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Abstract

We present a way to de�ne a set of orthocenters for a triangle in the n-dimensional space

Rn, and we show some analogies between these orthocenters and the classical orthocenter of

a triangle in the Euclidean plane. We also de�ne a substitute of the orthocenter for tetra-

hedra which we call G−orthocenter. We show that the G−orthocenter of a tetrahedron has

some properties similar to those of the classical orthocenter of a triangle.

Key words and phrases: orthocenter, triangle, tetrahedron, orthocentric system,

Feuerbach sphere.

Resumen

Presentamos una manera de de�nir un conjunto de ortocentros de un triángulo en el

espacio n-dimensional Rn, y mostramos algunas analogías entre estos ortocentros y el or-

tocentro clásico de un triángulo en el plano euclidiano. También de�nimos un sustituto del

ortocentro para tetraedros que llamamos G−ortocentro. Se demuestra que el G−ortocentro
de un tetraedro tiene algunas propiedades similares a los del ortocentro clásico de un trián-

gulo.

Palabras y frases clave: ortocentro, triángulo, tetraedro, sistema ortocéntrico, esfera

de Feuerbach.

1 Introduction

In the Euclidean plane, the orthocenter H of a triangle4ABC is known as the unique point where
the altitudes of the triangle intersect, i.e., the point at which the three lines perpendicular to
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the (prolonged) sides of the triangle and passing through the opposite vertex meet. Orthocenters
of triangles are closely related to many theorems of elementary geometry (see below), and their
higher dimensional analogues create the interesting class of orthocentric simplices (see [4, 5]). If
O and G are the circumcenter and the centroid of the triangle, respectively, a classical theorem
of Euler asserts that O , G, and H are collinear (creating the famous Euler line of the triangle)
with |OG| = 2|GH|.

Another property of the orthocenter of a triangle is the following: the orthocenter is the point
where concur the circles whose radii are equal to that of the circumcircle, suitably passing through
two vertices of the triangle; i.e, if the circumcircle is re�ected with respect to the midpoints of
the sides of the triangle, then the three obtained circles concur in the orthocenter of the triangle.
Since that de�nition of the orthocenter does not depend on the notion of orthogonality, we speak
in this case about C-orthocenters (where C comes from �circle�). It should be noted that the
concept of C-orthocenters can succesfully carried over to normed planes; see [2, 6, 7, 8, 9, 10].
Moreover, by the de�nition of C-orthocenter of a triangle, this point is the circumcenter of the
triangle whose vertices are the re�ections of the circumcenter at the midpoints of the sides.

If the triangle 4ABC is not a right triangle, then the triangles 4HBC, 4AHC, and 4ABH
have the points A, B, C as orthocenters, respectively. Thus, any triangle with vertices from the
set {A,B,C,H} has the remaining point as orthocenter, and so it makes sense to call a set of
four points satisfying the above property an orthocentric system. Analogously, for C-orthocenters
we speak about a C-orthocentric system. Basic references on C-orthocentric systems in normed
planes are [2, 6, 7, 8, 9, 10].

When we review the properties and notions related to the orthocenter (such as Euler line,
Feuerbach circle, C-orthocenter, orthocentric system, etc.), we realize that they essentially depend
on the relationship between vertices and the circumcenter of the triangle, i.e., equidistance. In this
paper we will use this idea to de�ne an �orthocenter" associated with each point that is equidistant
from the vertices of a triangle in n-dimensional space, and we will see some properties similar to
those of the orthocenter in the Euclidean plane.

