' preserveAspectRatio='none' x='0' y='-1' width='935' height='92' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAFwDpwMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/AOMmA81h0r7eOx8XV%2BN2IzxVECUaDCpBC44oGGKBigCkFwxz0oGmGBSZQmKAFA9qQxdoNJsBrRj0oAheL0FAEbIR2oAjOe9BSEqbDEBoaBMcDxUlAGpFC7qBjlagB26gBQ1FwF3fSlce4uRSbHYdmi4rCg0h2F4NAIUCk2MZIM4FFwAqM0XATGDQAMN52qMZNAwkUdAAAKkoaqqOfbrQBXk%2BZ9uAeetAy1DEAuMYoGSbaADABHGc0mA2TIztUkigCHZI3PQelIAYjO1evc0FIdEh6/MT6UDEaJmYlpD7KKAKd6wjdUUAY5PFACfOYncucDt61AFi3wVDHnI6UADrn2pFJBHEGoGiGYqJORgDj60DsTxtG4G3sOh7UAISjsUA6dT6UANliGzkjj9aAREcL7UDI3kC8jGfWkBFubO7dk0gB2Zzk8mgBY946DA96BkhO5uuR60DJ3%2BTgCgBywr97HJoGhwjwaQxfLzSuUhpt0JyVGaLgMeIYIAx74p3AjaIRozYB9eKGwKapNIn7rgA4ODSAeLMyIGLFW7570DsWIIVjTAAz/OkwRHdMoRguSSOSO1IZmjpQ2AZpAKzZC%2BwoLGE0AA64oAf/D9KYDhyM1SWhAvSmAGgAoASgApAFABQAUAFABQAUAWrXT7y5wYoW2n%2BJuB%2BtclfHYeh8ctT1MDkuOx%2BtCk2u%2By%2B96GhH4fnK5kuI1%2BgJ/wrzJ5/RTtGLZ9PQ4Ax81epOMfvf6Dj4ebH/H2v/fH/ANeoXEMOsGdL8PMTbStH7mQT6FeJkxmOUegOD%2BtdNLPMNPSV16nlYrgjNKCvGKn6P9HYzp4ZYH2TRsjejDFerTqwqLmg7o%2BWr4erh58lWLi%2BzViOrMQoAKACgAoAKACgAoAKACgAoAKAAkAZPAoAuLofiFvDf/CSjS1Ol%2BV5%2BfP/AHxh6%2BZ5ePu4%2Bb72cc4rj%2BuR5rW0N/YOxSUggEEEHpXYYC0AFABQAUAFABQAUAFAHWz/AOtavajsfOVfjZG3amjNFvRNOm1bVIbC3ZEeUnLucLGoBLOx7AAEn2FRUkoRuy4Qc5KKNWPw3BdKkuneI9Fnt5ANrTStbv8A9%2B3UOf8AgIOahzlHSUH%2Bf4mqoX1Ul%2BX4C6nomi6TtTVdevLZ2HEv9i3Ag/77cKxHuFNEPa1NYRX3q/8AXzHKlCn8UvwdhsGjaL9pjt5vFVlPNNgxR6bE10xU9GYkoqfRjuHcChurZvkt66f5gqUL2c18tSe58LIvz2%2Bu6cEDbT9uLWbA/wDbUBW/4CzVKqS6xfy1/L/IcqFtpL56fmUr3RrdNLmv9P1my1QWsiR3a2yviIvnaQzKA6kqRuXjPHcU%2BaSaU4tX2JdNct4u9jIFWZigUikOApAGKLDFApDE2UXAXywam5SIXtwego5h2IJLZh0p8wmiu8bKeRTuK1hhJFQy0JnmkULuqQHbqbYw30rjsLvpXHawoai4xwalcBwei47Dt9K47Dg1Idh4bNACZy/0poVh3UGi4WEQbnGadxj4IyCx/AUrgJOnABzjuaQBsJiwCQfWgZVABfOcigLFwK3y459aVxkgXFAxdvc0AN2nkKM980gSAJ3agdhjYXJULSuMFOV4U/lQBBPcrETlGx3IFIZlXsiyT7oweR3qkIupF%2B5Kkckf0rMdhbDITByfT2oGkSspByaBnVeLlSLw94UgACkaa0x/4HM5/kBXhZS3PFYuf99L7oo68QrU6a8v1ORMYnmwh4TJNe6cgsu5QFIQEA8DqaQyJc7G5AIGTg8mgLDmw4DKDj3pDGFPQUAMeDAJIxQBEE/eAYJ%2BlAyZEjViyOu/GMUAEkbN1XafU9KBjlhwvTnFAybaNo3A5FIdiRASuSAD6Ci4WHBOKQxQtJjQbKVwGMnOaYylqDyIojRSd3U%2BlAEsCRwQom4Dd3Pc0DFnV0UAAE569BSAZI6AbQQJG4FAFGUhLUj%2B8dob1AoAo5FIAPU/SmMfgeSDjkmkURtjAoAIsM4FADh3AOaAHIflqkSxaoQtAB3oAQ0AFIAoAKACgAoAkt4ZJ5ViiQsx7Cs6taFGDnN2SOjC4Wri6qo0Y3k9kdx4M8EXepzfuIFmKcyzScRRD1JP/wCuvg894sp4aOsuVPZL4n/X9M/Tsv4ZwGU01WzBqc%2B3Rei6%2Br0PVdO8EeG9JVv7UuH1O9jRnNvG20EhC%2B0KDnJAJGSM4r8wxPE2PxT/AHC5Ivq9Xva99t97LTudWK4iqv3aKUV%2BP%2BRqaXqFhHdXVppvh6yhNvbGRChjYyvgnau3lvlwcjPXBx38rEQrzjGdatJ8ztrfRbX10Wv/AALni1Mwr1m%2BaTfzJH1vV1sjLd%2BGQMRF3UglQRGsh5x0I3gcfeABrJYSjz2p1%2Bv5tr/Jvy1Rj9Yqx1sZVzP4V1Hcuq6FaQHcqvNaTIdmQMuzIQNoJC5y3J9Oa9KlVzLDa0KzflJPXySd9ba9NDsoZ1iqO0399/zMLxB8OIbu0ludAuV1GBWIe3lAEinGcA8c4I4IB5HXNfQZZxlOhUUcUuSXdbP5f8Oj2lmeDzKn7HH0013/AK1XyPItc0KexkkKRyDYSJI3Uh0NfrWWZ3TxSSm1d7NbM%2BOz/hGpgovE4V89L8V/mvP7%2B5i17p8UFABQAUAFABQAUAFABQAUAFAEVxPbwgLcTRRhwQN7AZ9etKTS3Y0n0Os0/wASahffCceH9MYXWobXsTIMAR2ytsGWPG8x8Dqe5x1Pz%2BJr0sPO0mfTZTkWOzVN4eGi6vRel%2B5yaGSGc2VzayWlxGoPlPg5XplSCQw%2BlexhcXSxMb02eTmWVYrLavssTDlf4P0ZLXSecFABQAUAFABQAUAFAHW3GPNavajsfOVfjY7T7Z76/t7KN443nlWJWkbaqliBknsOetEnyxbJjHmaR2ltplpp%2Bn6jaQSXAhjL2%2Brag8GxsKfmt40dkKg4%2BZiQW6AAE551JylGT33S/V6P7vxO2NNQTS%2Bb/QmttQtL7wzY6rcWseqQTSNHZWUdskUcBRiuH8sCRn5VtgYLtYH5ucN05RqOCdmt3e9/S%2BlvO1/QtVIygpb9l/w2pqm38fGNZLXS7XToTErfLawWa5JY/LIwU/dKjqc46g1jfC7OV/m3%2BGpdq/RW%2BSRqaTeeP7KGaS4TR9VkdII1gkvreQON7F3UI%2BQQBt469BntlOOFk1Ztb9H/AJGkZYiK1Se3VFXxPNpkfim/ttW8MWumWcj7o3TTxbu235cplSkvdxuV%2BCR1Iq6Cn7KLhO79b/8ABXbdE1HH2jUo2Xpb/h/xM59LnfVtRn0w6fcyWMZt7myzbwQy220M8cqqy%2BW4fI3DcA0bEVpzx5Ep3V9U9W791pqv0ZPI3JuNtOmi08%2BxxeradYf2Vb65pF1LJp91M8SRXCbZY3QAsMj5ZFGcb1OD7HitU5Rm6c91/Xy9DjnCPKpxejMsVTIQoBpDFxzSGhQKTYC7aTAcFqSkOCUDFKA9qBET26sOlBZWmsc5xRcNClNaSJ2NAyq4ZeoqB2G7jQUkKGoGAepuVYXfQFhwf3oCw4PSGODUAPD8UDHq9Ax8Ryc0CJOADQIIWAcUDLEjlVJPXsKAI92%2BPDc8ZoAkh%2BZPlJGRQMqhTkjHzenrQBct12oAeakCTZ3FBZFLJtk8s8Ejg0ASdF4GaAGMCRkg0gGJATkucCkBIV2gKtIZSuuI2jOSzcbT3oCxkqol1BY1GAGC4%2BlO4GvNFtnzg/MMjmpGRIgS52gY384Pr3pAPumwACfwpNlo6j4jRss%2BiWysFMOh2qHI6ZUt/wCzV4WQvmp1p/zVJ/nb9Drxm8V2ijmbSJUjDKxOeMjpXvXOQivLebaGTDkNk8c0gIFikPmFlIGMg55FAFpgq4UHOOtAEcmdw2A57nFADShY89MUDsRiHdKMf/XpXHYZcWe5jtbAHPPrQ2Ms20Z8k/N5gzwDzSHYle3G8YVht%2BYelADkifOWY4PrQMlWPHue5xQAFCWzzj0pXHYCMUtwRBLKqsPmGScAe9FhjHnCqPMXa5OMdaYFLU2kyrI4A%2B631oGQ3c7PJBBGCXXGcUAXbiQCQpIygHHB7HvSAyhKGvZGfO0k/XHpQwGXMvmYA4VeFHpSArD060yhw5K%2B/FAWJGTEOe9IZG53BT26UARo%2ByRW9DQBbmRUG4fxcj2oAhj6kelVElkmaq4goAO9ACGgApAFABQAUAKis7hEBLMcAClKSirvYunCVSahBXb0SPT/AIYeCn1a52MTHbx4a7n9B/dX3/8A11%2BW8V8TrDxutW/hX6v%2BvLzP1/LcBR4cwalJXrT3/wAvRfi/w9NvppZbeTw74XtrdbHZ5Bkj%2BcOWC7iWXIACsSSSCT0JwVr8xjrNYvGyfPvrpa17aPzWlrpdbXTPnsViquJqNt3bOR8R%2BOvDXh3Vri30XS7XxFr0cnzG1QQ2dkQCNu87sHliVTJJZs4r6fJeEs1zyCd3Tpd27uV%2B%2B3la/RK1zzquKpUdtZHI3fjn4gXqbE1200W3H3bbS7FAqD0DSBj/ACr9IwfhhlVL3sQ3Ul3bf/A/I4Z5lWekdCrH4k8dRMHi8daxuH/PRIZF/IpXoz8OshlG3svxf6Gax9dfaNiz%2BJniiFDB4l0vTvE1kylXeFPs10oIwSOSpPTptPA5r5fMfC2NP95l1Vxa6PVf1836HTDMm9Kiujv/AArrlnr0S6z4W8QX12sTsL2xukLS2zOVBZ4VwzEDd3I6Fehz%2BX5jgK2Am8NjqKi%2BjWidr6cz26effpb0KdRTXPTlcn17TdM8Y2h8mSNdbj3rHMkTJHchOvJ7dO5wSOoIJ0y3MK%2BUVPeu6TtdXu43/X8/Xb6DKM4eGlyT1g91%2BqPBvFOkSafdSMYWiKuUljI5Rs1%2B7ZHmscXTUW7u10%2B6Pn%2BLeH4YSSxmF/hT7dG/0fTs9Oxh1758QFABQAUAFABQAUAdJ8MvBi%2BONT1a2l16XS/sCwlIoYFd5Q%2B7LktxgFccd/wr4HjPizFZDKmqNNSUr6vytp%2BJ7mU5ZTxqlzStY7r/AIUPD/0Oeqf%2BAsP%2BFfD/APEVMf8A8%2BY/ez2P9WqP8zD/AIUPD/0Oeqf%2BAsP%2BFH/EVMf/AM%2BY/ew/1ao/zMpar%2BzxaXiCQ%2BLtRe4jRhCXt4wuT/e24OMgd6X/ABE7FVJL2tCLXqy48PxpJunUaZ5xYW%2Bs6R8M5NV%2B3z21za6m1g9kbZJBGwl2sAcbick%2Bua/TY4fC4pKsvhkk736NDwXFGb4SCw1KV7aJcqb9CTxU08mn6Bc3kSRag0uJUX%2BEGJi4%2BmQv5Cssm93FtQ%2BHU%2Bp47vUyehVxMUqt1p2undffYseCPDlx4w8XQ6DBdS2cCwPc3lxEgZ44xhVC7sjLMQOQeAa14u4ieR4L2sEnNuyT/rsfmOV4D65V5Xt1PTP%2BFDab/wBDfr//AHzb/wDxuvy3/iKOaf8APuH4/wCZ9L/q3hv5meefEjwrB4L8T2OkWms3Wprc2b3Eq3KIHhw4VTlAAQ3zcY/hNfonBXEmLz2lUniIJKLsmtn/AMN%2Bp4Gb5fSwcoqDvcwK%2B4PGCgAoAKACgDrZ/wDXNXtR2PnKvxsjIxTMz07QtJm121sdW1OeS309dM8zV3jXM06xyvFCqNgsGkA2EjnERPoa4ZVfZXhHV307LS7%2B7f5np0oOpFSk9La/kvv/AEH39xcw6jZ61oWn2uj6NfWkMT6c915DxNEzqkkbEERA7sb8qS28BucmoxTi6dR80k3ra%2B/R9/TXpoOTakpwVk1t6fkYmieA57jXkvNTsDeWh89muftkN3vbqiOfNOTtPUKp3Ec4JNb1calT5YOz00s169P8zGnhbzvJXWvVP9TrPGHw8SxtvtFrpiTFUQWvmRwKqTlhmMuoUiOMA/N1Y8g8YPHh8dzuzfrvt%2BOr7dDqrYXlV0vy3/yRnfDHTbzRoZbG41rTrJ57ozKDdre28CKNy/IJTjAyxJQ8Y%2BZcZGuMqRqPmUW7LtZv8P1%2BTM8LB0/dckte91%2Bf6fM3PF/hK1uNN1S10ea0stf0u2jjjQQkx38ZiJMZaQbZptpLblB%2B/j0K4UMS1KLndxk38tfLZf5G1agnGSi7SX4/5s828dKLfXf7Lg4stOgjtrMDoYgoIcf7%2BS592rppNyi5vd6v%2BvLY4K%2BkuVbLb%2BvPcp32i6np9nbXl5ZvBb3Q3W7sRiUeq88j3ojUjNtJ7CdOUUm1uXIvC3iCWc20WlTyTCD7QY0wzeV134Bzt96l16aV7lKjUbskUdP0y%2Bv0uHtLdpVt4zJMQR8iD%2BI57VUpxjv1JjFyvboacHhHxHM1qsOkzyNeIXtguCZlHUrzyB7VlKvT112NFQqO2m5VtdD1S6mu4bezeSSzBa5AI/dAHBJ56A96p1Iqzb3JVOTbsti3L4U8QW67ptLnT9yZ8EjJjxneBnlcAnIqFXpvZlujNbofaeE/Ed1ZxXdto91NBMheJ413eYB1246474odemnZsFQqNXSKWnaZe6gZBaw7hEAZHd1REycDLMQBk%2BpqpTUdxRpuWxabw5rSwXszafKI7F9l02RiFvRueM9vXtU%2B2hor7l%2BznZu2xYTwf4jkSJk0md/OQPCFKkyKehUZyw%2Bmal16fcfsKnYyDp9w14LL7PJ9pMnliIqd%2B/ONuOuc8YquZWvfQnld7dRF8MX95qz6RBZSPfq7RmAff3A4Ix3PtUupFLmb0KUZN8ttSrq/gfX7CzkvJtMnW3jOJJFG5UPTDFc7fxpKtCTsmaOnJK7RzU1vLHnKmqEkQfMOooAXIxQABqAO4%2BC/ghvH3jBdLkne3soIjcXciY3BAQNq57kkD25Nc%2BJr%2Bxhfqb4el7Wdj2LU4/2d9B1WTwzf2SG6gbyp5iJ3CP3DSA9R3xwK4YvFzXOv0OxrDRfK0eO/F/TPCmi%2BMHsvB%2BoPe2BhSRmMgkRGYZ2q4%2B8MFTz0ziu7DzqSheotTkrRhGVobHIB8gkZ461tcysTwt8oNUIlV1KnBFID2eLwT4Y/4ZyHi5tO/wCJx5e77R5r9ftGz7udv3eOlcHt5/WfZ30/4B2%2Byh7DntqeM3TNvBPAOMV33OI7n4TXHw/jvNQHjyGR4PLT7KEEp%2BbJ3fc9sda58QqzS9kb0PZ6%2B0O7%2BDXgzwn4k0HxRqF3p5uEtruQWTebIu2PZuXgEe3WubE1qlOUUmdGHpQmpNo8aEClvMPUjr0r0LnDYawbqMjB7igdiymCvUUhjLiOMrvbGR39KQEVrNFJ8pcbwcfWgCxtAwKm4COFxg0DSI8Lnauc0DSsVryGRl%2BVQxHQdx70IbM%2Bxs5IrpHkiZmySSBmmBqm1maHazhmBypIxikBCmEn/wBIUqwHGOR9aQyteEP/AKs5B6Ed6zkykrnXfFNVXxhNFji3hgh68fLCgrxeG/8AkXwl/M5P75M6sd/Ga7W/I5mx5R42Crg8DOa905BQrQyMWG5XIGR0HpQOxHdqWGF478en1pBYEUEMX4Pai47DACD940rjE2nOTRcCSyizOzEE46e1LqMjuSqkqSxYE4x1NFwJ7aARRlpMrnkjPFCAsKu4/dO085NCY0hHIDEEHgZFJhYieQpEGLKGPOPagZAbg480529h6mkBBNcTeSxRQJOTgnOAOppoZlW8lzHLHNKHCZLZK8EmmBfhUzzm5w7AElQwwfYUdALEEUZsybhWXeS2G6mkBFp8Nq0zXEYHqMnJFAyrq8q%2BZEwAAbLE9%2BOlCAyGcl8k85oYDwcqaQDRgjOcUFidj6g0AWZJC1ujA8BdrAdvSgBn2eQQiYkKp6DvQBUfh8ehpAWXcNKM9MD%2BVMBqH94fpTW4mSVZId6AFoAQ0AFIAoAKACgDe8HadJeXytGheQuI4lHdzx/X9a%2Bd4hx0cPR5G7Ld%2BiPveBstjUrTx1X4ae3r3%2BS/M%2Bl7Tw42n%2BFYNJsHXcpD3A3mP7SSPmUuvKgnHIzwAOma/nXE5p9axssRVW%2Bi68vbR6O3bu7noZjiJ4yq6j/pdjyX4m%2BJrmzX/hAdAujDNHCn9u6jE37zJXiBH65weT/CpAGOlfpfBHCqzev/AGjil%2B7T91dN97bf8HV30v8AO4zE%2Byj7KL16nl9lNetfx6ZolpZRWYMkcckpYBmjAL4x/vYz3INfsUsW6c/ZUYrlX6bny2OzShhE3O7atdL%2B9e35DbDUtYvfs/kPpDNNZvdFQ7koF25VsdD81RHMq0rWS1V%2BplXzalQ5ueEtJKO2976ry0JVufEJsvtnk6d5X9n/AG7d%2B8xtxnZnpux2pf2nVWlo3tc0WZRlFzjTk4qfs27aJvq3tYik1LV1iu5I30iYWtkt5J5cjn5Tu%2BX/AHht/UU/7Rrauy0V%2BpnHN6blCLhJc0nFXXa2vpqXdLvdY03xI93YzwWHiGwVZI5ISTHcRMM7HB%2B8p5BB6cEVxZnleGz7Dzw2Jiubp%2Bj/AK/LQ9DLMyjXpqvRuldrXyZ734N1R/GWnad4k0KR7W4juXj1Gwkm%2BS2mwTID1JBbaQBjcG6gE1/Oua4KWUV6uBxkenuytq0nZfhda3tbrZH1dKXtoqcPmip8bfDkUkK61FGMSYhugB1/ut/T8q9fgrOJ05/Vm9VrH9V%2Bv3n1%2BVShjKE8BX1jJaf1%2BKPn26ha3uZIW6oSPrX77QqqtTjUjsz8ixuEng8ROhPeLaI61OUKACgAoAKACgDb%2BHOuf8I18QtJ1R32Wly39n3nPHlykBWP%2B7IEP0Jr43jrKP7SymfKveh7y%2BW/3q6PXybFewxKvs9D6or%2Baj9CM7xJrml%2BHNHm1fWbk2tjCV8yXy2cLuIUZCgnqQOneurBYGvjqyoYeN5PZXS8%2BplWrwoQ55vQ5SL4vfD%2BeVYLbXTNPIdsUQtJ1Lt2UEoBk%2B5r31wXnKd50bLu3HT8THC47D4utChSleUnZHB%2BK9a0weHLzVVidCdYD3cMaZxM8YwFHfOUOT3LV%2BwZRgatPLY4VO9tF6X6/j8rGNaWGyXiPnqX5IavTvDp6tnml7dXOq6iL%2B6j8hI1KW8BbJjU9WYjjccDp0Ax619VlmXrCRvL4mfP8UcRzzqumlaEdl%2Br82e2/s2aH9m8K3XiSdMT61NuiJHIto8rH%2BZ3t/wIV%2BG%2BI2b/AF3M/YQfu01b5vV/ovvPUyDC%2Byw/O95HqrMFUsxAA5JJ4FfnyTbsj3W7K7PkrxNrR8T%2BLdW8R7iYbufy7TPa3j%2BWP88Fvq1f1JwplP8AZeV0qLXvWu/V6v8AyPzbM8V9ZxEp9OhSr6M88KACgAoAKAOsuP8AWt9a9qOx85V%2BNkdMzPeNB1iw0r4Xyxzy3NuLyOxiSeCOJ/KURZJYSkKV3rLkc9%2BOtePKlKpiE1ra/fv5eVj26dSMKGvW3bt5/My/FZ0/d4v%2ByfY7y4WGylS0uFwq2KWqmN441Kk5eVySOFwDit6HP%2B6votdfNvW717fMiry%2B/bXbTyt0%2Bb%2BRWTw%2BdQso/Dup2X2F45J1gkt5mKtuKidtrIcRosagEMSW%2BUdc1Xt%2BSXtYu%2B17/h83f7tSfZc0eSStv/wS9rfg6LTdGbR9Tt3mSECZCJSn2YATYeRlRlX/AFzMRngRng8Zini3OfPB7/jttr5fiXPDKMeSX/Db/wCf4Gd4e8O3li663Y2NhqFhAYg0S3EokmhlXClNyJhghcklegwehxpVrxn7km03ftuvv6mdOi4%2B/FXX%2BZreI/smj%2BJfAcGms2ozQo1rb3pAV0hW6KRjIO3BUFc/xAEjvWNLmqU6zlp1t521/wAzSrywqU1HXz%2BehwHxD8s61amMDnT7bp6bBt/8c210Udn6s48RbmXojS8fD/ijPA57f2dMM/8AbdqxofxKnqvyNMR/Dp%2Bj/M0NO1O70jXptT06Yw3dp4atWRsZwQlvkEehBwfY1nKCnDlls5P9TSM3CfNHdRX6F7WdLsdR0bVfG%2BgxrFYXtg8d9bKf%2BPO68yMlcf3W6iohOUJKjPdPTzRcoRlF1obNa%2BT0KmsanNoun/DvVoSfMtLV5QPXFw2R%2BIyKqEFN1Yvq/wBCZzcFSl2X6h8RdOj8P3OrNakeTrs6y2jDvanEp/AuyD/gBow83UUb/Z39dgxEVTbt9rb03LHjc6ekuiTS3V5Hfjw3bC3VIgUZijAAtuzzk8bamhzPmXTmZVbl93XXlR0ngm1gk0DwJP57LfWjajPZ2wGBcyK%2BRGXz8ucehzyK56zalUXR2v5G9FJxpvrrbzOU8GX2j3aatoXiuOWyt9XulljvI1x9nuELcEf3fnwR2z75HTWjOPLOnrbp3Rz0pRleNTRPr5lxtNu9J8LeP9MvZvPnt57KJpQchwJDg/lip51OdOS63L5HCFSL8jP8f7l0Twa6sVZdHUgg4I/evVUPin6/oRX%2BGHodF4khRPGdtrslxBa3droltdXM0qkqt4ybULAAnOSrdD0rCm/3bhum39xvUX7xT2aS%2B8kltYh8c9A1W3ZHt9VkgvY3QHaSy4fGefvBqV/9mlF9Lodv9pjJdbMxvhspPxQureT/AI8rj7Yl6pPytDtcnd7AgGtMR/BT6q1jPD/xmujued3FpE5bC5XPBPpXUjmu7mddaSjglRg0yuYyrnTJY84UmlcooSRSIcFTRcDuvgb49j8AeMTqF5A81hdRfZ7pU%2B%2Bq5BDr6kEdPQmubFUPbQstzow9X2UrvY9e8S/C/wADfFCS58SeBvE0MF/cEyzxA74y55JZOHjJPXt7VxQxNSh7tRaHVLD063vQep5/8OvhJqNz8Wv%2BEW8VWzQwWUJvLjy2%2BWeIEBdjDszEDPXg9DXTWxSVLnh1MKWHftOWR6/rviXxF4c8Qf2F4Y%2BEslz4etWEUksdsV84fxFABjHXBOc1wxpxnHmlPU65TlF8sYaGb448D6No/wAYvBWtaZYRW1rql4Y7m1EYEYkC7gdvQZBOR0yK0pVpSozi3sTUpRjVjJLc2fiVrfgP4c%2BIv7ZvdGS/1m/iVYLeKJB5MScbueFyc89Tj2qKMKtePKnZIurKnSlzNakvhTVdCj/Z9XW9eshPpYM1y9sQDv8A9JdkTHQ/NtHp%2BFKpGf1jli9f%2BAEJR9jeW3/BMj4dfEzw78RdTbwjrHhOztIriNhbISsiNtGSv3RtOASCPTtWlbDToLnjImlXjVfI4h8HPB1n4d%2BK3jLQ5IIrm1gigktfOQORG5Zh1HUZxnvijE1nUpQkFCkoVJRJvgLgaB49QKFC6ncAAdANppYv4oegYfaXqZX7PNpa3Hw28TvcW8Mzxu%2B1njBI/cDoTWmMbVWNv61JwyXs5HnHwriim%2BI%2BgRyorq12gZWGQR6V1V3alI5aK/eI9O%2BJmvWXgr4urfjQ7a9hfSFi8jCooJkJ3fdIz8uOneuShTdWja9tTqqzVOre3Q6/4Z%2BJrfxlBd38vhCx03TLbINzIysHcckAbBwByTnj%2BXPXpuk0ua7NqU/aa8tkeD/HDWtO8V%2BLxcaHDFb2dnF5ETRIF8/5iS/HqTx7CvRw1OVOHvbnDXmpy0OOtZZPuTRnIHX1rcwDzVeTagZST1IoKJkiwuVI%2BtICpO12ko5jHphetMZKkxzwh4%2B960gLijKg4pDsVNSt2aIyoxUrjPuM0NjM2wiafUbKHOfNmRPxLAVx4qfJSnLsm/wNqUbySOx%2BIC/afGesOQCpunUfQHH9K48hhyZbQX91fjqaYx3xE/Uw/scQAwg3DoTXrnNY9R%2BGD39l8NdXurCxhvL6O%2B/cxGEyZGIwRgcngk1%2BecSQpVs5o0q8%2BSDjq726y76HtYByjhZSgru/%2BRH4%2BCX3w1Oq%2BItIttM1kXSxWuyLy3kG4ZGDzjG7g/3c0snf1bOfq%2BCqupSavLW6Wnfbe332Hivfw3PVjaV9B9nb6oPGfgoasmmmJrdjALZGBKeUPv7up6dPeprVMM8vxzw7ldSV%2BZrfm6W6DjGftqPPbbS3p1KXiP4aX%2Bp%2BJNTuYNR0uKea4kmhs2l/eFCxwcAcV0ZfxXQw2EpQnTm0kk5W0vbX1IrZdOpUk01d9BnhfT2tPhp4vtrq3EdxDIEYOo3IRjIrXM8RGrnOCnTleMlf13Fh6bjhaqktUUdfstXk8FeHI5Y7B7eU7LNbdG85iRwHzwT9K7cvxGDhmOKcXJSWsrtcunb/AIJlWhVdCne1ntbf5jIvhbqP2hBdatpEF/IN8dk8/wC8PHTgfyzWMuMcLdyhSnKC%2B0lp/X3FrK6mzkk%2B1yx8MfB0l54o1C38TWUGyyBRrSRyGLHBVxjquM857iufiPiFwwVOpgpv39VJLSy3Tvs/LyNMDgearJVVt0M9vBepy%2BJDo9pJZ3D7POaSKXMUSZI%2BY44PHSvWXEWGhgvrVVSir2s1q3bov1Of6jUdX2cbPr5FbxF4G1O102XVLDU9N1O0tztnNrLuMR9T7VOC4ko4jELD1KcqcpbcytcdXAThBzjJSS3sJpfw21O9sIdSvdRsdMtph%2B6%2B2SbWlz0OOw/WssXxTh6NeVCjCVSUd%2BVXsVSy6c4Kcmop9yo/gPVJNduNCa%2B0yF4IRM873A8sRnHzdM9xxjvW0uI8OsHHFRhJqTslbW/YhYCo6rptrTW9zJ8b%2BCtV8P6WNdt9SsNU0uSQRNcWcu4RnPQ/U8ZHeryziGhjq7w0oSpz3tJbjr4GdGHtE013R0HwSlspfG1jBtRmeCUhOoGF71y8ZSlHKpNPqvzNcqSeJV/M27r4kRL4gu9L1TRtMurKGd45FWH5lRWIzySM/wCeK8ujwpzYWFfDV5xqNJ76Xav0szpnmVqjhUgnFO2xautBn0n4jWkXhkWOL60e4thehniUY%2BYcc9MEfWueObwx2TT%2Bv814SSfLZN9n29TR4V0cWvYW1V1fY4jw74M1XW7rUL9Z7DT7OC4kF3dTOVj3BjlV%2BnqcdRX0OM4gw2XU6VJRlOUkrRWrt0ucNLA1MQ5Sukk3d9DP8afD3WNK8PT%2BIZdQ0y5sIXVY2tpi/mhmA3LxjqfXtSwHE%2BHxuKjhYwlGbvurWtrZ6jr5bUo0nVbTXkdfJ4Z1PXPiLoNt4oXQmt49OEphty8YmiyQF55L5IPHYV82s1oYLLK88Fz8zna7s7Pv5K34nofVZ1sTBVrWt07f5nM%2BMfAE0XjoaVpd1pUcV/NKbaIXPECJzh8jIOO3J4Ne5lfEcJZd7evGTcEuZ23b7d/wOPE5e1iOSDWt7a7epT134aajp%2Bg3Or2Or6VrEFpzcizm3NEO5Prj861wfFNCviI4erSlTcvh5la4quWzhTdSMlJLexrfE%2BONfhp4GZI0Uva/MQuCfkSuHh2Unm2OTf2v1ZvmCSwtD0/RHnq2Mv2UXDSIIiM479a%2B1PHGTyPNEIwBiIZz7YoAz3OTn1pAWE25YN1AyKABcCYAdMU1uJk2K0sSLTASgBD0pAFIAoAKACgD2D4D6Us%2BuW0rplbaFrg5/vHhf/Qs/hX5B4gY9xpVIp/E1H5LV/l%2BJ%2Bu4Gn9R4fpwW9TV/PX8rI9h8b65H4a8I6rr0oDCxtXlVT/EwHyr%2BLYH41%2BTZbgpY7F08OvtNL/P7keJWqezg5dj5Nle%2Bg05IhIZta1SYs0jdWnkO53PsvJ/AV/XFKjDLcFChSVnZJL%2Bux8Zi8TGjCdeo9Fq/wCvMvfD3T7LUPEHw30fU3H9n3l9LBdgttEsZcFlJ9Gxg%2BxNeTVbjShbzPAwEI1sxxTkr25GvuPrrxmPgw%2BgXFpqFn4avI7ZREtvZrF5yMxCqiFMFGJIHUYzyQK43WpwmoOSUnsr6/cfQ%2Bzc1qro8P8Ahb4e8I2/jKK58RQwW2k205s4re5fzF2GSQxLKCq%2BYpLBRKwP%2BrUcDmuZ1IzlzzslHu/6sj6CdKOWYWVKDblVS0StHW0m7/ae2y0uzvv2odN%2BHup/A7XdR0X%2BxBf6WqG3lsPLWSMmRUaM7OdpViCp45HtXVCpGceaDun1R4HJeSUl9580eIYjb65f67GTusIrXzVz9%2BFwwcY9RwR9K9hTdKr7VdLfc9z5DIcb7KNKg9puf3q1v1O%2B%2BC2s/wBjfE23t0k/0HxDCYXAPy%2BfGpeN/wAVDr%2BVfDeKmTwxGBjjoLWH5PT/ACfyP0LLK3JU5H1PfvElguqaDe2DDPnQsq%2BzYyp/PFfhGX4p4XFQrLo193X8D6nCVnQrwqLoz5M8Uw%2BXepJjG9efqP8AIr%2Bnchrc9Bw7P8zyuPcKqWPjWX24/itPysZFe4fDBQAUAFABQAUARXkCXNrLbyfdkUqcdvepnFSi0xxdnc%2BmvhB4jfxN4A06/uXDX0Sm1vfXzo/lY/8AAsBvowr%2BWeKMreV5nVoJWje69Ht923yP0nLMT9Yw8Z9epveJdItde8P3%2Bi3ozb3tu8D%2BoDDGR7jqPcV5WBxc8HiIYinvFp/cdVekqtNwfU%2BPppZdLnij1JlS80q%2BWO7QnBzG%2B1z%2BWT9K/qR4iGY5cqtN6Simj4fKa39n5rSqVNoyV/S%2Bp1fja3ujpMlzZtuhDxS3cQGfMSNtwZf9pcn6gn0FeDleLVGqoz2ufqfG2QfXsP8AXKC9%2BK184/5r8jBt7KbW76w0Wxf9/qk6W0brztVvvP8ARUDN%2BFfR5zmMMuwNTEy2im/8l8z8ZwlB160aa6n15pllbadp1tp9nEIra2iWGFB/CigAD8hX8o4itOvVlVm7uTbfqz9NpwUIKK2Rw/x88QPonw%2BubW2l2X2rOLC3IPKhwfMYfSMOc%2BuK%2Bo4Jyn%2B0s2ppr3Ye8/lt%2BNvlc83OMV9Xwztu9D56iRIokijXaiKFUegFf00kkrI/PG7jqBBQAUAFABQB1s/%2BtbjvXtR2PnKvxsjbtTRmj2v4NzJqPh6HR7q3Fw13a3lvbKQu7zYNs0TLuBAI%2B0S8kHtXk4xOEnNPZpv0ej/JHsYF88OR%2Bf4a/qYnxm0q60%2Bx8IeJRE82pyWlxZh2uFkaSLAEckjKADt81gccfd7cV1ZfVU3UpfZunt162%2B4yxlNxVOp1s1/w/wB56TNFD/Z2rahe2jW2nRpKl7NLIN6qzFhGh3DHzNvwBksF6jbjzE3zRjF3fT/P9D0GlZtrTqTeM7uKJtf1CfQoNSs1ZQ6XUW7aqAMCEGWYEruPHCrnnmpw8W1CKlZ%2BX9f0x1pW5pON1/X9eh5Z4vv5dTt9Gg0%2B5lTSNUhs5RHMwMwZriYYwAMje6g8Y2oRXrUIKDk5L3lf02X6L8TzqsnNRUXo7fmzvfEVnq9l4k1eR7ZLHRNFsYbTTRIsUo818RQyA5LR4LhugJwc%2BlefRnTlTir3lJtvfbdrz2sdlSM4zlpaMVZfkvQ8X8bSs/i7U8RmOOK4aCND1RI/3aL%2BCqBXfR/hq/8AVzzKzvUf9bHQ6Wni6fw9aafL4Qn1fT4C0tk09jM3l7uTtZCuVPXByKxm6Km5c9n11RtFVXBRcLrpozNuNQ1rTNS1BtU01Uur%2BExTJdW7IQhxwq8bR8q4x02gCrUYTS5XojNznCT5lqyfTLHxjYabf2Fto2q/ZNRjVJ4zZyFXCsGUjjqCOvoTUylRlJNtXXmVCFWMWknZ%2BRLqJ8Sa7b2ujHQZS2jp5Sx29pJ5kSsc4ccnk881MfZ02582/mOXtKiUeXYzdZvNSuJra21QP5mnwrapFIpUoikkKR171pCMUm49dSJyk2lLob1v4l1jV9TsFi0XTry%2Bt4VgswtszOqoCVAAbkjqM5rF0YQi7yaT3N1WnOSsk2ti40fjo2GlWUXhu/gGkymW0kjsZRIjE7mJJznJAJz%2BGKi9C8nzLXzLtWsly7eQ25vPEV8LnULvwpFcQtO11I32KURpKPldsqQBnb8wPGR0oUacbRUvLcTlOWrj%2BBBY6n4k1HTdZjh01tQj1GQSX8y2zudw%2BZeV4XHJH9RTlCnFxu7W2CM6klKyvfcs3eo%2BIm0uwurrwzbta2ECpa3EljIUjjzkck7WGTn5s9alQhzNKWr8xudTlTcdF5FO3vPEOvWmoWkNhJqcl1MtxdTJA0ku4ZCklegALADGKpqnTabdrEp1Jpq17k//AAlOs6fcaZFJY2kNzouUtfMhYPEe4ILc88896n2MJJu%2B5XtpRtpqiHVNZ1a3a8tjp9vpM16ubnyoCkkiP82CWJIU5BwMA1UacXZ3vYJTkrq1rnPFK1Mhpj9qLhYY8CsOVpBYp3GmQy5yoFA%2BY2fhp8Mrfxn4hm06fVE0%2BKOBnBGDI7dFCqeoB5PsPeufEV3Rje1zpw9NVZWbsdb4T%2BA/j7w/47sL%2B01exgtba4V2vIJ2DGMEFl2YySRxg8c9a5qmNpTg00dMMJUhNNM9I8UfEHw9ovx30nS7m5gTfpslpdXBYbYZHkR41Y9vuH6bxXLCjKVFvzOidWMaqRi/Ejw58bh4puLnwd4lludIuX8yGLz44zbg9VO4cgdiCeKulUw/Laa1Iqwr814PQxH03x7o/wAUPANt408Rrq/2i7MqIrAiGQAgjoCeCOcY6%2Bla81KVKfIrEctSNSPO7nMftaOf%2BFqRKSSBpkOB/wACkrbAfwvmZ4z%2BIen%2BBfD48V/sw2egi4jt5buFxC7n5RIs7MgPsSAK5KtT2eJcjopw56Cic58D/hD4m8O%2BOY/EHiRLeztdPVzEqzq5lcqVzx0UAk84PTitcVi4Thyx6mdDDyhPml0Ov%2BFuvWviP4z%2BNtQsHElotvbW8Tjo4TcpYexOce2KwrwcKME/M2pSU6smjN/Z5mhvIfHelpOn2t9SmJU9QrblBx6ZFXi7rkfkTh/tLzJvgJo9zpGm%2BLPBeqSwR6rFIvmrG%2B5QkkICsPUUsVNScai2DDxcVKD3Mn4Y/CvV/Dvi221rxTc2NvbWkwFssc24zyt8qfQZOfXOOK0r4qM4csOpFLDuEuaRd%2BKHhS48Y/Gez0qJjFAumxy3Mv8AcjDuDj1JyAPrU0KqpUW/Mdan7SrY6f4j%2BGPEdx4VtvCXgy0tbTTBGFndp9hZR/AOM89WPf8AOsaNSCm51NzSrTk48kNj598Y%2BB9a8IXVtb6x5O64Rnj8qXdwDjrXp060aqbicM6UqekjISLgbiSR36VoZkM9kzOJI5nVh/tcUXHYWOKdSMuhH8Qyf0pMaRMUXoW%2BgoGRo0HniPBDn2oAsbRQAyZf3Z%2BlSxoq%2BFbcTeONEgA4a/h49g4NeRnVT2eArS/uy/I7MJG9aK80a2tSrca3fyBgzNcSMQD6sTXbgYezw1OHaK/IwqvmqSfmyntGM11EHpXw7i1WX4a6vHozOt%2Bb390UYKekecE8dM1%2BecRTwsM7oPF/w%2BXW%2Bv8ANbbzPawUajwslT3v/kWNXg1KD4bamnjSVJJy4%2BxCV1aQNxjBHv8ApmsMNUwtTOqLylWj9uyaVvn5fjYucakcLL6xv0Ldyo/4SrwGe62bf%2BihXLT/ANwzH/Ev/SmaS/jUPT9DN/4RHXv%2BFqDWVGbP7Ybg3PmDGz%2B51znHy4rr/tzAf2F9Vv7/AC8vLZ79%2B3mZrCVvrftOl73LUUkfiKy8d2ujmO4lmnQRqrAb8IATzxglTzXHJPLquX1MToop38tW/wAE0ar9/GsqetyoL%2B20zQPh7d35CwJOQ7nomY2UN9ASD%2BFaToVMVi8xp0dW19%2Bqf4iU406VBy2Oe8VeAfFepfEabU7MeZa3Fys8N6sy7UTgjvn5R6dccV6WW8RZdh8rVGrpKKs42er/AC1MK%2BBrzxDnHZu9zs7fVtOm%2BMjRxPGWXTzbGXPEkobcVB7kDj8MV4dTA4inw5eSfx81uyta/wB52RrQljtH0t8zH%2BHVnf6Hr2v6Fq8FrHe30PmWSO2Y5UBcYyOecjjrjPFdvEGKhmGGw%2BMoSbhB2lbdPR/09jLBU3RqTpTWr289yK8bxLpfhnWS3g7SdNtXhK3JibBdTlcgBuSAxNaUll2KxdB/W51Jp%2B7dbdddNNhS9vTpT/dKKtqQ/EjS9U8X22k614VVdRsGthGIo5FHlNnJ6n8D6bafDuY4fJ3WwuNfJPmvdp6r%2BtV6hjqFTFKFSlqrFTwf4E8ifUT4is49R1K1tklgsEuPlfIbAYj0KgY6fXit824kdWFL6pNwpyk0522tbb779/xJwuX8rl7VXklorkvjG2uLX4Ga4tzoOn6LI1xG4tLUcBTLGAz/AO0cflivPy%2BpCfENH2daVVWa5pf4ZbeR0VotYGXNFR8l6o4D9nlz/wALOtFHRreY9OvyGvpuNH/wlT9Y/mcGU/7yvma0nws8XX/i%2B/muYY7HTZ72SWSd50OYy5IOASc47fnXJS4uy/DYKEYScpqKVknul3sayyuvUqttWTb1Oz07xDpOsfGjTLDSp1uINMsJrcSocqzbfmwe4GFGfY185Xy%2Bthcgq1a6tKpOLt5X0/U9CFeFXHRjDaKaMO1t38ZfDfWvDOkywpqtpq8srW7OE85PNJH4c9fVRXfWrLK81o43EJ%2BzlTSva9nypf15MwhD6zhp0YP3lJ/mQa5oWoeHP2f9R07VXiN19uSR4o5A4hzJHhCRxnv%2BNVhcwo5hxLTrUV7vK1dq17J6/p8gq0JUMvlCe9/1Rf8AGVzb2fxe8C3F1IsUQslUuxwAW3qM/iRXJllOdXJMdGCu%2BZ/hZm2Jko4yi32KyfD9bz4wahJ4jhBsLwzXdmiTAfaSCuVODkYDZI46elbPiN0cjpxwb9%2BPLGWnw769tbf0yf7PU8bJ1Vo7teZs6LaXVt4M8Vm58JWHhtGs5VhihOZZVCP8znuBng%2B5rzcXWp1MfheTEyrPmV29ldrRfqdNKEo0Kt6aho/XZnJ/EGynvvhD4R1G3AltbG2C3LKw%2BUkIg4/3hjivoMirwoZ7i6NTSU3p52u/yODGwlPBUpx2S1PNGMk1iI0BxECxOeMe9feniDUhNxbmYkRxgbT70AZcu0SYHKg9fWpAmuArTZTgMARTAavEyg9aaBlmtCAoAM0XAQ0AFIAoAKACgD6C%2BAUa51B%2B6wwqPod3%2BFfgHHs23TXeUv0/zP2fNkoYPDQW1v0Re/aTlZfhdNACQtzf2kL/AO6ZlJ/9BrzOAKSqZ7R5ul/yt%2Bp8hmLtQZ86WYvNR8eaRJb3NvbyS6p/ZVt9pOI4Wddplf2y4OO4X3r%2BhsdiJOtz9m0j4fGQjjXPAzulZSb/AO3tl9x9X3H7O3hDS/hxeWNpuv8AXre3MtnqWovuWKdSJBhM7EQsuCAMlSQSa81ttWZ206VOnJyjFJvfz9SCxlXxR4VsfHFusenWOqhdOksrVVH9nFGIhc4H%2BsWfcPbzE/u5Px3F%2BEqewhmFD%2BJQfN8uq/X0uepgZpTdKW0jmfDep3WqeLPEl5c2jjUodQUzW4UrFNdMqxwRrnqC%2B5sk8fIwxzXnZ9jpZph8PhsM/wDeGvlFau/p19Gj1lGNHDppe7Hve7lZX8rdrfPoda/hqz1Xx3pHwx1eLTtYs9JDa5f3E0KGSdX3BIHGOpmd5D/sBM5JJP3eHoQw9KNGmrRikl6I%2BclJybm92cv%2B058JvD3h/wADav4q8PMLEP5EV5Zyylo5VMgVfLJJKsN33ehGeBXYqsrNPW55VXLqPNCrBcrhdq22q1PCNAdtK8VaXYxOZP7L8RWaQuDnMbyLhc%2BoVip/Cs%2BIoqrkeJoy%2Bynb7nb7jtyPFyxVGjXkrN2v63t%2BJ9iV/K590fKPxFjWPU5EXotzKo%2Bm6v6W4Tm5UbvrGP5GvHiUsNhZ9dfyRylfXn5oFABQAUAFABQAUAeg/s863/ZnjW80CZ8W%2BsRefAD0FxEPmA/3o%2Bf%2B2dfk3ihlHtKFPHQWsdH6Pb7n%2BZ9Rw5iuWbovqfQVfiJ9iYGr%2BC/COrSXE2peGdHuprkETTSWUZlbIxnfjdnHfOa9LD5zj8MoqlWkktlzO33Xsc1TB0Kl%2BaKu/I8F0Sw1XRJb7w9q6Fxp95LZ205/5bRoEZd3vskQj1H0NftlOtDGYWnjaW01r5PqvvufTcJZw60ZZdX%2BOnt5x/4H5Gt%2BzT4cMvizV9ZljP2XRJJdPsiRwXZiWI/3Y9i/8DNfP%2BIWdN4Ohgk9ZLml6Lb73r8j4fDZbHD5liHFaRk0vv8A8j6Dr8hPbPm745a5/bfxHeyifdaaHF9nUDobiQBpT%2BC7F%2Boav33w0yj6rl7xU171R/gtv1fzPh%2BIMV7Sv7NbRONr9KPngoAKACgAoAKAOsuD%2B9avajsfOVfjZHTMzqdV1fVtH0Hw1H4XnAN9BdW7NGrC4jmZk88qSMLlBGoYZwAx4JrOhSp1JTdXpZ%2BVtbfjc6pVJ04QVPrf1v1/Qk8eT6rqWiWEerWzWsdukNlZ20exo7eBWUbVfzMszYG5ioz9AKeFjCE24O97tvu/u%2B7U0xHNKC5vJL0PZ/FC3178Mru%2ButOtNVtLecTtp1xMY32xt80u4YO7q%2B05GBgDHFeJRcY4lRTs3pdefT9D1Kt3QcmrpdP1JNbOveLvEFzb2KR2GhLFK15LmTzd2wArtVlLbtoA29hjvyqXs8PTTlrLS2wVPaVp2Wkep5Z47