Effect of protein sources on the antioxidant metabolism of visceral organs of Morkaraman lambs
Abstract
The selection of protein sources plays a significant role in meeting the dietary requirements of animals and addressing specific nutritional needs. This study was designed to determine the effects of different protein sources incorporated into lamb diets on the antioxidant metabolism of the lung, heart and kidney tissues by means of the measurement of GSH and LPO levels and SOD, CAT and GPx activities. For this purpose, 24 male Morkaraman lambs were randomly assigned to 3 groups, each of 8 animals. The dietary protein sources provided to the animals were soybean meal + safflower meal in the control group (SSG), wheat gluten in the wheat group (WG), and corn gluten in the corn group (CG). The diets fed to each group were formulated to be isonitrogenous (17% crude protein/CP) and isocaloric (2700 kcal·kg-1 ME). In the lambs fed on the diet supplemented with wheat gluten, it was determined that SOD activity in the lung (P<0.05) and heart (P<0.01) tissues, CAT activity in the lung and heart tissues (P<0.01), and GPx activity in the kidney and heart tissues (P<0.01) had significantly increased. In the lambs fed on the diet supplemented with corn gluten, statistically significant increases were detected in the SOD activity of the lung (P<0.05) and heart (P<0.01) tissues, CAT activity of the lung, heart and kidney tissues (P<0.01, P<0.05), and GPx activity of the kidney and heart tissues (P<0.01, P<0.05). The lambs fed on the gluten–supplemented diets presented with statistically significant decreases in the LPO levels of the lung tissue (P<0.01, P<0.05), and the GSH levels of the lung, heart and kidney tissues (P<0.01). In result, it was ascertained that, when fed on diets supplemented with wheat gluten and corn gluten, the antioxidant metabolism of the lung, heart and kidney tissues were significantly affected in lambs.
Downloads
References
Puppel K, Kapusta A, Kuczyńska B. The etiology of oxidative stress in the various species of animals, a review. J. Sci. Food. Agric. [Internet]. 2015; 95(11):2179–2184. doi: https://doi.org/f7jdnq
Halliwell B. Antioxidant defence mechanism: from the beginning to the end (of the beginning). Free Radic. Res. [Internet]. 1999; 31(4):261–272. doi: https://doi.org/dhq3mn
López–Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular–based assays. Anal. Chim. Acta. [Internet]. 2013; 763:1–10. doi: https://doi.org/f4njsc
Banaszkiewicz T. Nutritional Value of Soybean Meal. In: El–Shemy H, editor. Soybean and Nutrition [Internet]. London: IntechOpen Limited; 2011. p. 1-20. doi: https://doi.org/m8q4
Silva–de Oliviera F, Perrone D. Characterization and stability of bioactive compounds from soybean meal. LWT Food Sci. Technol. [Internet]. 2015; 63(2):992–1000. doi: https://doi.org/mkgh
Singh P, Krishnaswamy K. Sustainable zero–waste processing system for soybeans and soy by–product valorization. Trends Food Sci. Technol. [Internet]. 2022; 128(10):331–344. doi: https://doi.org/grrg44
Zhang R, Ma S, Li L, Zhang M, Tian S, Wang D, Liu K, Liu H, Zhu W, Wang X. Comprehensive utilization of corn starch processing by–products: A review. Grain Oil Sci. Technol. [Internet]. 2021; 4(3):89–107. doi: https://doi.org/gn6n7q
Li G, Liu W, Wang Y, Jia F, Wang Y, Ma Y, Gu R, Lu J. Functions and applications of bioactive peptides from corn gluten meal. Adv. Food Nutr. Res. [Internet]. 2019; 87:1–41. doi: https://doi.org/mkgf
Li XX, Han LJ, Chen, LJ. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. J. Sci. Food Agric. [Internet]. 2008; 88(9):1660–1666. doi: https://doi.org/fstq9s