We will investigate notions like orthocentric systems, Euler-line properties and Feuerbach
spheres of triangles and tetrahedra when embedding the starting �gure into higher dimensional
Euclidean space and creating important points of these systems by intersecting certain spheres.
These are strongly related to the circumsphere of the starting �gure. Clearly, some of our
results could be obtained in a shorter way by using the ratio-invariance of a suitable parallel,
or even orthogonal, projection in direction of the line connecting some point P in Rn (which is
equidistant to A,B,C) and the circumcenter of the given triangle. This is particularly visible in
the three-dimensional situation (see section 3.2 etc.), where the point HP (see Theorem 3.1) is
uniquely determined. It would �nally yield only planar investigations. But our way via sphere
intersections has some speci�c motivations, and we mention at least two of them. First, it opens
the opportunity to speak about Monge points, orthocentric systems and Feuerbach spheres of
tetrahedra also in (normed or) Minkowski spaces, a next research step in this direction. Namely,
in Rn the concept of usual orthogonality is obviously needed for constructing the Monge point as
analogue of the orthocenter in dimensions n > 2, but does no longer hold in Minkowski spaces (see
[1] and also the remarks at the end of the paper); via sphere intersections, a reasonable analogue
of the Monge point can be obtained. And second we believe that our approaches are a good
�exercise" in spatial geometry, helping to develop the capacity of thinking in higher dimensions
and thus to stimulate a better understanding of descriptive (advanced) Elementary Geometry,
useful for readers like, e.g., math teachers.
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2 Notation and preliminaries

Let Rn denote the classical n-dimensional Euclidean space, the elements of this vector space
are identi�ed with points and denoted by capital letters. If A and B are two points, then−−→
AB = B − A is written for their di�erence vector, whose norm is given by ‖B − A‖, and AB
denotes the standard segment with endpoints A and B, respectively. The length of AB is denoted
by |AB| = ‖B −A‖.

A triangle 4A0A1A2 is determined by three non-collinear points A0, A1, and A2 in the space
Rn. These points Ai are called vertices of the triangle, the segment denoted by ai whose endpoints
are the vertices other than Ai is called the side opposite to Ai. Denote by O, C, r and G the
circumcenter, the circumcircle, the circumradius, and the centroid of the triangle 4A0A1A2 ,
respectively, i.e., O is the only point in the plane determined by A0, A1, A2 equidistant from
them, with r = |OA0| and G = 1

3 (A0 +A1 +A2). By Mi we denote the midpoint of the side
ai. We also recall the medial triangle 4M0M1M2 of 4A0A1A2, and denote the circumcenter of
4M0M1M2 by QO. Note that QO = 1

2 (A0 +A1 +A2 −O).

If P is a point of Rn and λ is a scalar, the homothety with center P and ratio λ is the mapping
HP,λ : Rn → Rn de�ned by

HP,λ (X) = (1− λ)P + λX,

for all X in Rn. The particular case HP,−1, also called point re�ection at P , we will symbolize
by SP .

For the triangle 4A0A1A2, the orthocenter H is expressed as a function of the circumcenter
O and the vertices of the triangle by the formula H = A0 +A1 +A2 − 2O, and it is not di�cult
to see that H is the circumcenter of the triangle 4B0B1B2, where Bi is the point symmetric to
O with respect to Mi for i = 0, 1, 2; i.e, Bi = Aj + Ak − O. The points B0, B1, and B2 are the
circumcenters of the triangles4HA1A2, 4A0HA2, and4A0A1H, respectively; the circumcircles
of these triangles are denoted by C0, C1 and C2, respectively. All of them have radius r. The
triangles4A0A1A2 and4B0B1B2 are symmetric to each other, and in [8] the triangle4B0B1B2

is called the antitriangle of 4A0A1A2 associated to O. The center of symmetry of the union of
both triangles is the point QO.

The following list contains some of the properties satis�ed by the orthocenter (see Figure 1).

1. The points O, G, and H are collinear, with G in between, and 2|OG| = |GH| (the Euler-line
property).

2. If N0, N1, and N2 are the midpoints of the sides of the triangle 4B0B1B2, the circle with
center QO and radius r2 (called the Feuerbach circle of4A1A2A3) passes through the points
M0, M1, M2, N0, N1, and N2. It also passes through the midpoints of the segments that
join H with the points of the circumcircle of 4A0A1A2, and through the midpoints of the
segments that join O with the points of the circumcircle of 4B0B1B2.

3. The points O, QO, G, and H form a harmonic quadruple, satisfying |OG|
|GQO| =

|OH|
|HQO| = 2.