tobi6j0vTLZtNnfTUSKEzgjes1wqglv4gA5%2B8MM3cCvXw0mlzzd1f8ARHnV4p%2B7FWdv1Zz/AIk8YeO4/s76rHbx3dzappt5KLmOVLtFYmJ3RWOJUbJ3D2yOueijhcM78myd1pa3f5PsYVMTX05t3o/Pt80WPiBHGnjHUVV0ebzf9KMedn2jA87ZnB2%2BZuxntXFRf7tfh6dPwLxFvaP%2Btep1GtPKvwF8O7JXUjVpwMMRxhq5YL/apeiOibf1WPqyz4dnn8UfCHxFbaxK1zNoRiubGeU7njViQybjztwDx7%2B1TNKliIOP2tyqbdXDyUvs7Gh4n0y/1X4deAEsrq2hYW84zPexw8l1AxvYZxjtnFRSnGFardfgXVhKdGnZ/iO%2BEct1J8Z7r7VOZp0guIJJRkeZ5aBAx9ztBPvRi0lhlbyHhG3iXfzPLmBLEk5JPJr0DgW5oaHqNzpGoLf2ZCXCI6o/dCyldw9wCSPes6kVNcrNIScHzI9D0WWfwT4Dm8Q3M0h17XFMVgHYloYf4pee54x/wH3rimlXq8i%2BGO/qdsG6NLne8tipojOfgf4hBdjnVIe/rszTnb6zH0Jh/u0vUxPCBddL8ShWYA6XggHr%2B/i/%2BvW1beHr%2BjMqWkZen6o3dSLn4G6Qm5iP7XlGM/7LVhH/AHmT8jaX%2B7R9RfgQCvxCgwSM202f%2B%2BDRjv4T%2BQ8H/FXzOf8ACunDUvE1vFKjSRK7TzgDJMaAu35gEfjW1WXJBtGNOHNOx0/xfjk1KHQfFElsbd9Qs/LnTaV2yxnBGD7Hj2Fc%2BEajzU%2BzOjFLmUZ9zgPLFdlzlsJ5dK4CeWaLgIYzmi4WNPRtKNxBcX/2uW3FqyfNDEXdSc4bgjaoxy3bI9aznOzStuXCF9exuDVPH8tvFbR%2BItQW3m8qNWluxGSXVDgEtuIAdckdiCcVi4Ud%2BU2U621ziNY8E6jJNcyPAJXWRg7rMrFyGwzDnLDJ5IyB371oqkbInll1LyJ8V/D2mvb6drup29pCrjylvlbZsGXVRuJDKBkqOQOcVk1Rk7tfgap1Yrc5TUT4ts9Ws9bvb29lv5n/ANHvFu/Ok3jHAZWJDDcPl4IyOK2XI04paEPmTu9y/wCJ9F8V6ibfUdYu3vruUyws1xdo/lJD5eS8hbao3S4wSMHjqainOEdIjlCctZBob%2BJp7a98PXGu6vZWmlr5rWUJeVlKyDlIgwBwx3Eg8AE05citK17jjzNcrexffV/iRrmlraza3quo6fORHDG11gzqz%2BWrFCdxUthckYycZqeWjB3skxt1JK1yp4et/Gekastvptxfaa88amZ7S4HKeZ5YyVbBw524zkHinJ05K71FGM4vQraVD4l0yZdYtbu7sbu4je4MsF0BOV8tpcsoYOAwUnJHI554zUnCS5WCUlqbezxymvrrIu76PUZRiS5F6BKmELbZW3fJhVJw%2BOFPpUXp8vL0KtUvfqTWmqeLfEmqztq2u6rcy6Sonj%2Bzg3EisJFQFFRgMgsDuB6Ck4wgtFuO85vV7GjZL42TVdRuh4kvXvbRXge4e6MfmRpMqbfMZhwGYHBxzx1qb07Jcug7Tu9TQOpePliQDX9be4bgwid8o3mPHtPzesZP/wCqly0uyC9TuZes2/izVQ9zqVzJe/ZkUxvNeLLvV224jOSG5ByBnnjrVxlCOiJkpy3Kknh/WQ3lm2UZUlnM0flpggEF920HJAwTnJFV7SJPJIWz8N6lIqC1tRKWlEQRJUZtxJUZUHIBIIyeDQ6kVuNQfQkPhzVcqoiRsruYvKiIp3soActgklT37Hjil7RByMoajpF/Yw/a75FtoiSAskihhgkE7c7gMqRkjGRTU09EDi1uPvdLubeIvc25jCSmFmJHDgZwPXj09R60KSewnFoxr%2B1ukO%2B2uGXIOc1Yiukt75kaTOHXHz4GMHt%2BdJ7DRs/D2Hd8QdKc/wDLKRpT/wABRm/pXz3Eb/4Tqi72X3tI9DAr9/H%2BuhVDSJeyGcqFkbIJOM5/nXvJWikcN9Sa5wsTDKgY5zQB1HgHTLO78LX%2Bt32vX%2BmWttc%2BUwgJ2jhMEgc5JYCvkM7zKrSx9PC0aEakpRuubfrp%2BB6eDoRlRlUlNxSfQn8S%2BHLa58PP4i0fXptXt4SElE4O5eQOM/UcY70ZZnNSnjFgsVQVKUtVbZ/1bcMRhIypOrTnzJdzkY59RkdWWe7d7df3ZDsSg9B6V9NKlh4JpxSUt9Fr/mcKc3Z3ehG%2Bo6k8Mlomo3gD5MkImba2epIzzUywmF5lUdON1s7K/wB4/aTty3djJgGqWsv2i2kntQw2%2BbEzJkfUdaqpCjW9yolLydmKLlHVaEtmLy4K2bz3EsafcRiWC/Qdqap0qbc0km93p%2BYNyloWbvxDd6PCbGO8vY4lQ5gEzKB7bc4qPqWFqy9q6cW%2B9k394/a1Irlu0YVv4jcwme5t7hIj92WNcqD9a6G4N8jav2JSla5s6nrGjzaLpupr4k1C81Vpdslu8bbYVG7BDEc9B0PevIwzrQxVSg6MY0Urpq2r03X39Oh0zUZU4z5m5duxlfF6x8RaFriaRq%2BuXF/E8K3Eam5kkRQSQBhu/wApqMkxWCxtJ4jDUlDVrZJ9O3qVi6dWjJQqSv8Aec1o1/rlnBK2lX%2BpWkX/AC0NtK6KfrtOK9Ovh8LWaVaMW%2Bl0n%2BZhCdSC9xtehq%2BGtSvbfXW8i/u1kli3%2BaJW3lj1O4HNXWw9CVP2c4px7NK33bCjOalzJ6nU2Vpaa7dtF4h13UbOzlzJLJGXkMpUDqvO7tzjtXmY5SwtFTwdGMpx2Wisvwsb0LVJWqyaTOQW2uftZudFuVt/LkaGBkkKSSDPXjnJFem1GrSXtorVK6equY3cZPkZU1DVdbG/T7%2B/1DdnbIk0zkfkTUUsPhk%2BenCPqkhyqVNpNlKG8ntbpZLKaaF0TaHicq3vyK2qU4VY8s4prz1JjJxd0z2jTfh34c0bwafEfiW81Y3nkRXNwLSQCS2Dn075zyT/AHTX55X4kxuLx31TBxjy3cVzLSVvy8rdz3oZfRpUfa1W76N26XOW8Z%2BK9GuvCi%2BDfB9leLYm48%2B6ubtsyTN19%2B4Bz7AYr2sqyXFRxjx%2BPkudKyUdkv6/M48Ti6bpewoJ23be7OJujqFxJGdRkun8tOsxYlV7D5ulfTUYUYr90kk%2B1v0PPm5v4vxHy3%2BsOYLprnUDFAf9HcyPiL/dPbt0rNUMKnKCjG8t1Za%2BvcvnqWUrvQf/AGtrV5M5fUNQuZpk2Nmd2Z19Dzkj2pLCYWlFWhFJa7JWfcPa1Jvdu/mdRpHh2Wb4W6vrT6lfRG0uRGbINiJuY%2BWHr836CvFxOZqGcUcKqcXzRb5uq%2BLZ/I7aeGcsJOo5PR7dOn%2BZW8E6Baaqs8mr6g1hp6RM7ui5dyOiqPzrvzbG18LTj9Xhzzk0knol5swwtGFWT9pKySOevSC7wW25oI3byweW2%2B5FelFtRXO1f8L%2BRztavl2M25jlCeb5TpGx%2BViDg/jRzxb5U9RWdrjpIpvs8crxyKD0YrgN9KFOMm0nqgcWlc3PEVhodnaaPJpWpz3dzNDuvI5IyohfC/KCQMjJb16V5%2BX4nGVq1WOIpqMYv3Wne611eunQ6MRTpQhF05XbWvkUPJm8rzvKk8v%2B/tOPzr1faQ5uW%2Bpycrtew2NHkcJGjOx6BRkmnKSirt2QJN7A6NG5SRWRh1DDBFOMlJXTuDTTsxDTYhKQBQAUAFAHuPwOuFnS/tNyqbiwDDdnGV47EH%2BLsRX4bx3QdOUZ/wAs3%2BOv6H7DjJ/Wcow1Zdl%2BX%2BaHeNrX%2B1Pgr4ijt7dIbuzlS/Nut558g8p0YsVIDJlUbCtzxzg5FeVk%2BJeCz3DVZO8Xpflstb2V9nq1qtO2h8jVjz4eSR4nf2difEGmavcAPp1y3l3Kn7p3oVRz6feAz24r%2BhsfQi5xrrZ7/PZnx2bQqvCTdDSaV0%2BujTf5Honw3%2BInxM1C18O%2BBIdbt9WtvETTWmzVVYtFHG3zIJk%2BfayAr8wYgHjtjxZw5Yxae9wwmNdfEVqMl8HLr3urnsHiOPx74cn1/WNQ8AW83h/VLVjrdpo%2BqiYiYAKLuBXjRlbaBvGDnYrdVOcKkFOLjJXT0Z6MXZ3T1OQ8Ea34ssPFctwfCsusX%2Bp3jXejwxzQJFO5tIkFyzLK/wC4UbssuV3NgNuG0eDlvDuHwFWFWLbcYuKv0Tk5ffrb0OuvjJ1o8sjpvEK/EP4f/Dm88YS6FoP9rafO2q6je3OovNPezOPKcbEjVVjCsFVd/wAoRepGa%2Bh2OTRux4f8WfGviXxbFq0fiHVTdtAlt/Z9skYjijlkJ%2B6g6njGWJIGecZrudFRUorV6W9WfKYfMK%2BPrUNLRbndLsrLX7/vKngPR3uPGnhTSCxmnk1MX11J/e8rMrsfqQB%2BIrzeN68cvyCrFvWSt6t6fqfZ5fRSqQhBWStb0R77Yyi58dXTCaRLe03XG9b4ypJ8pRl2AYTBwSGJPAxwK/nyrBwwUVbWVl8Nmtbp3vrfo1p31PooLnrWR8%2B%2BOLn7Tfq56yO8p/4Ea/f%2BGaHs6UvKy%2B46eP6ijLD0Oyb/ACX6HO19OfnIUAFABQAUAFABQAgurrTru01ewGbzT7hLqAf3ihyV%2BjDK/jXn5rgIZhg6mGntJNG%2BGrOjVjNdD6X0v4keCNRsorqDxJp4DqGKNMA8ZIztYdQw7g1/MeI4czOhUcJUZaeWj9PI/RaeYYecU1NFpvHfg5VLN4k0xVAySZwAKxWRZi3ZUZfcX9dofzI8q%2BMfi21TQE1q0to5pP7U8ryo2wWYQShC/uVCn1xgCv2bhrK54fLXhpvZ3u/RN28r3JxmKhkOcRq25mobf3nf8D1D4W%2BH38NeCLDTrgD7c6m5vmH8VxId8n5E7R7AV%2BO8QZj/AGhj6laPw7R/wrRf5/M1w0Z8nNU%2BKTbfq9WaPjPXIPDXhXUteuRujsrdpQn99sYVfqzED8a5MswM8wxdPDQ3k0v838lqGJrqhSlUfQ%2BTbX7QY2mvJPMu7h2nuHP8Urksx/Mmv6xwmGhhaEKNNWUUkvkfmNWo6k3J9SaugzCgAoAKACgAoA62f/WsfevajsfOVfjZGc96ZmbN8YpPB2hXkrbYtN1mZJztDbVmjjZCQeMExP1pUbqrOK6pfg/%2BCb3Xs4yfR/n/AMMR%2BL9VTU2hlkNlcaXbp8vkWsaOHzwcx4LfQuta0KThfdSfn/n/AJDrT5rPp/XYbF441lb1rqe6s9TclWSVLna7AdAQ5LE9Bg%2Bneh4OnayTXy/yF9ane7aZ0%2BleMpdP0OC81TQrmS0kYrCl14gMO4gAFkQpuIGNpPIzXLUwinNxhLXyjc6YYlwgnKOnmy34n8U%2BDtUsLZdLiMWulF3Xn21buG0TIPlgThQ7Yz90ADcfmPNRRw2IhJ8/w9rWb89L2Lq16M17vxet7feYuu32neJdc8O6JY3z3U0l/CkmLe2jVRuG4kxEkgDPXjvW9KEqEJ1JKys%2Br/UwqSjVnCEX18v0M3xBdm98Q6jfrytzdyzD6M5P9a5qceWCXYmpLmm5HoMq6bqHwg0bQ49f0iPUre%2BkuZIJboLtRw2OemeRxXFeUcRKfK7NHa%2BWWHjDmV0ynPqeneHvAd74a02/i1DUNWlRr%2BeAHyYo05WNSQNxJzk4xzirVOVWqqklZLYhzjTpOnF3b3NXxZFYan4G8JadaeINHF3pkEqXMb3O3aXKkYOMHGOaypOUKs5OLszSqozpQipK6LXw4k0PQPiEl3c%2BILGSKOwb7TdmYlZZ5ASQvGTjIBPqD61OI56lGyj128i8O4U6t3Lp%2BJycmhWNpp99dXWtabcSRoFtoLWfe8jlgM9OFAyfWun2rbSSZz%2Bzik22h3gOw0i98SW667fw2emxHzJmkJ%2BcD%2BAY7n%2BWaVeU4wfIrsdCMXNc7sjq/ES2vivxqb/UvEOj2mlRMI4o1uCSkC9FUAdSP1Nc1O9GnaMW3%2Bp0VLVal5SViv4SvtLvvCWv%2BGLi6g02S9uEurJ5mIi3KfuFu3AGCadaMo1I1Er20YqUounKm3a%2BpnfZo9A0TUYpr6yuL6/RbdIbaYS%2BXGHV2ZmXIHKKAM55NaXdSSaWiIt7OLu9WbbpY3fwq07R11jTY76K%2Be5eGSfGEYEDnpnkcVjqq7lZ2sa6Oio3V7ln4dJo3h7xjZ3U%2BtWJjjspDczCX5PMfcFReMnAxk1OI56lNpR6l4flp1E2%2BhlaPHDpWha3dQ6taJqcm2CBYp8P5e7dIykdzgAdyCa0m3OUU1oZw92Laepox3lvq/wtmsNV1iA6lBeG5s1nnzIyYwyknp/FgH2rNxcK94rTqaJqdG0nrc4TYB0FddzlE20ABTigYmygLGl4fvDY3ySw2SXFzvUwMZGUq2eBwQCDnkGs6keZWb0Lg%2BV6ItnXbqGKaB7OLzf3aZZmKo0aooO3O3d8nX3PtU%2BzT1uV7RrSxNe6/fpbrbyWphRgZYUS4kCBHYuQVDYYZLdfXnPFSqcb3uU5u1rGfd3V7BHBPLaxASNc3EeWyW85djEjOQOOM9femoxd16fgS5NWfr%2BJU17WbjVPsLi2igayuWuYdrswVzs4AJIVRsGFHAojSUb%2BY5VW7EE2tTWiBdN06OzglMxmWC4lR3MhiY4cNlcGJMY7cHOaXsr7stVrdDjzdzW3iCfV7rTjePI/mLuupg8TZyCJA24njGST/WtOX3eUSld3Ni58b%2BIHmMs9sivYXSM228dIQRMZQnlq%2BxvmBGQDwM9RmsvZR27lupIx/D3iq90uyttOMMLJBfLdq753HBB8vOfubgGx61cqak7kxm0P/wCEkWRTfLplst%2Bls1u91vfLqYTDnbnAO0g59VHTnJydL6BzdbF228aSsjXyadFDNcXPn3bwzyI0sgDAEEN8nLscDjJ9OKn2XS5XtCrB4jiGrancyafA8Oprh7dGaJY/3iyfLtOeqD9ark0SvsLm303NL/hNnvBdQ32lW1xHPuDLvdMAujDBBzxsAyc55zyc0vZW2Y/aX3Rq2Pj26nBeW1tBKzMHHzbWQs52Yz0xIw9cY5zzUOih%2B0Zah8RvAI4rWxghgiAMKbmYxyBw4kyTycgcHjHaj2d92LnLd14ne83x3dmZ7aQfPFJdSv8ANnIKksSuOmPTrnjAqVtmN1L7k1t4tntrWO3tbGCJIypAEj7BtcsMLnGecE9Tgc%2BqdJN6sFUsZLavFJYQafqFpbXltCFCIzsvzK0jBvlP/TVgfbHQ81ThrdMXNpZom1vVjrGiS2V5bxMs0pmkk3MdpJYkKCcIDu5x1wKUYcruNzbRB4tv5rnT9PtdIdZ47CBYt0i7TMwABYjJ52qi/RAaKceW7YpyvZGZE73FopAVJyp%2BQnOD3FWKxn28EccJF20fnhh8qPwPShhY2vh9JCvie4nDj/RrC5kJ9P3ZH9a%2Bfz/3qFOH804L/wAmX%2BR6GC0nJ9k/yMrWUEnl7W4wdpA7179zgsJLE8%2BnGLI3hPXrxSYztvhqdNX4R64NfllisRfhZmhXLDiIDAwe%2BK%2BAz2WJjnlB4ZJz5dE9vtfoezg1B4OftNFf/I0/EC6dofw3ht/DqzT2GrS7pbuVssDwcEYGCduPbBqMrdfH50545qNSktIr56/jf5orEKFHCpUdYy6nR3axeHtO06x07WrHSUEQdzLBvac9yT/nrXkYfnzStWr4ihKq72VpWUfI6p2w8YwhNR%2BW5V0RNFufidNqGkyQTLPpjfaBEML5m8ZOPcYqsdHG0clVPEppxqLlvvaz/IVF0p4typ63Wv3lHwd4ku/EOuT6HqVnayaZNG6rAsQAiC9B/T6%2Bld2d5JRyzCRxuHm/aJrW%2B9/6%2B4ywmLliKrpTXuvp2MHxNqEnw2%2BHcOoeH7aCbUb%2B%2BeBruRN/lqC%2BP0UDHTOTWlOLz/M3RxUmoQinyrS7aX%2Bf3Cb%2BpYdSprVvf7zLn1OL4gfCbVNd8R2UP2/RLlNtzEmwzKNhKH6hiuOmcGtVh3kucU8LhJvkqp%2B63ez11/X70TzrFYaVSotYvc6XWdX1jXdMaT4batoF5p0VmY5tFkgUSR8EZHuMjAOBx3zXjUMHQwVbkzaE4zcrqono/wCu%2B/odc6s6sL4Zpq2xx17ql3oXwQ8EanaJEtzBqbbfNj3AHM4OR%2BJr2qeHhi88xlGfwygtv%2B3Wcrm6eEpSW6f%2BZvfGS8u9X%2BI2ieBbkRLo1%2B1vJOwj/eH942QG7Z24/GvO4doU8NllXMoX9pDmS102XT5m%2BOm6mIjQfwuxh%2BPvibrPhHxtL4b0KwsbPSNNKRi1%2BzjEwKgnnsDnjH616GUcN4bMsCsViZuVSd3e%2B2v9b/gY4nH1MPWdOmkorodho%2BiaZpvxtS7sLZbRNT0F7ia3AwEfzYwTjtn%2BYNeBisdXr5I4VZczhUST7qz/AK9Dup0YQxl4q143t8yn8OvFv/CT%2BNre2t7K2stP09JktoVHz4IwCT7gDtXq51k6wGVTrSm5VJuPM338vvOfB4r22JUErRV7GZ4VhTw34B1XxZpVjBc65dajcRLLKu7ylErKAPT7ufckZrStCWa5lTwFaTVKMIuy05nZP9fuRMGsLh5V4K8m2vTUq2eoj4jfDPX38RQwyahpEJmhv1gEeGCs23j/AHcEdMEVeIwschzTDrByfJVdnG9%2BqV/x/AVOq8bhpuqtY7M8t%2BGGht4i8c6XprIWhaYST%2B0afM2fqBj8a%2Bsz3H/UcBUrLe1l6vRf5nm4Kj7avGHQ%2BhYNKvL/AMb%2BIJL/AFPSp9H1WzFkltFcbpVCggfLjGfmc9e9flssXTo5fQVKnJVKcua7Wmvn8kfSKnKdefNJcsla1/68zgfA1h/whXgfxP4m/s%2BO612wvGsozIu4RYKrux6ZbJ9QBX1GbYh5xmGGwam40pxUnbre7t%2BFjz8LT%2Bq0KlW15J29Dn77xn4p8YWNnod1FZ3t9NdpJCRbqHGOintgk%2BnQc17dHIcBlDnioSlGKi7q7t697/0jjlja%2BKtTaTd9ND1fw/davJ4lGh%2BIvEHh%2BdZYWV9FtbUnYNucbu2B2Pavz7HUcNHCfWsJRqKz0qSlvr2/yPeoSqOr7KrOL/upHM6ZDD4G8B65rmi20Dai2qS20csq7vKjWQqq/kPxJFe7XUs7zOhhMTJ8ns1JpaXbjd/12TsccLYPDTq0173M16K9h8uvX3ir4MaxdX9rHBdfa44HkRAvmfPFhiPXBx%2BFQsupZXxDRp0W3HlbSbvbSWn6lPESxOAnKe97fijd16e38KTabpOm%2BJdL0Kzt4lZ7ee2LvcDOCS3vg9Oc5rycFTnm0auIxGHnVlJtJqVlHyS8vuOqtJYVxpwqKCXRrcpeFX8PTfEbXr/RJLe5sJ9KWSZYRhd%2B75wB2yAD9TW%2BZRx8Mpw9PFXjNVLK%2B9rafcThnQli6kqWqcdTP8B%2BLj4p0DxJ/bumWMun6ZEtxBaJEAqqoZgvv9wc/Wt87yZZZicN9VqSVSo2nK%2Bt3ZX/ABIweM%2BtUqntYrljql9/%2BRT0zXrzx18L/Ew1mG0Z7Ta1sIY9oj4yAPpjH411VcspZNnOEWGk/f3u9%2Bn43M4YmWMwdV1EtNjS1HRLHV9a%2BHmn3yq9smnySMh6SbI4yAfbOK4oY%2BtgqeZVaLtLnST7XlJXNpUIVpYaM9rfojm/EXxO1%2By8RX2n29pYpp1vK9utnJbgqVUlefyzjp7V7%2BX8H4KvhKdacpOpJKXMn1ev9dTz8RnFeFWUIpcqurWLkN%2B3gn4X6ZrWj2tudT1aUma7aMHywdx2gdB0wB061yzwyzzO6uFxMn7OktI3321f5332NY1PqOChVpJc092N1G7/AOE2%2BFGoa7rFrAmqaZMFjuo02mQfLwfwbGOmcVWHof2HntPCYaT9nUV3Fu9t/wDIVSf17Ayq1F70Xv32/wAzycniv0U%2BdCkAUAFABQB3/wAI9cGla1aXEj4SGTZJ/wBc34J/DOfwr8942yp4qjNRXxK69V/mfqXCtZY/KamCfxQ1Xo9V%2BN0ezLJDY6zbaTcQPNarFJawKId5lgk2MzM2QNi4CnAY8ZYjPP404yq0ZVou0rpvW1pK6SS7vfddlex5PwT5GjwDxP4bPhzWr/wbqAL2pVpNOlPSe1Y/Lg/3k%2B6foDX9F8HZ9SzzLVGfxpWkvP8ArVeR8/iqDoVLdDF8HanLoviHw2kF1Fa6noE1xIkkvKEgq6EjIyrAkEZ6ZrqnSSkqMnrG/wDmmfKYn22Ar18TCPMpOGnlqmv1%2B49uuv2nvEeq6XbwaXomjaRdXNg9ybmS7a68srgbRHtTDHPGS30NYQpc1rvpc68TmfsublpttSUey16rfQ4DwL8Q9a8C69d63o13YTNfaV9v1CC4iVluJQxYgFcGPl2wFwoJztNayow6Ppc4MPmuKu/ax5r1ORaWsu%2B3T%2BmdJ8Y/jhqnjrwDqnhk6bY6PDLp6XVzJDemdphklYlyi7fmQE9SRxxnNZujo7vpc7Fmzc6apwes%2BV3W1rXf46Hl7xw3/iy71Xzt1naokakn5DKq4Zv%2BAgkZ9zXsYOkp1XWey/Pv8gyDDSoYOPOrNtvzs3/TPVfglpElvYal8Qr6EL9phNno6SuYgYs5MhfB2eYwADHoAPWvxbxDz5ZpjoYCi/cg7ytrr6XV7atrf7j7TAUfZQdSXXY6KV/7B8AXV4fMin1PMFrC8%2B94Vb76kBUVSMHIC5z1JNfNYOl9ezOEN1T1bSsm1t1bfS2u2ySPpeH8H7bExk9lr/XzPBtbuBcajIwOVX5F%2Bgr9%2ByvDuhhop7vX7z4/inMFjsyqTi/dj7q%2BX/BuUq9A%2BdCgAoAKACgAoAKACgD2f9mbWI28P6n4bbalxp920644MkUxLBj6kMHXPoFr8A8TMsnQzJYneNRfc10%2B634n3HD1eNSg6fVHrjZYFSSQeCD3r83Ts7o%2BgcUeBz%2BGbVvHOl2msPLHb2OqRzyQgZSZk3CJiPTLA5HUHBzxj9qrZlVr5PUlhn8UX8u/ztdep9LnOS4fN6UMdD4oq/ql0fmv%2BAe%2BCvxVnzaPFP2ltc8yTSfCUL5Ejf2hegf3EOIlP1fJ/wC2dfq3hflHtcRPHTWkdF6vf7lb7z5jiPFcsFRXXU8nFfuJ8aFABQAUAFABQAUAdbcH961e1HY%2Bcq/GyInNMzNfw5cWjJeaNqUxgsdSjEbT4z9nlU7opsf7Ldf9lmrOfNFqcd1%2BK6o2pSWsZbP8OzNDwHqes%2BGfFjaHrct4txncW%2B2qsc6HkMrsPmUjkEMMjoKvE06del7Sna3p/X5G2GnOlU5J7%2Bp77qHws8D%2BI9AOrz2ImkERePEqqqMBk/MoBb/gZIr56OZYijPkT/r%2Bux7EsDQqw5mji0XSrhf%2BEKtfBumy2tx8wvtsUgRlGCCYVYRuOCGbIwCMV2vnX791HddNf13%2BRze4/wB0oKz66foeRa6ieHbrUF0jxDKbaGQxS26TyQHdnllWIoCccZK7favZpP2yjzx1%2B/8AO/5nmVP3V%2BSWnbb8ifwlpy6Ja3Piq4W4S61CJ4tJjuWDTbHBWS5bjpgsqnuWJ/h5yxdb2jVFdN7beS/zFRh7NOo93t39SALkdKwYxrRc5FSCJInI4akUW48GgpDvLB5HFQxj1JU4alcaJVZBUjHq6eoouUiRXT%2B8KVxkisn94fnSuMkUp/eH50rgh67fUUmyh42%2BoouMeAKVx2ArRcBNlFxhspAhNlAWZu%2BFtSg04N5lxcWr/aIpTJDGGMiLndGeRwcg%2BnHNZVYuRrTly7ljWdatLzR2tYE8vcADG0bH5g2S4O/aCe5255I6c1EabUrsqc042Q608Qx2sNlHCZ4/LktvPKgfOkakMuc8g56dD3odO9/mNVLW%2BQHXYpIBCt7e2TJDCiTxpuZQgbcgG4YByp687Rmj2bXS4e0Xcr3PiRGEwsUktI/s8ywoigeXI8xcNx3CEDPbtTVLv/WgOp2Jx4htrqd3u5LraHSS2K5HlsIXVj8rA8uQTggnrnNT7JpaD9om9TP17V7C%2BW4S0uryxEhYyIkPF1mNF%2Bf589VbqW%2B9nrnNQg47q4pTT2diLU9S0m7a7YNcxW7pchrAxDy52kZykrc9V3L2JGwYPolTkvwKdRHNeM5Tr4uleaVwdRe5tA4AEMLAjy1x93twOOKuEOS1uxMqikcLPaXVpbMJIHMZJ5xwK0JKlnMohktSCGBLA54oGJuKuBg5piJbaRhMoIJz%2BtAzet7Uum%2BNirHkGobHY2YcqihiCQOTU3HYfK8ixs0WCw6Z6U7hYrahdS2dsrrEHWQgsmcEDuaFqBDaXFq2p7ETkYYE9OabAs/aTZ3ohESGGeX5m3fdz65pDNa1t4rePy4iApPQnvUgMSzP2z7S0mcAgLjjmi4FPVdKDbp4R2JdfX6UXAteAbQquvTD5caW8Yz6u6CvAzh81XCw71E/uTZ34XSFR/3fzaIxDuiMKEDavyn0Ne6zhW5Rh8xJEeTduQ4bimh2L19q89j4E1PQY7ZJ49RuBO04fBQjYcY/4APzrxcRlEauYU8c5awVrd9/8zphiXGhKklv/X6FLwZ4zurXQL/wvfW0d3bTtvj8yQqYGx1HXPIB%2BufWs8Xksa2Op42E%2BWUd9N15/LQulinCk6TV0/wO30fxiZNLg0/WdIttTjgGIXkOGUeh4NcWI4af1iVfCVpUnLdLZ/iv62NoY73FCrBStsbvgTUU1TxvLdJZQWgWxMaxwrgBQy9fevG4lwH1HKY03Uc25ptvzTOvAVvbYlyslp0Oeh%2BIcccV09loFnp%2Bpy5jmuF67u5Ax369fzr0P9VfaSjGvXlOnHaL/K9/0Of%2B0uW7hBKT6nNt8RI/D9m%2BianpttrNpK3nG3uRgJnnhsHnPPSvRzDh6GLrLE0ajpVFpddfUxoY104ezmuaPmc54q%2BJTa7oiaLpmk2WiaXDMsxso13LOVO47yAMjIHHGe5oy/h2GGqyxFaq6lVq3M%2BnpvqOtjnOKhGKUexqWvxetrBZ9StPA2l6brdxCYzeQjG7PfbtHGQD17d64JcJSqWp1sTKVJO/K/8AO/6G6zJRvKNNKXc5vUfGUmueFtL8H3tvHDDY3DXP2wz/ADSE7zg8YH3z%2BVezhsmhQzCpjVL41a1tFt/kcs8U50Y0rbdS74u%2BJ9xrOix6de6VZNq9m0ZtdYgf96uxgwPI6nHOCBntXFg%2BGqeDxMp06j9nK94dHdW/rQ1q4%2BVWmlKK5l16l4fF%2BC7Ntf694H0jU9Yt1AivmO3JHQkbT0PPXr0xXH/qnOmpU8PiZQpveP8Awbr%2Bt7m39pKVnUppyXUy9E%2BKmt2/ju88X39tBezy2hthCXMccSFlIC9Txj8ck12YjhfDVMBHBU5OKT5r7tuz327mcMxqRrOtJXbViL4feKLnw9rMOq6Vos95LscPG77UZm6nIB4Ar0M2yyOZYT6tKXKrrX0OfC4n6vV9olc0vBHjvWvDt7qVnc6I97pV9M88lnKhPlsx5Ktjp07dhXFmHDtLF%2BzqQqOFSCSUl5d/%2BHNqGPlS5otXi%2BjL/ib4hx3WgXOiaPo9jollMSZIh96VicndwOP1NLAcNxoYhYvE1XVqLZvp%2BY6%2BYOdP2VOKjHyOa%2BHPi1/Cs%2Bq6pFpsN1e3MPlxyeZtEWTzgYOSTt/KuvOcnjmsIU5z5Yxd2l1/rUjCYp4aTaV29Cv4aujoEkOvxXG66hug/ksMksPf8SD9a9DFYWGJw88PL4ZJowpVHTmprdanZW3xF1CHVdW1xNO042F6kZvdOeXernG3cDjg4HIwa%2BbnwnSnhadF1Xz078slo0r3t9%2B2p6CzOSqSmo6S3RVPxEtZo408PeGtM0d0uo5t8aiR3KHIycDA7fQnpVUeGZScnjMRKpdOPZWf3/8ADinmKVlSpqOtzq9H8cwzay%2Bpx%2BGbGy1B8faZt5LyrjHHHy9F9elcMuD5SofV6mJk4L4VbRfjr/wTdZsoz9pGmr9X3H2XiqGzub3T7uzgura/kadraXpljzg456fpXbjeGoYhUp0qjhUppJSXVL%2Bu5lRzGVNyjKKcZO9jm/F3ji5l8P33hy20K1tbGcgwG3Y/u1DA8jHJJB5460YPhhUMZDG1K0pzW9%2BujXfRBVzLnoujGCSfYZaeP5f7KsbXxN4Zs9blijxbTS/LJjGMHKnPvjr3qKvCrhWlVwWIlSUt0tvlqioZmpQUa1NSt1ZVs/Hz2WtX2qxaHZRSXtp9mkgiYosSDgHGOTjHpW1fhiNbC0sPKtJ8kua71bZNPMnCrKooLVWsc94Z8TTeHdL1nTbSyjvBqtt5Ekhcr5fysMjA5%2B9%2Bld2aZPHMK9Gs529m77b6p/oYYXGPDwnBK/MrGj8PNal0fw5rWj/Z0k%2B3gF3LkbMAjAHc81OOyeOLxlHFOVnT6W3HQxjo0Z0kviE8ReO7%2B51XRPsUCWc2gx%2BXFKr7t5IUHII6YXGPescJw5QpvEqo%2BaNZ3a2tq3p95VbMaklTcVZwNqX4mWc041GXwZpL6uAP9KY5G7%2B9txn9fxrzo8IVYQ9hHFzVL%2BX9L3/T5HQ83g3zuiufuZfhzx9cafp0%2Bk6ppVnq2lyyNILaUbREScnbwcDJ6Y47V35hwxDEVo4nD1ZU6qVuZa3tprtqYYfM5U4OnUipRfTt6Efi3xzcazpMeiafptto%2BlI2421vzvPbJwOM84x19a0yrhyGCrvFVqjq1X1fT03JxWYutTVKEVGPZHIEcV9KeaFIAoAKACgC1pd21neLKOVPDj1FcePwixVFw69PU9nIc2lleMjXXw7SXdP/AC3Pf/h/q8PiLRl0qS4Eeoww%2BXDKWK/aIMg7CRhiBjoCDgdcFq/AuI8snl%2BIeIUfcb1X8su/bXzur/I/Rc6wMJpYvDu8J63Xn%2BjG6roFt408N2eh6zaiwvLeV49Pv7OPatnMoJEahm3EbF%2BYHj%2BE4I45sFmlfJcY8ZhJ32ck3rJPq7K27069dU9fl5U41ock16eR4z4s8P3XhvURbeNNGtlYnZDqQiD21wO2HI%2BQ/wCy2K/d8h4ryvPYJ6KfVO11/X3Hi18NUoPXYrpo%2BiuoZNMsWU8giFSD%2BlfVrC4dq6gvuRzczF/sXR/%2BgVZf9%2BF/wp/VKH8i%2B5BzMrX1p4csUDXVlp8ZJwqmBSzH0AAyT9KxrQwlCPNUUUvRDTkzs/B/w/e9t4NT8WWb6L4cVx9n0vZtutRcnKpsHKqT/D9498DmvyjifjuNRSwOUb9ZfZiurvt%2Bnrselh8F9ur93c9LtFn8Q6mtzciC20aziR4VUK1usPz5Uq3H3QvJGMZIGNjD8xm44OnyQu6km1/evp1Wu9%2BvrrdP1KcJ15pRXojz34r%2BLE1G7CWQEVpCnk2cSjaFToWx2z2%2Bg9K/SeDuHnRjerrJ6yfd9F/n8z6LNsZHIMudOL/fVPw8/l08zzKv1E/IwoAKACgAoAKACgAoAKANz4b65/wjXxE0rU3fZa3Tf2feEngJKRsY/wC7IEP0Jr4zjvKf7RymfKryh7y%2BW/4XPXyXFewxKvs9D6n7V/NZ%2BhHE%2BMLCPWdYsTYgSzwXKwzOo%2B4B8zbj7ZH546mv0HJaiwOUVKtbS7dvO8dLerT%2BWr0R6WWY%2Bpg606NXSEqbkl53tp63/C52juqozuwVQMkk4AFfn8YtuyPMbSVz5J8Ra03ibxVqviMkmK8n22oPa3T5YvzA3fVjX9ScK5SsryylQa96136vVn5tmWJ%2BsYiU%2BhUr6I4AoAKACgAoAKACgDrZ/wDWt9a9mOx85V%2BNkZqjNAKTA2bLVreWwj0vXbR7%2Bxiz5Do%2By4tc9fKcg/Ke6MCp9Aeaz5ZRlzU3Z/g/X/Pc2hUXLyzV1%2BK9D0TwD461Lwxpc1loWv6ZqscjDZHrMslpNEPQEh4yf%2BBgf7NcWJw1OvJSqRcfTVfo/wAD0MPipUo2hJP10/4H4ieNvFPiLVpC0eseHLEshja9ub6GS4ETYzH/AKINxXIHGO1GHpUKe6b8knb/AMmHXr1J7NLzur/geeW6eG9HEb5fxJexMXje4txFaRMe%2Bw5eb23kD1U13Tr1ami91fj/AJL5HEo04f3n%2BH/B%2BYy9v7nU7t7y8uHnnkPzOx59APYAcAdqyjFQVkiZScndjVHFDAkQZNSUSGEMKAGBHjbipbKRaglDcHg1NykWVVSOaTGI0APIqbDsRtbk9qhopMjNq3oak0TImtpB/epFpojaCYDhnFK5SsRNHdA8StSL0GFr5ekzUXHyxE%2B06iv/AC3b8qTZXJDsB1DU1H%2BuP4ii4eziIdX1Rf8Alov/AHzRcPZRFGu6kOpQ/wDAaLh7FDh4ivx1jjP4UXD2SHr4nuB963B%2BlF2L2PmPHisD71s/4Gi7D2PmSr4ttf4oZR%2BFK4vYslTxXp7fe3r9Vp3F7KRJb67p8nAnUc9%2BKfML2ci2uoWkoQpPHx/tCjmQnFofDPCWL7l6eoouFmQ3jpI29TwRTTEAijaADeAu7OTRcaRWnMJtljOWGc7Se3encDL1LRrN23RR7Y3%2B6wOCR6UDuZt5oMsCiWOUsCOCQOP8aCjLCvFMDPKx4wAVwM0hnS2rCO3GCDnnd6moKK1xrMMB8uQPLJ1VVHXnFFgLttPqD4c%2BWFx/q8An8TS0AyJ9UjvtQQpkEExbDGTg/WrWiCxTvWEN79m6RE4Yl%2BGOevtTCx1NukF/cxW0dx50UcOyYg5HP3efXioYE/hdpG%2B2meXzI4pSoY9sf/WxSbAv292JLgRL5y787BIuBxSAvpG/lneQW9qTGWtGieHQ9dk3fMywRDjGMuSf5V4WP97MsJD/ABv7o2/U7qGmHqv0X4mMidx617px2I7tCCCq5D/ez2pAV1kWIPFKgeN%2BCPT3o3AzL22t4pRMtqrg8K44GPVj7VL0A39PVZLdWIIOOufvfSmUWBM0StJ86gDqp5NTKMZK0lcabWxzmssYtVjkkj82G5TCIRyGXvSJOX8TWsd94kAdjbxm1DuzHkAdsVpHYDGiFtLJbxyun2RGJeRAQxUHkY7HFUMmur%2B0W4MtnaGPzY2QeY5bCngYz9KAC01GwfUCUsd6SpHGYiMAgfeIOeD6UgKmtnSlnuY9P84L5o8tGwQBjnJ780AZbblGCD7UwNPR59Ms4jcXcZuLknEcf8Kj%2B8f8Kl3A6pvEkAtDBbXMX2oECP5f3fTnJpcqY0iO38WXsY8m5t4DKTgupwhWjkCxqTWui6zGb66QqQuPNyVU%2B2ehNJ8yGc7qFrp%2BkIZ7S684iQOqqMkY6Dd0qk31GXNHs4bwrqH2g3EPO6GOPYS3oSaTnYC7run%2BH7GxnRrw25nQFU3bmyMnp160lJsDO8ODSrLTorzYz38rMLdWOV3DoT6CqdwOysT/AMS%2BG6BiaXbiVge/cVD7FIdcQJfRRTSRMkqcqTxtpbBa5Bd2L3UqRRs0YVRgr03dcn1FNMLGRq%2BnRafZS3t3db7ltwjLcgtimpX2A5ElBCzKzB8ZKsORVCsUZbmbyRBnbHuzgd6m4zqVlttN0eFtw3FFBAOcsRk0gObt5DLdSytyW5P4mtIEyLNaEC0wDvQAhoYBSAKACgAoAKANjw3rc%2Bl3MbLK6BG3I6n5o29RXh5xk8MdBtJXe66NH2XDXEv1D/ZcVrRl/wCS/wDA7r5o9v8AD/irSvEFm8N4LKw1edFjN6YwFuEyNylxgruUbTzx26AV%2BJ5nw/icvqc1K8qa%2Bz1i%2B9utnr%2Bfc%2Brx2SqUPrGDfNB9tXb9V%2BJtWsGo6fbalHqkFtLpKMscNk6qLYrI4xyVOEBbB54VPuDIx4U50q0qbotqpu5a82i9Vq7fNv4j51RlG6ktOxxmu%2BCfhwuoSxT6Le6PcrG80j6LfEQ7V5JC5AJwQdoTPPANfSZfxHn1CmnQr3jdJKS1u%2B9vzcrHNUw9BvWNvQYvw18CMZ3i1PxfqcFvH5k7RXq%2BWq4JBJAUnIB%2B6T74611z444iaUZzjBvRXvf83%2BJP1LD9Ls3fDOm%2BA/DmsLF4f0G1hnS6a0mvJ2825Dk7EZC7FmUtuBx028jBzXgY/FZrmFJzxdVyuua2ytu72VrpWtfe%2Bjvob040qbtCJsarp8sN3cav4i1G0t4gxgbJZkng2J91QwKtuDnblhls/MVUjiwtT2sY0MJBt79LqV3u7WatbXTa2ibR2UMFWxNTlgrv9P0POviD46gltn0/TYfslgzlzGABJcv3eQj1PPv1OT0/Q%2BGuE586q1XzT2v0iu0f6%2B496tVwfDlH2tZqVV7Jf197%2B48pu7iW6naaU5Y/p7V%2Bs4fDww9NQgtD8rzHMK2YYiVeu7t/guy8iKtjiCgAoAKACgAoAKACgAoAivIEurWW3ckLIpUkdR71M4qcXFji7O59G/Bvxvb%2BK/D0VpdzKmu2Eax30DHDMRwJlHdG65HQkiv5l4s4crZNjZe7%2B7k7xfT09V%2BWp%2BiZXmEMVSSv7y3H6a9zovxCubOdCbXVGeWFuwY/Nx%2BWD%2BBrsxPJj8jjOm/epWUl6aL87r5o%2Bzr06WMy%2BFaPx0lZ%2Bn9Wf3mN8e/Gdvpfh%2Bfwtp84bWtUiMTLG3NtA3DyN6ZXIUdyc9jWvA3DdXMcdDEzj%2B6g737tbJfPV/d1PhM5zCNCi6afvM8LjRY0WNF2ooAUegFf0WlZHwb3HUCCgAoAKACgAoAKAOtm/wBa31r2Y7HzdX42RkYqiAApNgOpDQ4CkMGWkNDSvFSy0wXcjZXikyki7bTq3ytw1Sx2LkYqRlhRQA8ID1qGWhr2%2BeRxUsZGRKhxuNSylYBLOOj/AKVLZaihv2u6HRh%2BVK5fIhDqF6vZD%2BFTctQQn9tXS9YUNDZXs0OHiCQD5rVT9DU3H7IUeI4f47JvwxSuP2L7jv8AhIdNP37KUfhSH7KXcUa5oTffglX/AIDS0H7OY4al4cfq0i/UGjQOWYed4ck6XW36mjQf7xCi00OX7l/GPqwpBzTXQP7GsH/1d9Cf%2BBCgftJdhj%2BGw3MdzCfxoD2pDJ4Xuj91om/4FQV7VFaXwxfD/lkD9DSKVSJVl8O369bZ/wABQPniVjpFzHkNBIMf7NO4XQn2FwuCjD8DSuMjS0kQkKzAfWncViSJ7yNmCSvx2NFw5UAvNTjjLpMXJHRhnFO5PIivJqmpQBXlSJ%2BewqronkLV9rrLYxhrY5B5K9vaktxcpFD4jRofLbzdifMQygjBpisPOp200QjJjZeuDxTDlLmnz2iwBFmMb5PysuR%2BdS0VZkP76S%2BljsTE9xj5iVyc%2B3qB6UmgMwRst9Lco00Kk43Jn5nH3tynOP5UXGN1W9vJm8m1VorcL90R%2BW0j9yM8mhAZdoxh2G5tjKj/ADKGJBYdKdx2Ol0icWFyGtoXUFg3lEff4wRzQwsdJ4YZpNEknDpE0kh4IB2HPQ1D3CxBDAkd24lDJzk/NnFAWNvT5NihZp0fjIIHNIZce82WU9ku0Rzujvx83y5x/OuSphKc8RDEP4oppdtbX/I1jVkqbprZ/oVAoxwciukzFkVfLJ9qBmXcqp4bOO9NCZRu0kFnJJGcIgOB6/WlLVCM%2Bw1O6jeQvMFG7G1ug56CsrjR1FteW8kSM7E7scgd6q4yHULdbyGCaBVaSCTjaeMHqP5Ubgef/EG1kW8%2B2HLLJ8kgUcAjoc1UH0AZoC6Wtzbap4hlRIJUKQoh5bbxlgOg4qrgZ3iO6s7ueY6epht0bKqy7flPTPvnt6VQB4QtZtRmksV8nbMNrM65Kgckj3pX0A67TvD2nWrEWVk95IcgtI27H5cVlzsCr410tdQ1ZRGqIYoFTyYhlgexPYD8auL01HY5S70dLO48ppo5/k58pgSG9KsRpQ6A66I%2Bp21xHwu10Od4z1yKRaMa3RWYedIIsnpnFAHR6VoGq6rbx7JUEakmHfKAD%2BHf60nJICPUp5tOsha6vbGWJrhnKqQpJAHII96GwKFrr2oxSn%2Bz7aOGKRslFUnf6ZJOfypWuA1dMkmu/sRYSTP%2B8efJIjXqQaYGvoL28GoRaY6xnzNgkJ%2BYAHt/sn1oY0dyX05L5LCaVFlHMSqeo/xrPXcaLlylwIZRFtClBsDjoaQzlLrXriybi2kjdJDE4kXAc%2Bq%2BtUlcVzD1R9Q1qSS4RXaG3GSSNoH4VVgM%2B5sZYLT7RdRspkcqnzdSOTmgCjp9vJeaikYUnnc5H8KjkmkA3UL1ruYDP7pMrGMYwM0gHWI%2BVm9TWsCJFqtSRaAENIBDQAUgCgAoAKACgAoAtWN/c2bZifK90bkGuPF4Cjil76179T2cpz7GZXK9GXu9YvVP%2BvI7fwz8SNT0yMQpdyJFjHkzDzYsemDyB9MV8PmvBFHEtz5U33Wkv%2BCfcUeKMozDTGU3Tl3Wq%2B9a/ejrbP4j6TNta60HTpGCFCbacw5UgAgrzkYA4PoPSvkq/BWKp6QqyXrHm/HQ7YZdleI1oYmP3r/NfkWW8feHEZ5IfDixs7FpFW9KJISxb5lAw3zMTyDyT61yx4Rx0rKVa9v7l2tLaNu6000L/sLCrWVeKX9eZnal8WJYYBBpsGn6eighREvmOMnJx25PPSvUwnAHtJc1bmm/P3V/n%2BJjOeRYFXq1%2BZrotfyv%2BZ59r/i7UNTnaWSaaaQ8ebM24j6DoK%2B9y3hfD4WKTSS7LT73uzxsfxuoQdLLqfIu73%2B7b77nOSu8rl5GLMepJr6iFONOPLFWR8FXr1cRUdSrJyk%2BrG1RkFABQAUAFABQAUAFABQAUAFADDHi4iuYZZre5hOYriCRo5Yz/sspBFc%2BJwlHFU3TrRUovo9TSnVnTfNB2ZfufGHiq5hTT5vFGovPHdAxzEqJ0i8o52uACPm43deetfPUuGMspTdKFFKL1a6P5bdNj16edYynTlyzfvKz9L3M%2BGFImkcbmkkbfJJIxd5G9WY8k%2B5r6SjQp0IKFOKSXRHjznKbvJklakBQAUAFABQAUAFABQB1k7Hzmr2I7HztVe%2ByMk1VzOwuakLChjTKQ8E1LYDwam5SQp6dKV9R2GMam5okMJOM0iki9p88jZU4IFIGjQRz6CkxomVznoKhjRMjnHQUmWkDkEcqKlhYryYB6Cs2XEjJ9hSNEM4PYVJRGwB7Cg0TInjT%2B6KkpERiT0pMu5E0SZ6UiyJ4kx0oGRtEmOlICN4k9KBsjaGPH3aEIZ5Kdsj8aCugYKcq7j6NQSOW7u0Py3Uw/wCBUAkmSrrWqRfdvJPxwaB8kSePxPrKED7SD9VFAvZxLcXijVWb5mib6pQQ6cUatlrd3KBvjgOf9j/69BDikaccyzDMltAf%2BA//AF6BbDmsbKUgtax59sj%2BtA%2BZlWfSLEnzBEVOMcMcUBzsyNU0q02bwHBxnr6U0aJmAbaPzViOSjDJGadxla1iiCSjyxy2PwoYmkUNVgjUiVQQzYzzTiyGVbe6ngugY5GGeCM02CZpLf3HmxplR5gUswGGyB6ipLNfXtUuomsCpQ/uznK9egpBYwreSQyFpJHk2spAZjxyfx70%2BgkV7aRzqgAYgHnHXpn1oGaLyyylJ5JGZnJzzxQB1Ph68lFp5ZCMr/fBX73HepYmXrdhKkrbVXy%2BgXpSYyeE7WjKgAsNxPvSAmSQ7jwKGNE6yHaeBSGPtX3swZQRigRSvwPMA2jnINNAzIuXZrSaMnCqCwA9RSnsA1YIsTSbfmcjPPqMn9axsBUnll8pZPMbcp2j6elAF7QtQuHupIflVfLJyBzTTGiW8SJ9HvbaSFHQ8ktknJHWmnYDz%2B80mz/sCyvwriaVmV8NxxnBx61sBo%2BIIIrXwRbRxRjd9qDNIeWY4PWl1Ah%2BG5z4gY4GRE5/OiewHqOkQxrCZAuGZuaySGVtQtIpVeD5o0lcl/LOCeKpDucdo9tBZX7XqRiR13KFk5Xrj6/rVsG9TlLjVb/z9ouGCpuCgdgSePpVCbKVhax3l2fOZzknODU2uyuhpRQiwgS%2BtnkWZBvQ7zhSDjOKbSEmVrzVL3Vb7dey%2BYATgBQB1pIGajKIrU3MI8uRIyylfWqGVRqtx9jms0SKOOVA7FFIO71zmoYFW0uJYkluI22yDAzjOee9UB6H4JvpbuNmuY4ZHMSsXKfNWc0NHVmQmKPIH3qgo808a6ldXmuS20zLstHYw7Rgj8a1ikLqZtje3EshhkfdGytle3Q1VhEetSSPDbIzkhU7nqc9aTQyCctZ6RDLbsyPdbklPqoPSk0BloKSQGhZ8W6/jWkNjOW5NWghTQAdqAEpAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAA/9k='/%3E%0A%3Cimage clip-path='url(%23c1)' preserveAspectRatio='none' x='653' y='1171' width='67' height='24' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIABgAQwMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/AKNnp3hpvB/heaTwXp/iTxV4gtofs8L20bT3tw0YeSSSRgSFGSzOelZ06cacVCCsloktiG5Sk22db/wzv4w%2Bxfbv7L%2BFn2rbu/s3%2BxX8v/c8/Oc9s7Me1aD5Tn7DTfAS6TrM2u/D/R9I1LQS66tYSWETvCyruG0hcOrDlWH3s0iHdOxLc/DHSotd8O6Trf8AwhXhzWvESNJZ6T/Y1rMLUYzGs5eRZJGc/J%2B6UAMCO2Sy7FDxBp3hLw7pOowax8PPD6%2BINPvhpstnDYK8bzModZFIQt5RjPmZ2khQRgkUibO9i14Z%2BHfh7xLc3kPhC58J%2BJtQsoBPJFH4TEWl3DYBa3iuxnbIoZOWz98ccMFZdhsOg%2BDtbtrGPQ/CHhixkuLKa/vbvUNNQxaXbQ4EryqoBZlY7AgIyQeQAaRCTuUIPDnhG3srjVrTS9M1m0srNNQvrPUvCS6bdfYWOPttueVliXqQRnHfOAWU12GeJ9Q%2BEfhbW59L1/QdK83Cy26HT0kVImUYC5HyjcHOBxkk9zURildpbk3kzY%2BFn2pPEfhGO2u47LUdS%2BH9xY6DcynCRagY4mBz2JUfkpqio9Tso/Bfj0aVoKSeFvFx0%2B3LjWtO/wCEu/0i9uTbhUuEk87CRiXcxG8ZLBtny4plGN8SNNg8S/FfxPpVkzQMnhSy07UZDN52y%2BzI6Bn/AOWjIhXJ6nv1oIm7WE8WeINI8Q/FP4e%2BNfE2h6jY6x4aSZdTs4rC5uDduFJgNs8SGNlEpL/OyEA4bpigrmRNe/8ACQX/AIkl%2BIo01I9ZGtxarbaXJKBiCKD7OIGccCRoi5J5AdgOgzSI5tSj4gv9F1HxtqHivQ7zxfYa3LARZ6fpOhnTbkTt2u7gp5EsSYXBbdnc33sLll3Q7QdN1HwjYwS3cc2sRXukXOma79lt0lmBuHMpuIonG2TbIz5jI5VuAcYKIUtSvdX9/wCIFvEj1KbXdWvNBPhqK5i8PzaVZ6dYuwM0sgm5knYAAJGNoI6AUy3JI5/4g/CYeNfE8%2BpJrL2K28cdqIxGGztUNnP/AALH4UkzNSsfP3gfx9Ppaf2X4hN/qejlo2jCXLLcWMkf3JbdyfkZfTgHpTNGj3I/tBal/Yn2M/GjVPs3l7cDw3H/AGht/u%2Bd9zdjjdj3zQK7PDvF/wAQ727lSz8Lzalo2mQu8hP2tjc3crnLzTyA5dzgew7UDS7naxa94Oi8OaRPdeNfE82oyWLy3kcOrSjEyRCQJzkAO6vF2xvVgGCnIFkeZ2Hi3xI%2BoW63XinW0t2lUSkX8vypnnv6UBY9J8V6t4Yt9JvpfDnxB1y9m8t5Ixc6xcRvD88nloqhCJWxsVvujADcbvlAsji/AXifULrxVaQeI/FutxaYwfzWGpSpzsYpzu/vbe656bl%2B8ALI2/iRrFjp2n2TeEviPrep3QuJ0vEN9cbfLLboGQsFzhPlb/aHbNAWRwy%2BLfFSlivibWQWOTi%2Bl5PT%2B97UBZD/2Q=='/%3E%0A%3Cpath d='M0 114.3H935v-24H0v24Z' class='g0'/%3E%0A%3Cpath d='M64.6 109.8H328.2' class='g1'/%3E%0A%3Cpath d='M460.4 476.3H609.6' class='g2'/%3E%0A%3Cpath d='M362.7 274.9c0 2.9-2.4 5.3-5.5 5.3c-3.1 0-5.5-2.4-5.5-5.3c0-2.9 2.4-5.3 5.5-5.3c3.1 0 5.5 2.4 5.5 5.3Z' class='g3'/%3E%0A%3Cpath d='M359.3 273.4c.4 .2 .6 .4 .8 .8c.3 .3 .4 .7 .4 1.2c0 .4-.1 .8-.4 1.2c-.2 .3-.4 .6-.8 .8c-.4 .2-.8 .2-1.3 .2h-1.8v-4.5H358c.5 0 .9 .1 1.3 .3m0 3.1c.4-.4 .4-.9 .4-1c.1-.2 .1-.7-.3-1.2c-.3-.4-.7-.5-.9-.5h-1.7c0 1 0 2.1 0 3.1c.6 0 1.2 0 1.7 0c.2-.1 .5-.2 .8-.4Z' class='g4'/%3E%0A%3Cpath d='M354.6 277.6h.7v-4.5h-.7v4.5Z' class='g4'/%3E%0A%3Cpath d='M355.4 272.3c0 .2-.2 .4-.4 .4c-.3 0-.5-.2-.5-.4c0-.2 .2-.4 .5-.4c.2 0 .4 .2 .4 .4Z' class='g4'/%3E%0A%3Cpath d='M398.4 293.4c0 2.9-2.5 5.3-5.5 5.3c-3.1 0-5.6-2.4-5.6-5.3c0-3 2.5-5.4 5.6-5.4c3 0 5.5 2.4 5.5 5.4Z' class='g3'/%3E%0A%3Cpath d='M395 291.8c.3 .2 .6 .5 .8 .8c.2 .4 .3 .8 .3 1.2c0 .5-.1 .9-.3 1.2c-.2 .3-.5 .6-.8 .8c-.4 .2-.8 .3-1.3 .3h-1.8v-4.6h1.8c.5 0 .9 .1 1.3 .3m0 3.1c.4-.3 .4-.8 .4-1c.1-.1 .1-.7-.3-1.2c-.3-.3-.7-.4-.9-.5c-.6 0-1.1 0-1.7 0c0 1.1 0 2.1 0 3.2c.6-.1 1.1-.1 1.7-.1c.2 0 .5-.1 .8-.4Z' class='g4'/%3E%0A%3Cpath d='M390.3 296h.7v-4.5h-.7V296Z' class='g4'/%3E%0A%3Cpath d='M391.1 290.7c0 .3-.2 .5-.4 .5c-.3 0-.5-.2-.5-.5c0-.2 .2-.4 .5-.4c.2 0 .4 .2 .4 .4Z' class='g4'/%3E%0A%3Cpath d='M581.2 293.4c0 2.9-2.5 5.3-5.5 5.3c-3.1 0-5.6-2.4-5.6-5.3c0-3 2.5-5.4 5.6-5.4c3 0 5.5 2.4 5.5 5.4Z' class='g3'/%3E%0A%3Cpath d='M577.8 291.8c.3 .2 .6 .5 .8 .8c.2 .4 .3 .8 .3 1.2c0 .5-.1 .9-.3 1.2c-.2 .3-.5 .6-.8 .8c-.4 .2-.8 .3-1.3 .3h-1.8v-4.6h1.8c.5 0 .9 .1 1.3 .3m0 3.1c.4-.3 .4-.8 .4-1c0-.1 .1-.7-.3-1.2c-.4-.3-.7-.4-.9-.5c-.6 0-1.1 0-1.7 0c0 1.1 0 2.1 0 3.2c.6-.1 1.1-.1 1.7-.1c.2 0 .5-.1 .8-.4Z' class='g4'/%3E%0A%3Cpath d='M573.1 296h.7v-4.5h-.7V296Z' class='g4'/%3E%0A%3Cpath d='M573.9 290.7c0 .3-.2 .5-.4 .5c-.3 0-.5-.2-.5-.5c0-.2 .2-.4 .5-.4c.2 0 .4 .2 .4 .4Z' class='g4'/%3E%0A%3Cpath d='M795.6 293.4c0 2.9-2.5 5.3-5.6 5.3c-3 0-5.5-2.4-5.5-5.3c0-3 2.5-5.4 5.5-5.4c3.1 0 5.6 2.4 5.6 5.4Z' class='g3'/%3E%0A%3Cpath d='M792.1 291.8c.4 .2 .7 .5 .9 .8c.2 .4 .3 .8 .3 1.2c0 .5-.1 .9-.3 1.2c-.2 .3-.5 .6-.9 .8c-.3 .2-.8 .3-1.3 .3h-1.7v-4.6h1.7c.5 0 1 .1 1.3 .3m0 3.1c.4-.3 .5-.8 .5-1c0-.1 .1-.7-.4-1.2c-.3-.3-.7-.4-.8-.5h-1.7c-.1 1.1-.1 2.1-.1 3.2c.6-.1 1.2-.1 1.8-.1c.1 0 .5-.1 .7-.4Z' class='g4'/%3E%0A%3Cpath d='M787.5 296h.7v-4.5h-.7V296Z' class='g4'/%3E%0A%3Cpath d='M788.3 290.7c0 .3-.2 .5-.5 .5c-.2 0-.4-.2-.4-.5c0-.2 .2-.4 .4-.4c.3 0 .5 .2 .5 .4Z' class='g4'/%3E%0A%3Cpath d='M710.5 311.5c0 2.9-2.5 5.3-5.5 5.3c-3.1 0-5.6-2.4-5.6-5.3c0-2.9 2.5-5.3 5.6-5.3c3 0 5.5 2.4 5.5 5.3Z' class='g3'/%3E%0A%3Cpath d='M707 310c.4 .2 .7 .4 .9 .8c.2 .3 .3 .7 .3 1.2c0 .4-.1 .8-.3 1.2c-.2 .3-.5 .6-.9 .8c-.3 .1-.8 .2-1.3 .2H704v-4.5h1.7c.5 0 1 .1 1.3 .3m0 3.1c.4-.4 .5-.9 .5-1c0-.2 .1-.8-.4-1.2c-.3-.4-.7-.5-.8-.5c-.6 0-1.2 0-1.7 0c0 1-.1 2.1-.1 3.1c.6 0 1.2 0 1.8 0c.1-.1 .5-.2 .7-.4Z' class='g4'/%3E%0A%3Cpath d='M702.4 314.2h.7v-4.5h-.7v4.5Z' class='g4'/%3E%0A%3Cpath d='M703.2 308.9c0 .2-.2 .4-.5 .4c-.2 0-.4-.2-.4-.4c0-.2 .2-.4 .4-.4c.3 0 .5 .2 .5 .4Z' class='g4'/%3E%0A%3Cpath d='M482.4 311.5c0 2.9-2.5 5.3-5.6 5.3c-3 0-5.5-2.4-5.5-5.3c0-2.9 2.5-5.3 5.5-5.3c3.1 0 5.6 2.4 5.6 5.3Z' class='g3'/%3E%0A%3Cpath d='M478.9 310c.4 .2 .7 .4 .9 .8c.2 .3 .3 .7 .3 1.2c0 .4-.1 .8-.3 1.2c-.2 .3-.5 .6-.9 .8c-.4 .1-.8 .2-1.3 .2h-1.8v-4.5h1.8c.5 0 .9 .1 1.3 .3m0 3.1c.4-.4 .5-.9 .5-1c0-.2 0-.8-.4-1.2c-.3-.4-.7-.5-.8-.5c-.6 0-1.2 0-1.8 0c0 1 0 2.1 0 3.1c.6 0 1.2 0 1.8 0c.1-.1 .4-.2 .7-.4Z' class='g4'/%3E%0A%3Cpath d='M474.2 314.2h.8v-4.5h-.8v4.5Z' class='g4'/%3E%0A%3Cpath d='M475 308.9c0 .2-.2 .4-.4 .4c-.2 