Wang Y, Chen H, Wang X, Li S, Chen Z, Wang J, Liu, W. Isolation and identification of a novel peptide from zein with antioxidant and antihypertensive activities. Food Func. [Internet]. 2015; 6(12):3799–3806. doi: https://doi.org/gjvsf4
Yang Y, Tao G, Liu P, Liu JIA. Peptide with angiotensin I–converting enzyme inhibitory activity from hydrolyzed corn gluten meal. J. Agric. Food Chem. [Internet]. 2007; 55(19):7891–7895. doi: https://doi.org/fmzwxt
Apper–Bossard E, Feneuil A, Wagner A, Respondek F. Use of vital wheat gluten in aquaculture feeds. Aquatic Biosyst. [Internet]. 2013; 9(1):21. doi: https://doi.org/gcbmcp
Ooms N, Delcour JA. How to impact gluten protein network formation during wheat flour dough making. Curr. Opin. Food Sci. [Internet]. 2019; 25:88–97. doi: https://doi.org/gsbdg8
Day L, Augustin MA, Batey IL, Wrigley CW. Wheat–gluten uses and industry needs. Trends Food Sci. Technol. [Internet]. 2006; 17(2):82–90. doi: https://doi.org/ckctn2
Gümüş R, Terim Kapakin KA, Manavoğlu Kirman E, Bolat İ, İmik A, Ercan N. The effect of adding wheat and corn gluten to the diet of rats on the autoimmune and histopathological parameters in the intestine and liver. Rev. Cient. FCV–LUZ. [Internet]. 2024; 34(1):1–9. doi: https://doi.org/mpwq
Gümüş R, Uslu S, Aydoğdu U, İmik A, Ekici M. Investigation of the effects of glutens on serum interleukin–1 beta and tumor necrosis factor–alpha levels and the immunohistochemical distribution of CD3 and CD8 receptors in the small intestine in male rats. Braz. Arch. Biol. Technol. [Internet]. 2021; 64(25):e21210256. doi: https://doi.org/mjtc
Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. [Internet]. 1966; 16(2):359–364. doi: https://doi.org/b96rpj
Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium–deficient rat liver. Biochem. Biophys. Res. Commun. [Internet]. 1976; 71(4):952–958. doi: https://doi.org/d3vv59
Sedlak J, Lindsay RH. Estimation of total, protein–bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968; 25(1):192–205. doi: https://doi.org/csbsfm
Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. [Internet]. 1988; 34(3):497–500. doi: https://doi.org/gj74fn
Aebi H. Catalase in vitro. Methods Enzymol. [Internet]. 1984; 105:121–126. doi: https://doi.org/dnf7v9
IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk (NY, USA): IBM Corp. 2011
Boye J, Wijesinha–Bettoni R, Burlingame B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. [Internet]. 2012; 108(S2):S183–S211. doi: https://doi.org/gk6jhk
Bratovcic A. Antioxidant enzymes and their role in preventing cell damage. Acta Sci. Nutr. Health. [Internet]. 2020; 4(3):01–07. doi: https://doi.org/mpwc
Gümüș R, Erol HS, Imik H, Halici M. The effects of the supplementation of lamb rations with oregano essential oil on the performance, some blood parameters and antioxidant metabolism in meat and liver tissues. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2017; 23(3):395–401. doi: https://doi.org/mp4r
Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell. Longev. [Internet]. 2017; 6501046. doi: https://doi.org/gmpjns
Sen S, Chakraborty R. The role of antioxidants in human health. In: Andreescu S, Hepel M, editors. Oxidative Stress: Diagnostics, Prevention, and Therapy [Internet]. Washington (DC, USA): American Chemical Society; 2011. p. 1–37. (ACS Symposium Series). doi: https://doi.org/c988zc