4. The following sets: {A0, A1, A2, H}, {B0, B1, B2, O}, {M0,M1,M2, O}, {N0, N1, N2, H},
and {G0, G1, G2, G}, where G0, G1, and G2 are the centroids of the triangles 4HA1A2,
4A0HA2, and 4A0A1H, respectively, are orthocentric systems.

Divulgaciones Matemáticas Vol. 17 No. 2(2016), pp. 1�14



4 Horst Martini, Wilson Pacheco, Aljadis Varela, John Vargas

Figure 1: Properties of the orthocenter

5. If {A0, A1, A2, A3} is an orthocentric system, then
−−−→
AiAj⊥

−−−→
AkAl, for {i, j, k, l} = {0, 1, 2, 3},

i.e., the vectors
−−−→
AiAj and

−−−→
AkAl are orthogonal to each other.

3 Results

We present now new results on orthocentric systems introduced for triangles in Rn. More pre-
cisely, using points being equidistant to the vertices of the triangles, we will de�ne orthocenters
for triangles embedded into Rn, and we compare them with the classical notion of orthocenter.
We will see that this machinery allows to de�ne a substitute of the orthocenter for tetrahedra,
yielding further interesting analogies to the classical orthocenter of a triangle. All the �gures
that appear below, illustrate what happens in the three-dimensional case.

3.1 Orthocenters of triangles in Rn

Given three non-collinear points A0, A1, A2 in the Euclidean plane, there is only one point that
is equidistant from them, being precisely the circumcenter of the triangle 4A0A1A2. However,
if the points A0, A1, A2 are embedded in n-dimensional space Rn, then the set of points equidis-
tant from A0, A1, and A2 forms an (n − 2)-dimensional a�ne subspace, which we denote by
C (4A0A1A2). Each point of this subspace is the center of an (n−1)-dimensional sphere passing
through the points A0, A1, and A2. The following theorem allows us to introduce the notion of
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an �orthocenter� associated with each point in C (4A0A1A2), and provides a generalization of
the common notion of C-orthocenter in the plane.

Theorem 3.1.1. Let 4A0A1A2 be a triangle in Rn, G be its centroid and H its orthocenter. If
P ∈ C (4A0A1A2) and S is the (n − 1)-dimensional sphere with center P passing through the
points A0, A1, and A2 and having radius r, then the spheres S0, S1 and S2 that are symmetric
to S with respect to the midpoints M0, M1, and M2 of the sides of the triangle 4A0A1A2 concur
in a quadratic variety of dimension n − 3 and, in particular, in the points H and HP = A0 +
A1 +A2 − 2P . Furthermore, the following assertions hold:

1. If B0, B1, and B2 are the centers of S0, S1 and S2, respectively, then the triangles
4A0A1A2 and 4B0B1B2 are symmetric to each other with respect to the point QP =
1
2 (A0 +A1 +A2 − P ).

2. The points P , G, and HP are collinear having G between P and HP , with 2|PG| = |GHP |
(the Euler-line property).

3. If N0, N1, and N2 are the midpoints of the sides of the triangle 4B0B1B2, the (n − 1)-
dimensional sphere SM with center QP and radius r

2 passes through the points M0, M1,
M2, N0, N1, and N2. It also passes through the midpoints of the segments that join HP

with the points of S, and the midpoints of the segments that join O with the points of the
(n−1)-dimensional sphere SH with center HP and radius r (the Feuerbach sphere associated
to P ).

4. The points P , QP , G, and HP form a harmonic quadruple satisfying |PG|
|GQP | =

|PHP |
|HPQP | = 2.

Proof. Since the circumcircles C0, C1, and C2 are included in S0, S1, and S2, respectively, then
the point H is in the spheres S0, S1, and S2. In order to see that HP = A0 +A1 +A2 − 2P is in
Si, it is enough to take a look at |HPBi| = r, for i = 0, 1, 2, where Bi is the center of Si. Note
that Bi = Aj +Ak − P , for {i, j, k} = {0, 1, 2}, from which we get

|HPBi| = ‖(Aj +Ak − P )− (A0 +A1 +A2 − 2P )‖ = ‖P −Ai‖ = r .

