

Divulgaciones Matemáticas Vol. 17 No. 1 (2016), pp. 14-17

Perfect Measures, Nuclear Spaces and the Convex Compactness Property

Medidas Perfectas, Espacios Nucleares y la Propiedad de Compacidad Convexa

Jorge Vielma B. (vielma@ula.ve)

Departamento de Matemáticas. Facultad de Ciencias. Universidad de Los Andes Mérida, Venezuela.

Abstract

It is proved that for certain kinds of K-spaces X, the spaces $(C_b(X, E), \beta_p)$ has the convex compactness property if E is a Banach space. Also, if X is a real-compact K-spaces then $(C_b(X, E), \beta_p)$ is a nuclear space if and only if X is finite and E is finite dimensional.

Key words and phrases: P-spaces, K-spaces, Do-spaces, real-compact spaces, convex compactness property, nuclear spaces.

Resumen

Se prueba que para ciertos tipos de K-espacios X, los espacios $(C_b(X, E), \beta_p)$ tienen la propiedad de compacidad convexa si E es un espacio de Banach. También, si X es un K-espacio real-compacto, entonces $(C_b(X, E), \beta_p)$ es un espacio nuclear si y solo si X es finito y E es finito dimensional.

Palabras y frases clave: P-espacios, K-espacios, Do-espacios, espacios real-compactos, propiedad de compacidad convexa, espacios nucleares.

1 Introduction

Let X be a completely regular Hausdorff space, E a Banach space. By $C_b(X)$ we will denote the set of all bounded real-valued continuous function on X and $C_b(X, E)$ denotes all bounded continuous functions from X into E. $C_b(X) \otimes E$ denotes the tensor product of $C_b(X)$ and E [5]. Sentilles in [6] defined locally convex topologies β_0 and β_1 on $C_b(X)$, which yield the spaces of $M_t(X)$ and $M_{\sigma}(X)$ of tight and σ - additives Baire measures on X as dual spaces. Koumoullis in [4] defined a new topology β_p on $C_b(X)$, and redefined the topology β_{∞} on $C_b(X)$ which yield the spaces $M_p(X)$ and $M_{\infty}(X)$ of perfect and uniform Baire measure on X as dual space. For the vector case see [2],[3],[8].

Let us recall that a completely regular Hausdorff space X is called a K-space if it has the weak topology determined by the family of its compact subsets, that is to say that a set $A \subseteq X$ is closed iff $A \cap K$ is closed for all compact subsets K of X. A locally convex space is said to have

Received 1/2010. Revised 2/2010. Accepted 4/2010.

MSC (2010): Primary 54D60; Secondary 54E18.

Corresponding author: Jorge Vielma B.

the convex compactness property if for every compact K its closed absolutely convex hull is also compact. The easiest way for a locally convex space E to have the convex compactness property is that of being complete or quasicomplete in the Mackey topology [5]. A spaces X is said to be a D_0 -space if its real-compactification νX and its topological completion θX coincide. If F is a

locally convex space and $B \neq \emptyset$ is a convex, circled and bounded subset of F, then $F_1 = \bigcup n B$

is a subspaces of F. The gauge function P_B of B in F_1 is easily seen to be a norm on $F_1^{n=1}$. The normed space (F_1, P_B) is denoted by F_B . A linear map $u: E \to F$ is said to be *nuclear* if it is of the form

$$x \to u(x) = \sum_{n=1}^{\infty} \lambda_n f_n(x) y_n$$

where $\sum_{n=1}^{\infty} |\lambda_n| < \infty$, $\{f_n\}$ is an equicontinuous sequence in E' and $\{y_n\}$ is a sequence contained in a convex, circled and bounded subset B of F for which F_B is complete. A locally convex space E is said to be *nuclear* if every continuous linear map of E into any Banach space is nuclear.

2 Nuclearity and the Convex Compactness Property

Theorem 1. Let X be a K-space and a D_0 -space, E a Banach space and $H \subseteq C_b(X, E)$. Then, the following conditions are equivalent:

- (a) H is uniformly bounded, equicontinuous, and H(x) is relatively compact in E for every $x \in X$.
- (b) H is β_p -relatively compact.
- (c) H is β_p -precompact.

Proof. We see $(a) \Rightarrow (b)$. Suppose that H is a uniformly bounded, equicontinuous subset of $C_b(X, E)$ such that H(x) is relatively compact subset of E for every $x \in X$. Then, the pointwise closure \overline{H} of H is also equicontinuous and by Ascoli's Theorem it is precompact in the compact-open topology on $C_b(X, E)$. Now, since \overline{H} is uniformly bounded, we have that on \overline{H} , β_0 is the compact-open topology and so, \overline{H} is also β_0 -precompact. Also, since X is a K-space, it is know that $(C_b(X, E), \beta_0)$ is complete ([1]). Then in this case, \overline{H} will also be β_0 -compact and since β_{∞} is the finest locally convex topology agreeing with the pointwise topology on the uniformly bounded subsets of $C_b(X, E)$, we have that \overline{H} will also be β_{∞} -compact. But, we have that X is a D_0 -space, then $\beta_p \leq \beta_{\infty}$ implies that \overline{H} is β_p -compact so H is relatively β_p -compact.