0-.4-.2-.4-.4c0-.2 .2-.4 .4-.4c.2 0 .4 .2 .4 .4Z' class='g4'/%3E%0A%3Cpath d='M547 274.9c0 2.9-2.5 5.3-5.5 5.3c-3.1 0-5.6-2.4-5.6-5.3c0-2.9 2.5-5.3 5.6-5.3c3 0 5.5 2.4 5.5 5.3Z' class='g3'/%3E%0A%3Cpath d='M543.6 273.4c.3 .2 .6 .4 .8 .8c.2 .3 .3 .7 .3 1.2c0 .4-.1 .8-.3 1.2c-.2 .3-.5 .6-.8 .8c-.4 .2-.9 .2-1.4 .2h-1.7v-4.5h1.7c.5 0 1 .1 1.4 .3m-.1 3.1c.5-.4 .5-.9 .5-1c0-.2 .1-.7-.4-1.2c-.3-.4-.7-.5-.8-.5c-.6 0-1.2 0-1.7 0c0 1 0 2.1 0 3.1c.5 0 1.1 0 1.7 0c.2-.1 .5-.2 .7-.4Z' class='g4'/%3E%0A%3Cpath d='M538.9 277.6h.7v-4.5h-.7v4.5Z' class='g4'/%3E%0A%3Cpath d='M539.7 272.3c0 .2-.2 .4-.5 .4c-.2 0-.4-.2-.4-.4c0-.2 .2-.4 .4-.4c.3 0 .5 .2 .5 .4Z' class='g4'/%3E%0A%3Cpath d='M770.3 274.9c0 2.9-2.5 5.3-5.6 5.3c-3 0-5.5-2.4-5.5-5.3c0-2.9 2.5-5.3 5.5-5.3c3.1 0 5.6 2.4 5.6 5.3Z' class='g3'/%3E%0A%3Cpath d='M766.8 273.4c.4 .2 .7 .4 .9 .8c.2 .3 .3 .7 .3 1.2c0 .4-.1 .8-.3 1.2c-.2 .3-.5 .6-.9 .8c-.4 .2-.8 .2-1.3 .2h-1.8v-4.5h1.8c.5 0 .9 .1 1.3 .3m0 3.1c.4-.4 .5-.9 .5-1c0-.2 0-.7-.4-1.2c-.3-.4-.7-.5-.9-.5c-.5 0-1.1 0-1.7 0c0 1 0 2.1 0 3.1c.6 0 1.2 0 1.8 0c.1-.1 .4-.2 .7-.4Z' class='g4'/%3E%0A%3Cpath d='M762.1 277.6h.8v-4.5h-.8v4.5Z' class='g4'/%3E%0A%3Cpath d='M762.9 272.3c0 .2-.2 .4-.4 .4c-.2 0-.4-.2-.4-.4c0-.2 .2-.4 .4-.4c.2 0 .4 .2 .4 .4Z' class='g4'/%3E%0A%3C/svg%3E)
https://doi.org/10.52973/rcfcv-e361772 Revista Científica, FCV-LUZ / Vol. XXXV
Recibido: 18/08/2025 Aceptado: 05/01/2026 Publicado: 14/01/2026 1 of 7
Rodrigo Portillo-Salgado¹ , Juan Escobedo-Canul² ,Dany Alejandro Dzib-Cauich¹ ,
Ángel Carmelo Sierra-Vásquez³ , Emilio Pérez-Pacheco¹ ,Víctor Manuel Moo-Huchin⁴
Alfonso Juventino Chay-Canul⁵ , Raciel Javier Estrada-León¹
*
Multiple linear regression to predict carcass tissue
composition in hair lambs raised under commercial system
Regresión lineal múltiple para predecir la composición tisular de la
canal en corderos de pelo criados bajo sistema comercial
¹Tecnológico Nacional de México, Campus Calkiní. C.A. Bioprocesos. Av. Ah-Canul, Calkiní C.P, Campeche 24900, México.
²Universidad Autónoma de Yucatán. Facultad de Medicina Veterinaria y Zootecnia, Km 15.5 Carretera Mérida-Xmatkuil, A.P. 4-116,
Itzimná, Mérida, Yucatán, México;
³Tecnológico Nacional de México, Campus Conkal. División de Estudios de Posgrado e Investigación, Red de Conservación y
Aprovechamiento de los Recursos Zoogenéticos. Av. Tecnológico S/N, Conkal, Yucatán, México;
⁴Tecnológico Nacional de México-Instituto Tecnológico de Mérida, km 5 Mérida-Progreso, C.P. 97118, Mérida, Yucatán, México.
⁵Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Agropecuarias, Carr. Villahermosa-Teapa, km 25, C.P.
86280. Villahermosa, Tabasco, México;
⃰Corresponding author: rjestrada@itescam.edu.mx
ABSTRACT RESUMEN
El objetivo del presente estudio fue predecir la composición tisular
de la canal de corderos de pelo criados en un sistema comercial,
con base en las características de los cortes comerciales utilizando
regresión lineal múltiple. En el estudio, se utilizaron treinta corderos
machos cruzados (Pelibuey × Dorper/Katahdin), con un peso corporal
promedio de 51,12 ± 0,97 kg. Después del sacrificio de los corderos,
las canales se almacenaron en refrigeración a 4 °C durante 24 horas.
Posteriormente, se pesaron y se dividieron longitudinalmente. La
mitad izquierda de las canales se dividió en ocho cortes (brazo, cuello,
hombro, costilla, falda, lomo, solomillo y pierna), las cuales se pesaron
individualmente (kg) y se diseccionaron en sus componentes: músculo,
grasa y hueso. Además, se determinó el contenido (kg) total de
músculo, grasa y hueso en la canal completa. En general, el contenido
total de músculo, contenido total de grasa y contenido total de hueso,
mostraron correlaciones positivas moderadas a altas (0,32 ≤ r ≤ 0,87; P
< 0,05, P < 0,001) con las características de los cortes comerciales. Los
mejores predictores del contenido total de músculo fueron el contenido
muscular del hombro, peso del brazo, contenido muscular de la pierna
y contenido muscular de la costilla (R2 = 0,96; MSE = 3,94; AIC =
-1,28). El contenido total de grasa, se puede predecir adecuadamente
utilizando el contenido de grasa de la costilla, contenido de grasa del
lomo y contenido de grasa del hombro (R2 = 0,96; MSE = 3,29; AIC =
-7,71). Mientras que el contenido total de hueso, se puede predecir
a partir del contenido de hueso de pierna, contenido de hueso del
solomillo, contenido de hueso del hombro y contenido de hueso del
hombro (R2 = 0,91; MSE = 0,75; AIC = -16,42). Todas las ecuaciones de
regresión lineal resultaron significativas (P < 0,001). Se concluye que
la composición del tejido de la canal de los corderos de pelo presenta
una alta correlación con las características de los cortes comerciales.
En consecuencia, las ecuaciones de regresión obtenidas en el estudio
presentaron una alta precisión. Por lo tanto, pueden ser utilizadas por
técnicos, productores e investigadores para obtener información sobre
la composición de la canal de los corderos de pelo criados en sistemas
comerciales.
The aim of the present study was to predict the carcass tissue
composition of hair lambs reared on a commercial system, based on
the characteristics of commercial cuts using multiple linear regression.
In the study, thirty crossbred male lambs (Pelibuey × Dorper/Katahdin),
with an average live weight of 51.12 ± 0.97 kg, were used. After
slaughter of lambs, the carcasses were stored in refrigeration at 4 °C
for 24 hours. Subsequently, they were weighed and split longitudinally.
The left half of carcasses was divided into eight cuts (shank, neck,
shoulder, rib, flank, loin, sirloin, and leg), which were individually
weighed (kg) and dissected into muscle, fat, and bone. Also, the total
weight of muscle, total fat content, and total bone content in the
complete carcass was determined. In general, total weight of muscle,
total fat content, and total bone contentshowed moderate to high
positive correlations (0.32 ≤ r ≤ 0.87; P < 0.05, P < 0.001) with the
characteristics of commercial cuts. The best predictors of total muscle
content were shoulder muscle content, shank weight, leg muscle
content, and rib muscle content (R² = 0.96; MSE = 3.94; AIC = -1.28).
The total fat content can be adequately predicted using rib fat content,
loin fat content, and shoulder fat content (R²=0.96; MSE=3.29; AIC=-
7.71). While total bone content can be predicted from leg bone content,
sirloin bone content, shoulder bone content, and shank bone content
(R2 = 0.91; MSE = 0.75; AIC = -16.42). All linear regression equations
were found to be significant (P < .001). It is concluded that the carcass
tissue composition of hair lambs is highly correlated with characteristics
of commercial cuts. Consequently, the regression equations obtained
in the study had high accuracy. Therefore, they can be used by
technicians, producers, and researchers to obtain information on the
carcass composition of hair lambs reared on commercial systems.
Palabras clave:Contenido muscular de la canal; corderos de pelo
cruzados; regresión lineal.
Key words: Carcass muscle content; crossbred hair lambs; linear
regression.