Figure 2: The orthocenter for a triangle in 3-dimesional space
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1. Note that Ai +Bi = Ai +Aj +Ak −P , where {i, j, k} = {0, 1, 2} . Therefore, the midpoint
of AiBi is QP = 1

2 (A0 +A1 +A2 − P ), for i = 0, 1, 2.

2. Since 2 (G− P ) = 2
3 (A0 +A1 +A2 − 3P ) = 2

3 (HP − P ) = HP − G, it follows that P , G,
and HP are collinear and 2|PG| = |GHP |.

3. By item 1. we know that SQP
(4A0A1A2) = 4B0B1B2, from which SQP

(Mi) = Ni for
i = 0, 1, 2 is obtained. For the �rst part it only remains to show that |MiQP | = r

2 , for
i = 0, 1, 2. Indeed,

|MiQP | =

∥∥∥∥12 (A0 +A1 +A2 − P )−
1

2
(AJ +Ak)

∥∥∥∥
=

1

2
‖Ai − P‖ =

r

2

for i = 0, 1, 2.

Figure 3: Triangle, antitriangle and Feuerbach sphere

For the second part note that HHP ,
1
2
(S) = SM and HP, 12

(SH) = SM , which implies the
assertion.

4. Since 2. holds, |PG| = 1
3 |PHP |. On the other hand,

|GQP | =

∥∥∥∥(1

2
(A0 +A1 +A2 − P )−

1

3
(A0 +A1 +A2)

)∥∥∥∥
=

1

6
‖(A0 +A1 +A2 − 3P )‖ = 1

6
|PHP |

and

|QPHP | =

∥∥∥∥((A0 +A1 +A2 − 2P )− 1

2
(A0 +A1 +A2 − P )

)∥∥∥∥
=

1

2
‖(A0 +A1 +A2 − 3P )‖ = 1

2
|PHP |.
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Our statement follows from the above relations.

We call the point HP the orthocenter of the triangle 4A0A1A2 associated to P , and the set
of all these orthocenters is denoted by H (4A0A1A2). The above theorem says that the Euler
property is satis�ed, i.e.,

HG, 12
(C (4A0A1A2)) = H (4A0A1A2) .

Furthermore, the orthocenter of the triangle 4HPAiAj associated to Bk is the point Ak, where
{i, j, k} = {0, 1, 2}. Thus, the notion of orthocentric system can be generalized to n-dimensional
space, and we say that a set of four points {A0, A1, A2, A3} is an orthocentric system if there is
a point P ∈ C (4A0A1A2) such that A3 = A0 +A1 +A2− 2P . We will see that the properties of
orthocentric systems in the plane, previously listed, are also valid in this context. The following
trivial, but useful, lemma is used for this purpose. In addition, this one is a generalization of
Theorem 3.4 present in [10], which has a similar demonstration.

Lemma 3.1.2. The homothetic image of a orthocentric system in Rn is a orthocentric system.

Proof. Let {A0, A1, A2, A3} be a orthocentric system, then there exists P ∈ C(4A0A1A2) such
that A3 = A0 +A1 +A2 − 2P .

Let Bi = HC,λ(Ai), for i = 0, 1, 2, 3, and R = HC,λ(P ). Clearly, R ∈ C(4B0B1B2) and

B0 +B1 +B2 − 2R = ((1− λ)C + λA0) + ((1− λ)C + λA1)
+((1− λ)C + λA2)− 2((1− λ)C + λP )

= (1− λ)C + λ (A0 +A1 +A2 − 2P )
= (1− λ)C + λA3 = B3,

which completes the proof.