 $(b) \Rightarrow (c)$ is trivial. Finally, we see $(c) \Rightarrow (a)$. Suppose then that H is β_p -precompact. Since $\beta_0 \leq \beta_p$ it follows that H is also β_0 -precompact then H is β_0 -bounded which also implies that H is uniformly bounded. Now, since β_0 is the finest locally convex topology agreeing with the compactopen topology on uniformly bounded subset of $C_b(X, E)$, it follows that H is precompact respect to the compact open topology, then by Ascoli's theorem H when restricted to each compact subset of X is equicontinuous. But X is a K-space then it follows that H is pre-compact in the pointwise topology, every net $\{f_\alpha\}$ in H has a Cauchy subnet $\{f_\beta\}$. Therefore, $\{f_\beta(x)\}$ is Cauchy in E for every $x \in X$. Then the result follows. **Theorem 2.** Let X be a K-space and a D_0 -space and E a Banach space. Then, $(C_b(X, E), \beta_p)$ has the convex compactness property.

Proof. Let A be a β_p -compact subset of $C_b(X, E)$. Then, the absolutely convex hull of A will be β_p -precompact and by Theorem 1, the closed absolutely convex hull of A will be β_p -compact. \Box

Theorem 3. Let X be a realcompact K-space, the $(C_b(X), \beta_p)$ is a nuclear space if and only if X is finite.

Proof. Clearly if X is finite, then $(C_b(X), \beta p)$ is topologically isomorphic to \mathbb{R}^n , being n the cardinality of X. Now, since \mathbb{R}^n is nuclear, the conclusion follows. Now let us suppose that $(C_p(X), \beta_p)$ is nuclear, then every bounded subset is β_p -precompact ([5]), thus the closed unit ball $B = \{f \in C_b(X) : ||f|| \leq 1\}$ is β_p -precompact. Now, since every realcompact space is topologically complete, by Theorem 1, B is β_0 -compact and since $\beta_0 \leq \beta_p$ we have that B is β_o -compact which implies that X is discrete ([7]). Then, X is a realcompact metric space. But then $M_p(X) = M_t(X)$ and since X is a P-space, we have that both β_0 and β_p are Mackey's topologies ([1], [3]), and so, $\beta_0 = \beta_p$ and $(C_b(X), \beta_0)$ is a nuclear space, which implies that X is finite ([1]).

Theorem 4. Let X be realcompact K-space and E a Banach normed space. Then, $(C_b(X, E), \beta_p)$ is a nuclear space if and only if X is finite and E is finite dimensional.

Proof. If X is finite and E is finite dimensional then, as in the proof of Theorem 3, $(C_b(X, E), \beta_p)$ is topologically isomorphic to E^n for some n. Then, $(C_b(X, E), \beta_p)$ is a nuclear space. Conversely, suppose that $(C_b(X, E), \beta_p)$ is nuclear. For a fixed $e \in E$, we have that $(C_b(X), \beta_p)$ is topologically isomorphic to the subspace $C_b(X) \otimes e$ of $(C_b(X, E), \beta_p)$. Since every subspace of a nuclear space is again nuclear, we get that $(C_b(X), \beta_p)$ is nuclear, and by Theorem 3, X is finite. Also, we know that E is embedded as a subspace of $(C_b(X, E), \beta_p)$ and so, E is a normed nuclear space, then E is finite dimensional.

Theorem 5. If X is a K-space and E is Banach space then $(C_b(X, E), \beta_p)$ is sequentially complete.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $(C_b(X, E), \beta_p)$. Since X is a K-space, $(C_b(X, E), \beta_0)$ is complete ([1]) and since $\beta_0 \leq \beta_p$ we have that $\{f_n\}$ is β_0 -convergent to function $f \in C_b(X, E)$. We claim that $\{f_n\}$ also converges to f in $(C_b(X, E), \beta_p)$. In fact, since β_p has a base W of β_p -closed absolutely convex sets which are weakly closed and since $| \mu | (||f_n - f||) \to 0$ by the Dominated Converge Theorem, if $U \in W$ then there exist $N_0 \geq 1$ integer such that for every $n \geq N_0$,

$$|\mu(f_n) - \mu(f)| \le |\mu| (||f_n - f||) \quad \mu \in M_p(X)$$

then $f_n - f \in U$ and the theorem holds.

References

- S. Choo, Strict topologies on spaces of continuous vector-valued functions, Canad. J. Math. XXXI (1979), 890-896.
- [2] S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 24 (1978), 95-211.

- [3] S. S. Khurana and J.E. Vielma, Strict topologies and perfect measures, Czechoslovac Math. J. 40 (1990),1-7
- [4] G. Koumoullis, Perfect, u-additive measures and strict topologies, Illinois J. Math. 26 (1982), 466-478.
- [5] H. H. Schaefer, Topological vector spaces, Macmillan New York. 1966.
- [6] F. D. Sentiles, Bounded continuous functions on completely regular spaces, Trans. Amer. Math. Soc. 168 (1972).
- [7] R. Wheeler, The strict topology for P-spaces, Proc. Amer. Math. Soc. 41 (1973), 466-472.
- [8] R. Wheeler, A survey of Baire measures and strict toplogies, Expo. Math. 2 (1983), 97-190.