = 1, . . . , `.

The �rst tool we need is the following result due to Matveev in [10] (see also Theorem 9.4 in [5]).

Theorem 2.1. Assume that Λ 6= 0. Then

log |Λ| > −1.4× 30`+3 × `4.5 × d2
L(1 + log dL)(1 + logB)A1 · · ·A`.

The second one, is a version of a reduction method of Baker-Davenport based on Lemma in
[1]. We shall use the one given by Bravo, Gómez and Luca in [4]. For a real number x, we write

‖x‖ = min{|x− n| : n ∈ Z}.

Lemma 2.1. Let M be a positive integer. Let τ, µ, A > 0, B > 1 be given real numbers.

Assume that the convergent p/q of τ is such that q > 6M and ε := ‖qµ‖−M‖qτ‖ > 0. Then the

inequality

0 < |nτ −m+ µ| < A

Bw

does not has a solution in positive integers n, m and w in the ranges

n 6M and w >
log (Aq/ε)

logB
.

This lemma is a slightly variation of the one given by Dujella and Peth® in [6]. Finally, the
following lemma is also useful. It is Lemma 6 in [8].

Lemma 2.2. If T > 3 and T > x/(log x), then

x < 2T log T.

3 Proof of Theorem 1.1

We start with some properties of our sequences. For a complex number z we write z for its
complex conjugate. Let ω 6= 1 be a cubic root of 1. Put

γ :=
3

√
9 +
√

69

18
+

3

√
9−
√

69

18
, δ := ω

3

√
9 +
√

69

18
+ ω

3

√
9−
√

69

18
,
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and

α :=
1

3

(
1 +

3

√
19 + 3

√
33 +

3

√
19− 3

√
33

)
,

β :=
1

3

(
1 + ω

3

√
19 + 3

√
33 + ω

3

√
19− 3

√
33

)
.

It is clear that γ, δ, δ are the roots of X3−X−1 and, that α, β, β are the roots of X3−X2−X−1.
These polynomials are both irreducible over Q. It can be proved, by induction for example, the
Binet formulas

Pn = c1γ
n + c2δ

n + c3δ
n
, and Tn = d1α

n + d2β
n + d3β

n
(3.1)

which hold for all n > 0, where

c1 =
γ(γ + 1)

2γ + 3
, c2 =

δ(δ + 1)

2δ + 3
, c3 = c2 (3.2)

and

d1 =
α2

α2 + 2α+ 3
, d2 =

β2

β2 + 2β + 3
, d3 = d2. (3.3)

The formulas (3.1) follows from the general theorem on linear recurrence sequences since the above
polynomials are the characteristic polynomials of the Padovan and the Tribonacci sequences,
respectively. We note that

γ = 1.32471 . . . , |δ| = 0.86883 . . . , c1 = 0.54511 . . . , |c2| = 0.28241 . . .

and
α = 1.83928 . . . , |β| = 0.73735 . . . , d1 = 0.33622 . . . , |d2| = 0.25999 . . . .

Further, the inequalities

γn−3 6 Pn 6 γn−1, αn−2 6 Tn 6 αn−1 (3.4)

also hold for all n > 1. These can be proved by induction.
Now we begin with the study of equation (1.3). If n = 0 then 0 = Tm implies m = 0. Thus

we assumme that n > 1 and m > 1. By combining inequalities (3.4) we have

γn−3 6 Pn = Tm 6 αm−1 and γn−1 > Pn = Tm > αm−2. (3.5)

From these we obtain

(n− 3)
log γ

logα
6 (m− 1) and (n− 1)

log γ

logα
> (m− 2). (3.6)

Since log γ/ logα = 0.461453 . . . we have that if n 6 200 then m 6 93. A quick search with
Mathematica in the range 0 6 n 6 200, 0 6 m 6 93 and, with our conventions, we obtain all
solutions listed in Theorem 1.1.

From now on we assume that n > 200. Further, from (3.6) we obtain m > 91 and also n > m.
From the Binet formulas (3.1) we rewrite our equation as

c1γ
n − d1α

m = d2β
m + d3β

m − c2δn − c3δ
n
.
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By taking absolute values, we get
|c1γn − d1α

m| < 1,

from our assumption on m and n. Thus, dividing through by d1α
m and from (3.5) we obtain∣∣∣∣ c1d1

γnα−m − 1

∣∣∣∣ < 1

d1αm
6

1

d1αγn−3
<

2

γn−3
<

1

γn−6
. (3.7)

Let Λ be the expression inside the absolute value. We claim that Λ 6= 0. To see this, we consider
the Q-automorphism σ of the Galois extension Q(α, β, γ, δ) of Q given by σ(α) = α, σ(β) = β,
σ(γ) = δ, σ(δ) = α. Thus, σ(β) = β and σ(δ) = δ. If Λ = 0 then σ(Λ) = 0. Thus

c2δ
n = σ(c1γ

n) = σ(d1α
m) = d1α

m.

By taking absolute values we get

1 > |c2||δ|n = d1α
m > 1,

where the left-hand side inequality is because 1 > |c2|, |δ| and the right-hand side inequality is
because α > 1 and m > 91, which is absurd.

Now, we shall apply Matveev's inequality to Λ. To do this we consider the real number �eld
L := Q(α, γ) which is of degree dL = 9 and

α1 =
c1
d1
, α2 = γ, α3 = α, b1 = 1, b2 = n, b3 = −m.

Thus we take B = n. Further, h(α2) = log γ/3, and h(α3) = logα/3. For h(α1) we use the
properties of the height and conclude that

h(α1) 6 log γ +
5

3
logα+ 10 log 2.

Thus we take A1 = 74.1, A2 = 0.85, A3 = 1.9. Now, from Theorem 2 we have

log |Λ| > −1.4 · 306 · 34.5 · 92 · (1 + log 9) · (1 + log n) · 74.1 · 0.85 · 1.9

which compared with (3.7) we get

(n− 6) log γ < 4.43763× 1015(2 log n),

where we use 1 + log n < 2 log n since n > 200. Thus n < 3.15623× 1016 log n and, from Lemma
2.2 we conclude that

n < 2.39815× 1018. (3.8)

Now we reduce this upper bound on n. To do this, let Γ be de�ned as

Γ = n log γ −m logα+ log
c1
d1
,

and we go to (3.7). Observe that eΓ − 1 = Λ 6= 0. Thus Γ 6= 0. If Γ > 0 we obtain

0 < Γ < eΓ − 1 = Λ = |Λ| < 1

γn−6
.
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If Γ < 0, we then have 1 − eΓ = |eΓ − 1| = |Λ| < 1/2 since n > 200. This implies that e|Γ| < 2.
Thus,

0 < |Γ| < e|Γ| − 1 = e|Γ||Λ| < 2

γn−6
.

So, in both cases we have

0 < |Γ| < 2

γn−6
.

Dividing through by logα we obtain

0 < |nτ −m+ µ| < 2γ6

logα

1

γn
<

18

γn
(3.9)

where

τ :=
log γ

logα
, µ :=

log(c1/d1)

logα
.

Now we will apply Lemma 2.1. To do this, we take M := 2.39815 × 1018 which is the upper
bound on n by (3.8). With the help of Mathematica we found that the convergent

p31

q31
=

6879714423060542181

14908790976189525844

of τ is such that q31 > 6M and ε = ‖q31 µ‖ −M ‖q31 τ‖ = 0.400051 > 0. Thus, from Lemma 2.1
with A := 18, B := γ we get

n <
log(18 q31/ε)

log γ
< 171,

which contradicts our assumption on n. This completes the proof of Theorem 1.1.
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