Theorem 3.1.3. Let 4A0A1A2 be a triangle in Rn, G its centroid, P ∈ C (4A0A1A2), and
HP its orthocenter associated to P . Then the sets of points {A0, A1, A2, HP }, {B0, B1, B2, P},
{M0,M1,M2, O}, {N0, N1, N2, HP } and {G0, G1, G2, G} are orthocentric systems, where G0, G1

and G2 are the centroids of the triangles 4HPA1A2, 4A0HPA2, and 4A0A1HP , respectively.

Proof. We know that Mi = HG,− 1
2
(Ai), for i = 0, 1, 2, 3, and HG,− 1

2
(HP ) =

3
2G −

1
2HP = P ,

from which {M0,M1,M2, P} = HG,− 1
2
({A0, A1, A2, HP }) follows.

If QP = 1
2 (A0 +A1 +A2 − P ), then SQP

(P ) = HP . Thus,

SQP
({A0, A1, A2, HP }) = {H0, H1, H2, P} ,

and
SQP

({M0,M1,M2, P}) = {N0, N1, N2, HP } .
Finally, Gi =

1
3 (Ai + 2Aj + 2Ak − 2P ), from which we get

HQP ,− 1
3
(Ai) =

4

3
QP −

1

3
Ai =

2

3
(A0 +A1 +A2 − P )−

1

3
Ai = Gi,

for i = 0, 1, 2, 3, and

HQP ,− 1
3
(HP ) =

4

3
QP −

1

3
HP =

2

3
(A0 +A1 +A2 − P )−

1

3
(A0 +A1 +A2 − 2P ) = G.

Thus, HQP ,− 1
3
({A0, A1, A2, HP }) = {G0, G1, G2, G}.
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Theorem 3.1.4. If {A0, A1, A2, A3} is an orthocentric system in Rn, then the sets
{−−−→
AiAj ,

−−−→
AkAl

}
are orthogonal, for {i, j, k, l} = {0, 1, 2, 3}.

Proof. Since usual orthogonality in Rn is equivalent to isosceles orthogonality (see [1]), we just

need to see that
∥∥∥−−−→AiAj −

−−−→
AkAl

∥∥∥ =
∥∥∥−−−→AiAj +

−−−→
AkAl

∥∥∥.
Indeed, consider the case i = 0, j = 1, k = 2, l = 3. Let P ∈ C (4A0A1A2) be such that

A3 = A0+A1+A2− 2P and r is the radius of the sphere with center P passing through A0, A1,
and A2. Then ∥∥∥−−−→A0A1 −

−−−→
A2A3

∥∥∥ = ‖(A1 −A0)− (A3 −A2)‖ = ‖2 (P −A0)‖ = 2r

and

∥∥∥−−−→A0A1 +
−−−→
A2A3

∥∥∥ = ‖(A1 −A0) + (A3 −A2)‖ = ‖2 (A1 − P )‖ = 2r.

The other cases can be shown analogously.

The above theorem tells us also that if {A0, A1, A2, A3} is an orthocentric system and A3 is
not in the plane determined A0, A1, and A2, then the tetrahedron A0A1A2A3 is an orthocentric
tetrahedron, i.e, the altitudes of this tetrahedron concur. For properties of orthocentric tetrahedra
and simplices we refer to [4, 5].

Conversely, if A0A1A2A3 is an orthocentric tetrahedron and consider the points Bi de�ned
by Bi =

1
2 (Aj +Ak +Al −Ai), where {i, j, k, l} = {0, 1, 2, 3}. Then, by using the orthogonality

of opposite sides, it is not di�cult to see that Bi ∈ C (4AjAkAl) , and the orthocenter of the
triangle 4AjAkAl associated to Bi is Ai.

Note that

QBi =
1

2
(Aj +Ak +Al −Bi)

=
1

2

(
Aj +Ak +Al −

1

2
(Aj +Ak +Al −Ai)

)
=

1

4
(Ai +Aj +Ak +Al) ,

i.e., QBi
is the centroid G of the tetrahedron A0A1A2A3, and the Feuerbach sphere of the

triangle associated to Bi is the Feuerbach sphere of second kind of the orthocentric tetrahedron
A0A1A2A3, i.e., the sphere passing through the midpoints of the edges of A0A1A2A3.