Gümüş R, Kara A, Özkanlar S, İmik H, Celep NA. Effects of dietary thyme and rosemary essential oils on biochemical parameters, anti–oxidant metabolism, small intestinal morphology and myofiber structure of superficial pectoral and biceps femoris muscles in broilers. Vet. Res. Forum. [Internet]. 2023; 14(5):249–257. doi: https://doi.org/mp4q
Jiang X, Liu X, Liu S, Li Y, Zhao HB, Zhang YG. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage. Anim. Feed Sci. Technol. [Internet]. 2019; 249:1–9. doi: https://doi.org/mkgc
Fang J, Martínez Y, Deng C, Zhu D, Peng H, Jiang H, Li A. Effects of dietary enzymolysis products of wheat gluten on the growth performance, serum biochemical, immune, and antioxidant status of broilers. Food Agric. Immunol. [Internet]. 2017; 28(6):1155–1167. doi: https://doi.org/mkf9
Han F, Wang Y, Wang W, Cheng F, Lu Z, Li A, Xue X, Zeng Q, Wang J. Effects of enzymatically hydrolyzed wheat gluten on growth performance, antioxidant status, and immune function in weaned pigs. Can. J. Anim. Sci. [Internet]. 2017; 97(4):574–580. doi: https://doi.org/mkgb
Gao F, Kinnula VL, Myllärniemi M, Oury TD. Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid. Redox Signal. [Internet]. 2008; 10(2):343–354. doi: https://doi.org/b6tn3x
Ścibior D, Czechot H. [Catalase: Structure, Properties, Functions]. Postepy Hig. Med. Dosw. [Internet]. 2006 [cited 20 Feb 2024]; 60:170–180. Polish. Available in: https://goo.su/ERAiXA PubMed PMID: 16618987.
Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res. Int. [Internet]. 2014; 761264. doi: https://doi.org/gbfz3r
Sies, H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. [Internet]. 2014; 289(13):8735–8741. doi: https://doi.org/f53mvd
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi–Rad J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. [Internet]. 2023; 11:1158198. doi: https://doi.org/mpwj
Welker T, Congleton J. Effect of dietary α‐tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub‐yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum). J. Anim. Physiol. Anim. Nutr. [Internet]. 2009; 93(1):15–25. doi: https://doi.org/bbd5sg
Maritim AC, Sanders RA, Watkins III JB. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. [Internet]. 2003; 17(1):24–38. doi: https://doi.org/bw9t4d
Liao R, Hua Y, Liu G, Zhang S, Chang W, Liu W, Lin CH, Huang XY, Cai H. Effect of gut stress induced by oxidized wheat gluten on the growth performance, gut morphology and oxidative states of broilers. J. Anim. Physiol. Anim. Nutr. [Internet]. 2018; 102(2):e849–e855. doi: https://doi.org/mp4p
Kalinina E, Chernov N, Novichkova M. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox–dependent processes. Biochemistry. [Internet]. 2014; 79(13):1562–1583. doi: https://doi.org/f69ztq
Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed. Pharmacother. [Internet]. 2003; 57(3–4):145–155. doi: https://doi.org/fwwd74
Aoyama, K. Glutathione in the Brain. Int. J. Mol. Sci. [Internet]. 2021; 22(9):5010. doi: https://doi.org/gn2mhk
Marí M, Morales A, Colell A, García–Ruiz C, Fernández–Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. [Internet]. 2009; 11(11):2685–2700. doi: https://doi.org/cqfv8t
Aksoy Y. [The Role of Glutathione in Antioxidant Mechanism][Internet]. Türkiye Klinikleri J. Med. Sci. 2002 [cited 25 Feb 2024]; 22(4):442–448. Turkish. Available in: https://goo.su/PT9Jued
Ölmez M, Riaz R, Karadağoğlu Ö, Şahin T, Şerbetçi İ, Yılmaz B, Uysal S, Yörük MA. Effect of SOD–Rich Melon Supplement on Performance, Serum Biochemical, Antioxidant and Meat Quality Characteristics of Tuj Lambs. Agriculture. [Internet]. 2023; 13(3):625. doi: https://doi.org/mkgg
Copyright (c) 2024 Mazhar Burak Can, Aybuke İmik
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.