On the other hand, the tetrahedra A0A1A2A3 and B0B1B2B3 are symmetric with respect to
G. Thus G is also the centroid of the tetrahedron B0B1B2B3. As well, the Feuerbach spheres of
second kind of the tetrahedra A0A1A2A3 and B0B1B2B3 coincide. In addition, the circumcenter
of the tetrahedron B0B1B2B3 is the orthocenter of the tetrahedron A0A1A2A3.
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Figure 4: Orthocentrics tetrahedra A0A1A2A3 and B0B1B2B3 and Feuerbach spheres of second
kind

This point gives rise to underline a nice analogy between the orthocenter of a triangle and the
orthocenter of an orthocentric tetrahedron.The �rst one is the intersection of three circles, with
radii equal to its circumradius, whose centers are equidistant to the vertices of the corresponding
triangle side, in each case. And for the orthocentric tetrahedron, the orthocenter is the inter-
section of four spheres whose radii are equal to the circumradius of the tetrahedron, and whose
centers are points equidistant to the three vertices of the respective tetrahedral face, in each case.
In the latter case the spheres involved do not necessarilly pass through the corresponding vertices
of the tetrahedron, but those which contain the vertices of their corresponding face have radius
equal to twice the radius of the Feuerbach sphere of second kind of the orthocentric tetrahedron.
We continue with results of this type in our next subsection.

3.2 Another orthocenter and Feuerbach spheres of tetrahedra

Recall that in a tetrahedron A0A1A2A3, the six planes perpendicular to the edges passing through
their midpoints meet in a point called the Monge point M of A0A1A2A3. Properties of Monge
points can be found in classical books on solid geometry, and in [3] and [5]. If O and G are the
circumcenter and the centroid of the tetrahedron A0A1A2A3, respectively, then G is the midpoint
of the segment with endpoints O and M , and therefore M = 1

2 (A0 +A1 +A2 +A3 − 2O). The
following results were inspired by results on cyclic quadrangles presented in [6, 5].

Theorem 3.2.1. Let A0A1A2A3 be a tetrahedron, O its circumcenter, r its circumradius and M
its Monge point. If C0C1C2C3 is the tetrahedron formed by the orthocenters of the faces of the
tetrahedron A0A1A2A3 with respect to O (i.e., Ci = Aj+Ak+Al−2O, for {i, j, k, l} = {0, 1, 2, 3}),
then

Divulgaciones Matemáticas Vol. 17 No. 2(2016), pp. 1�14
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1. A0A1A2A3 and C0C1C2C3 are symmetric with respect to M , i.e., for i = 0, 1, 2, 3 we have
SM (Ai) = Ci. In particular, Ai −Aj = Cj − Ci for {i, j} ⊂ {0, 1, 2, 3} ,.

2. {Ci, Cj , Ck, Al} is an orthocentric system.

3. {Ci, Cj , Ak, Al} lie on a sphere with radius r.

Proof. For the �rst assertion, notice that for each i = 0, 1, 2, 3 we have

1

2
(Ai + Ci) =

1

2
(Ai +Aj +Ak +Al − 2O) =M ,

where {i, j, k, l} = {0, 1, 2, 3}. This proves thatM is the midpoint of the segments with endpoints
Ai and Bi, respectively.

For the second assertion we note that

SM ({Ai, Aj , Ak, Cl}) = {Ci, Cj , Ck, Al} ,

and {Ai, Aj , Ak, Cl} is an orthocentric system. By the Lemma 2, also {Ci, Cj , Ck, Al} is an
orthocentric system.

Finally, it is not di�cult to see that the sphere with center Ak+Al−O and radius r contains
the points {Ci, Cj , Ak, Al}.

Figure 5: Feuerbach spheres of a tetrahedron

It is clear that the circumsphere of the tetrahedron C0C1C2C3 also has radius r, and that its
center HG (which we will call G-orthocenter of the tetrahedron A0A1A2A3) is symmetric to O
with respect to M . Note that HG can be expressed by the vertices of the tetrahedron A0A1A2A3

and its circumcenter O via HG = A0 +A1 +A2 +A3 − 3O. The tetrahedron C0C1C2C3 we will
call the antitetrahedron of A0A1A2A3. We will see that HG has properties similar to those of
the orthocenter of a triangle. For general orthocentric tetrahedra, HG does not coincide with
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the orthocenter H. This holds only if the centroid G and the circumcenter O of the tetrahedron
A0A1A2A3 coincide. The following theorem is analogous to Theorem 4.8 in [6], and will de�ne
a new Feuerbach sphere for tetrahedra analogous to the Feuerbach circle of cyclic quadrangles
studied in [6].

Theorem 3.2.2. Let A0A1A2A3 be a tetrahedron, O its circumcenter, r its circumradius, and
M its Monge point. Then the four Feuerbach spheres of the faces of the tetrahedron A0A1A2A3

associated to O intersect in M . In addition, if Qi is the center of the Feuerbach sphere of the
face AjAkAl associated to O, for {i, j, k, l} = {0, 1, 2, 3}, then M −Qi = 1

2 (Ai −O).

Proof. Recall that

Qi =
1

2
(Aj +Ak +Al −O) ,

for {i, j, k, l} = {0, 1, 2, 3}, and

M =
1

2
(A0 +A1 +A2 +A3 − 2O) .

We get immediately M −Qi = 1
2 (Ai −O), and the proof is done.

The relation between the Monge point and the Feuerbach spheres of the faces of the tetra-
hedron associated to the circumcenter of the tetrahedron, o�ers an alternative way to de�ne the
Monge point, without using orthogonality.

In the case of a cyclic quadrangle, the circle that passes through the centers of the Feuerbach
circles of the triangles determined by the vertices of the quadrangle, is called the Feuerbach circle
of the quadrangle. For that reason, we propose to call the sphere with center M and radius r/2
the Feuerbach sphere of the tetrahedron A0A1A2A3. In the planar case, the Feuerbach circle of a
triangle coincides with the Feuerbach circle of its antitriangle. The existing symmetry between
the tetrahedron A0A1A2A3 and its antitetrahedron C0C1C2C3 ensures the following corollary of
the previous theorem, which is the analogue of Theorem 4.14 in [6].

Corollary 3.2.3. The Feuerbach spheres of a tetrahedron and its antitetrahedron coincide.

Furthermore, we easily get

Corollary 3.2.4. The Feuerbach sphere of the tetrahedron A0A1A2A3 contains the midpoints
of the segments that join the G−orthocenter HG with the points of the circumsphere S of the
tetrahedron, and the midpoints of the segments that join the circumcenter O of the tetrahedron
A0A1A2A3 with the points of the circumsphere S1 of the antitetrahedron C0C1C2C3.

Proof. The proof is straightforward since HO, 12
(HG) =M and HHG ,

1
2
(O) =M .

The following theorem shows further analogues between the notions of G−orthocenter of a
tetrahedron and orthocenter of a triangle. Recall that the Feuerbach spheres of �rst kind of a
tetrahedron A0A1A2A3 is the circumspheres of the tetrahedron with vertices in the centroids of
the faces of the tetrahedron A0A1A2A3.
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Figure 6: Circumspheres and Feuerbach spheres of a tetrahedron and its antitetrahedron

Theorem 3.2.5. Let A0A1A2A3 be a tetrahedron, O its circumcenter, G its centroid, C0C1C2C3

the antitetrahedron associated to O, HG its G−orthocenter, S1 the circumsphere of A0A1A2A3,
S2 the circumsphere of C0C1C2C3, S3 and S4 the Feuerbach spheres of �rst kind of the tetrahedra
A0A1A2A3 and C0C1C2C3, respectively. Then

1. O, G and HG are collinear, with G between O and HG and 3|OG| = |GHG | (Euler-line
property).

2. S4 = HHG ,
1
3
(S1) and S3 = HO, 13

(S2).

Proof. The �rst assertion is immediate by the de�nitions of G and HG .

For the second assertion, recall that the centers of the spheres S3 and S4 are the points

Q =
1

3
(A0 +A1 +A2 +A3 −O)

and

Q1 =
1

3
(C0 + C1 + C2 + C3 −HG) =

2

3
(A0 +A1 +A2 +A3)−

5

3
O,

respectively. It is enough to see that HHG ,
1
3
(O) = Q1 and HO, 13

(HG) = Q. Indeed,

HHG ,
1
3
(O) =

2

3
(A0 +A1 +A2 +A3 − 3O) +

1

3
O = Q1

and

HO, 13
(HG) =

2

3
O +

1

3
HG =

1

3
(A0 +A1 +A2 +A3 −O) = Q.
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The previous theorem shows that the ratio in which G divides the segment OH is equal to
the ratio in which G divides every median of the tetrahedron. The points O, Q, G, and HG do
not form a harmonic quadruple, but they satisfy the following relations:

3 (G−Q) = O − 1

4
(A0 +A1 +A2 +A3) = O −G

−4 (O −G) = 4O + (A0 +A1 +A2 +A3) = HG −O.
In case of a triangle 4A0A1A2 we know that the homotheties HO, 12

and HH, 12
transform the

circumcircles of the antitriangle 4B0B1B2 associated to O and of the triangle 4A0A1A2 into the
Feuerbach circles of the triangle 4A0A1A2 and the antitriangle 4B0B1B2, respectively. In this
case, additionally both circumcircles coincide. The previous theorem shows that the analogue for
the tetrahedron is valid with the notion of Feuerbach sphere of �rst kind. In particular, we have

Corollary 3.2.6. Let A0A1A2A3 be a tetrahedron, O its circumcenter, HG its G−orthocenter,
C0C1C2C3 the antitetrahedron associated to O, S1 the circumsphere of A0A1A2A3, S2 the circum-
sphere of C0C1C2C3, S3 and S4 the Feuerbach spheres of �rst kind of the tetrahedra A0A1A2A3

and C0C1C2C3, respectively. Then the following statements hold.

1. The points Y of the segments that join O with the points X of the circumsphere S2 of the
antitetrahedron such that |Y O| = 1

3 |XO| belong to S3.

2. The points Z of the segments that join HG with the points W of the circumsphere S1 of the
tetrahedron A0A1A2A4 such that |ZHG | = 1

3 |WHG | lie in S4.

Figure 7: Circumspheres and Feuerbach spheres of �rst kind of a tetrahedron and its antitetra-
hedron
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On the other hand, the circumcenter O of the tetrahedron A0A1A2A3 is the G−orthocenter of
the following tetrahedra: the antitetrahedron C0C1C2C3; the medial tetrahedron M1M2M3M4

consisting of the centroids of the faces of A0A1A2A3 (i.e., Mi =
1
3 (Aj +Ak +Al) for {i, j, k, l} =

{0, 1, 2, 3}); and the tetrahedron Q0Q1Q2Q3 formed by the centers of the Feuerbach spheres of the
faces of the tetrahedron associated to O. Moreover, it is not di�cult to see that for the homothety
HP,λ the points Pi = HP,λ(Ai) for {i, j, k, l} = {0, 1, 2, 3}, where A0A1A2A3 is a tetrahedron and
HG is its G−orthocenter. Then HP,λ(HG) is the G−orthocenter of the tetrahedron P0P1P2P3.
As a consequence of all this we get that if Gi are the centroids of the tetrahedra AjAkAlHG for
{i, j, k, l} = {0, 1, 2, 3}, then the G−orthocenter of the tetrahedron G0G1G2G3 is the centroid G
of the tetrahedron A0A1A2A3.

One should note that in our proofs we do not use orthogonality properties of Rn. This
means that if one replaces the orthogonal projection method mentioned in the introduction by
suitable parallel projections in direction of the line connecting P and the circumcenter of the
given triangle, then most of our statements can successfully be extended to normed spaces (using
the concept of isosceles orthogonality, (see [1]). This is the subject of forthcoming investigations.
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