'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M56.6 281.8h8.5m7.8 0h8.6m44.4 115.5h8.3m7 0h8.2m106.8 99h8.1m6.5 0h8.1M144.4 578.8h8.2M56.4 694.3h8.4m64.1 33h8.3m220.5 231H366m-43 82.5h8.5M649.2 661.3h8.3' class='g1'/%3E%0A%3Cimage clip-path='url(%23c1)' preserveAspectRatio='none' x='515' y='708' width='342' height='384' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAYABVgMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APsqgAoAKACgAoAKAOc8beNfDvg19IXxBetaf2vfpp9mfKZg0z/dBIHyjjqcAULV2B6K5kP8WPAyaT4p1VtWYWfha5Nrqsn2d8Ry527V4%2Bc7uPlzzSvpcdtbE3iT4neFdCGlm4l1C7GqWL6ha/2fp811utkCFpSIlYhQJEOT60%2BrQlqrliw%2BInhC/wDEWj6BZazFPf61pv8Aadgio2JrfqHzjAyMkA4OFPoaLboV9EyDxh8S/C/hTW5NI1ZtT%2B0Q2Qv7hrXTJ7iO3tyzL5kjRqwRco2SemKCrMT/AIWX4bk8RyaDZRazqVzF9n82Ww0qe4gjE6K8bNKilACrBsk4AoJvpc2r7xPpFl4hGgXE7rfnT5dSEYjYjyI2VWbOMZBYcdaO77D7eZyMnxr8CJGs/wBo1V7X7FbX8t1HpNxJDbwXC7onldUIjBAP3sYwc07Bc09S%2BJ/hOye5hFxe3d5BqLaYLOzspZp5rhYllZY0UEsAjhiw%2BUetIB918TfBtpoOh63daq0Flrl6lhYtJbyK7TsSuxkI3JgqQSwABHNFtbCvpcPFnxK8LeGdXfS9Rmv5J4IknvGtLCa4jsonJCPMyKRGCQcZ7AnpzQtRso%2BJfipoGn6bejSjNqmsRX82mWunxW0zyXF3FGruoCIzFFVlLOAQAaALWj/FHwbqN1oNjFq6i81wXC2cTwSRlpbfAmiYMAUdSfuNg8UAT3nxG8L23gXT/GjXF3LpGovDHaNDZySSyvK2yNRGoL5LEDGKA7%2BRQf4ueDhZW88T6tPPPfPp4sYtJuGvEuEjMrRvBs8xSEG7kYxzQBuXvjHR7HwinijUFv7GweSOLbdWUsUytJKIkDRMA4y7L1HQ56UeQr6XH%2BO/GPh7wRoqax4lv1sbJ7iO2WQoWy7nCjAH1JPYAk9KOth9LjvGfirSfCWlwajqxumiuLmO0hS1tXuJJJZOEVUQFiTjsKAMJfiz4GNjpV3Jq0luuqaqdIgjuLWWKVLsHBikRlDRkHAJYAfMvqKNw21DxD8VvCGga3qOlanLqcb6Y0K39zHpk8lta%2BaAY/MlVCighhyTQtQegJ8VvCB8RNojS6nHKup/2Sbl9MnFr9rzgQ%2Bfs8vcSRjnnIoSuFx%2Bn/FPwffa/FpEF1e4nvHsba%2BexlWyuLlMhoY5yuxnyrDAPJBAyRQtQehBY/F3wTeXy28V5fJDN5wtLyWwmS1vGhDNIsMpXbIQFY4B5wcZoAsah8UfB1jpdtqVzqEy211ocmvRMLaQk2aBCz4xwf3ifL156cUPQFrY0x418NnxvbeDP7RUa5c6f/aMVsUb5oN2M5xjPX5c5wCcYFHcOxU8Z/ETw14U1EafqT6hNcrbfbLiOysJbk21vkr50vlqdiZB5PXBx0NAFqfxv4ah8XaV4UfUk/tbVrR7yyhCMRJEoyW3YwMgEgHrtOOlHWwdLlGy%2BJng69mkgttUMksWuNoEsYhfcl6oYlCMcDCMQ33TjrSurXAW2%2BJPha60zRNQtJ7y6j120nvNNSGyleSeOFQz4QLu3YIwuMnoKYf1/X3GXZfGXwZd6TLqUS64sK3YsYlk0a5R7m53MpgiUpmSQFGBVcldpzjFAHU%2BDfFWj%2BLLCe70mScNbTtbXVvcwPBPbSqATHJG4DK2CDyOQQRkGgDcoAKACgAoAKACgAoAKACgAoAKACgDzb47fDy9%2BImnaTZ2d7bWhsZ7iYyS5yrvaTRRsuAeVkkRueynvS63H0szg9H%2BBHiiC1h0248UWkFpPqFnqeo3MEfmTzXMFv1CSIUIa4Jk%2BYdAOM9Hp/X3E6mloXwR1IT%2BHLDxDrj3Wj6BZajp0LWd7Na3M9tNLE0CuYtv3URkZQdvC4z2F3Y3tZdxtx8FNch8TjxNo%2Bv2un3GnanZyaPpqRA2sdlbJ5KQvIU80ExPPkKduZO/WhOwmr6HQ%2BP/AAX411Dx3qeueGbjQEt9U8Orosx1B5d8P7yVjIqopD8SdCw5FK17ruXfbyOf0b4P654d8ajU9NttA1Sxji02G3mvdQuoLiIWtvHCW2RKUYkpuAY47VVyLaHW/Efwj4pvvGFr4n8KS6O9wNGutIng1J5I1CSujrIrIrElSnKkDIPUVPRruVfZ9jzXV/gB4hMctjYT6BdQvoWnaXDe3dzcxTWsltGVMyxRjY/JDBXOPlAPU1TZKR1MHwt8V6X4om8W6Tq2k3OsR63c3sEd6JBDPBcWkEEiyFBlJN0IYFQw7d%2BF/wAH87hbXXy/KxF42%2BEnjHx6bRfFXjG3gFtpE9uG061UB7mdyXO2RSFRUWJFZSH4Y5GaVuw/U0LTwX8TdM1O71bSNd8OrqWuWFjDrNxcxSyeRcW8fltNAuAJAynOx9uCM5OSKfUS2K8Xwx8V6R4vl8YaJfaPcamut6heR2140iQy2t3Fbqys6qSkitbqQQrDBI70bf153C2v9drGVdfAvVdVlgv9W1qyj1Qtqd%2B9zaK6/ZNRuZ7eWGSDIzsjMGCSQWBPHzEAKubk3w18SxfA/wAKeDbS80qTWtBurC6aWZ5FtpmtplkIyFLAHbj7tGzTXT/IX2Wn1/zMLxB8HvFmsaiPEd9J4dvNXuddOp3libm5gtBGtkbWONJEXzCwGHLYXJ4xjqLQHqdl4p8F6/rPwYXwnbxaPp%2Bqxy20kca3M0tqvk3STAeYy%2BYcqmMkdT6UdUxW0aMbxt8OfG3xIudOi8YappGi6fYxXQ8rRybozyTRiIFhcRBQBG0w4GcuMYosh3Zo6r8PvEOu/DPwl4Y1vV4X1DR9Qs5r28tp5YmmjtyRuR1AZZGXac8YbPPem3d3ElZWOa8Y/AL%2B2ry4g0rXZdF0qGwlSzVWN1cTXk8gkmnmkmDNkmODDKd3ynkcCkMZr3wV8Qa9f6x4i1LVLBteu30yeOAXE50%2B4e3hRJo7iHAV43ZSVO0svB7EF7O6FurPsW4vg1qUHi7/AIS2O%2BtZr/8A4SqXV3sp7mZ7OS2kCgDyyNq3EZBZJAvXgnHRLQb1JNO%2BFnixdM0LwZfahox8J6HrA1KC5i8wX06JK0sULLjYpDNhnDHIHABNG%2B4bbGQnwn%2BIgs/CXhG8v/Dtz4P8O3QMUkLSR30irHNGkjAqUBVZRuUH5ivBGTR1u%2B36Btt/Wtx0nwe8ban4Zk0fV9Q8PxNY%2BDZ/DOmyWzzETGQx4mlDJ8mBEvyru5J5obvf5CStbyuaD/CHxYfGo8cp4pgXWItahuobPyx9m%2ByRp5HlGTZ5gYwNJkD5d7ZwetNOzBrSx03inwh4yg8dal4q8Ealo0E%2BsaZDYXg1OORvs5haQxzRBOGIErZRsAkDnrSXVDfRnNeIfhJ4w1bxfd%2BNP%2BEugTWYNRsrjTYBAv2cw2y7QsjFDIhcSXOVQ7f3vfFC0E9VYrwfA7Ubbxxpvim01a0gkXxNd6pqcC7tl3A800kH8P8AroxMy56YYjPApJaJFNmp8Nvhp4q0HWPCUWs3mjPpPhCzvLXT3tGkM935%2B1VaVWULHtReQpbJPYU159rf19wnr99/z/zCH4XeIbHw/pT6ff6Y2t6N4ovtctFn3/Zpo7mSfMTkDcp2TfeAOGHcULRLyVglq5ebudb8MvC2raJe%2BI9d8QT2T6v4hv1u7iKy3GCBUhSKNFLAMx2oCWIGSenFPpYOtztaQBQAUAFABQAUAFABQAUAFABQAUAFABQAlABmgAoAKACgBaACgAoAKACgAoAKACgAoAKACgBKACgAzQAUALQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAc18SdH1zXPC8un%2BHtUOm3zSIwlErRZUNkrvUFlz6ge3fNAHCz%2BAviW8k7L40A3zXLpi9nUKHQBeMcZPbpH1XJoQiKDwn47tte06yufHUZndoLkQG9mLSxQKqykDbghWkQYPEm4F8GmrDZ6oNN5JNzOc/7VICxZ232cN%2B9kfcc/Mc4oAsUAFABQAUAFABQAUAFABQAUAFAHm3jfwh431XxNe3%2BjeJTZ2E1qI47c3s0eJcKA42DChCC/GS5YqxC4wLQTMr/AIQP4keczN4w3oZpH2/2hcLuQx7SvC/L5jfNx/qsfJnNGgzb%2BFmja4ltdXOqeKV1qB0jt1liuZJAZoWkjmOGGEIYbCB18vceSaBdTs/7NGP%2BPmc/VqBl5BtULknAxzQA6gAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDmvHk1%2Bq6LZ6fqdxprX2ppbyz26RtIE8qVyB5isvJQdqAE/4RnV/wDofvEv/fqw/wDkagA/4RnV/wDofvEv/fqw/wDkagA/4RnV/wDofvEv/fqw/wDkagA/4RnV/wDofvEv/fqw/wDkagA/4RnV/wDofvEv/fqw/wDkagA/4RnV/wDofvEv/fqw/wDkagA/4RnV/wDofvEv/fqw/wDkagDPuPBN3L4hs9Uk8ceJTeW9rPBFJssvlSRoi4x9mwcmNOo7cdTQBof8Izq//Q/eJf8Av1Yf/I1AB/wjOr/9D94l/wC/Vh/8jUAH/CM6v/0P3iX/AL9WH/yNQAf8Izq//Q/eJf8Av1Yf/I1AB/wjOr/9D94l/wC/Vh/8jUAH/CM6v/0P3iX/AL9WH/yNQAf8Izq//Q/eJf8Av1Yf/I1AB/wjOr/9D94l/wC/Vh/8jUAH/CM6v/0P3iX/AL9WH/yNQAf8Izq//Q/eJf8Av1Yf/I1AB/wjOr/9D94l/wC/Vh/8jUAH/CM6v/0P3iX/AL9WH/yNQAf8Izq//Q/eJf8Av1Yf/I1AB/wjOr/9D94l/wC/Vh/8jUAH/CM6v/0P3iX/AL9WH/yNQBQ0DwNc6Rp5stO8b%2BJYYDcTTbdlk3zyStI5ybYnlnY%2B2eOKAL//AAjOr/8AQ/eJf%2B/Vh/8AI1AB/wAIzq//AEP3iX/v1Yf/ACNQAf8ACM6v/wBD94l/79WH/wAjUAH/AAjOr/8AQ/eJf%2B/Vh/8AI1AB/wAIzq//AEP3iX/v1Yf/ACNQAf8ACM6v/wBD94l/79WH/wAjUAH/AAjOr/8AQ/eJf%2B/Vh/8AI1AB/wAIzq//AEP3iX/v1Yf/ACNQAf8ACM6v/wBD94l/79WH/wAjUAH/AAjOr/8AQ/eJf%2B/Vh/8AI1AB/wAIzq//AEP3iX/v1Yf/ACNQAf8ACM6v/wBD94l/79WH/wAjUAZfirTtc0TRJdUg8b6/PJBJEfKmhsijgyKCG224OCCehBoA7qgAoAKACgAoA5nxv/yEPC//AGG0/wDRE9AHTUAFABQAUAFABQAUAQt/x%2BR/9c3/AJrQBNQAUAFABQAUAFAGdrGsWulNbrcJM5ncqPKTeVAGSxA5wOOmev1qJ1IwV5Mai3sXbeaK4gSeCRJYpFDI6NlWB6EHvViJKACgAoAKACgAoAKAI4PuH/eP8zQBJQAUAFABQAUAFACZFAC0AFABQAUAFAHN/Ez/AJEq9/34f/RyUAdJQAUAFABQAUAcz43/AOQh4X/7Daf%2BiJ6AOmoAKACgAoAKACgAoAhb/j8j/wCub/zWgCagAoAKACgAoAq6jf2lhEJLudYgx2oOrOfRVHLH2AJpSkoq7Gk3sYEBnvbr%2B07xDG5TbBAf%2BWKHBIPq5IGfTAA6EnwcXinWlZbI7qVLlV3uQGCbRzLfaOmOWknsxnZP1J2j%2BFye46nqD1FYXGSpvllqhVaKkrrc6LTNW03UkVrC%2Bt7jK7tqSAsB0OV6jB4IPQ8V7iaexw2LtMBaACgAoAKACgCOD7h/3j/M0ASUAFABQAUAFABQB83%2BP9U13wz4f%2BJmti%2Bv7jRtSnv7CQLIzNpt0IVFvNH3VHJEbY6N5bf3jRHov63E%2Br/rY%2BjYv9Uv%2B6Kb3BbD6QwoAKACgDm/iZ/yJV7/AL8P/o5KAOkoAKACgAoAKAOZ8b/8hDwv/wBhtP8A0RPQB01ABQAUAFABQAUAFAELf8fkf/XN/wCa0ATUAFABQBTv9V0zT3RL/ULS1Z/uCaZULfTJ5pXArHxFoW7YurWcj8AJHKHY5zjAXJPQ9PSpdSCV2x8rZmeZLqOo/wBoTI8UMalLWJxhgD952HYnAAB5AHOCSB4%2BNxKqPljsjso0uXVlmvPOgKAMHxnamWztJra9k068W/thHdQhRKoaZFdQWBHzKSCCCMduK6MPVlTleJnUipKzLMMfiloZ4LnX0VQ7m3mit085geV8wkbeOmFUZ45rreZSsklqZLDK%2B5v%2BFtWXWNHiuipSdSYrhMY2Srw6j1Gc4I4Ir1oSU4qSORqzsatUIKACgAoAjg%2B4f94/zNAElABQAUAFABQAUAcPrniXS7T4k6Z4Cm0%2B1lh1myuLm63IpG/jywy9GDrHPknPKAd6F18hPS3mduOnFAxaACgAoAKAOb%2BJn/IlXv8Avw/%2BjkoA6SgAoAKACgAoA5nxv/yEPC//AGG0/wDRE9AHTUAFABQAUAFABQAUAQt/x%2BR/9c3/AJrQBLQBkajrEiXbWen20d1MgzMzylI4vQEhTlu%2B3HTqRkZ5q%2BKhR0e5pTpOexTafXJE2PqFpGCPmaG0Icf7pZ2A/EGuB5lK2iN1hl3GW1lbW6uEj3NId0jyEu8h9WY8n8elcE6sqjvJnRGKirIsVmUFABQAUAZGrssOvaVcThRbhZYy7j5UkbZs%2BjHDAE%2BpHVgDcfhdiXua9QUULOVtBvgYY7qTTJw5eGJPMEEhIIKKPmAb5sgZUHB%2BXkn1MHi7LlqPQ5a1HrE6LStSs9UtRcWcyyLna6/xRt3Vh1Vh3B5r1oyUldHK1bQuUxBQAUARwfcP%2B8f5mgCSgAoAKACgAoAKAPk3SvEsviv9ov4q6vZ5uP8AhGLG2%2BwopJLfYp1eRF/3yJl/4HRH4b%2Bf%2Bf6BL4kvL/I%2BrbSeG6tYrm3kWSGVA8br0ZSMgj8KHoCdyWgAoAKACgDm/iZ/yJV7/vw/%2BjkoA6SgAoAKACgAoA5nxv8A8hDwv/2G0/8ARE9AHTUAFABQAUAFABQAUAY2vXtzbX1nb2aRmaZZCXkBKoilNxwCCTyABkdc9sHnxNf2MOY0pw53YoXcN3fsPt99I0SgYiti0Ck%2BrEMWP0zj2zzXlVMwqTVlodUcPFbktvBDbwrDbxJFGvRUUACuJtt3ZslbYkpDCgAoAKACgAoApaxdx2tugls5btJpBCUTZjLdM72AwTgfUiqiribMvRNG1HS9OSOyvRH95vss48yNSTkAMMFeMA4yuckCrlJSepKTSNTTb8XLPBPF9mvIv9ZAWzgZIDKcDcpxwcexwQQIlG2qKTH3VjFLMLqI/Z7xB8lxGMOO%2BD/eXgZU8GtKNedJ3iyZ01Jaj3ufELfuheWCoxGZUt2DqO%2BAWYEnsTwPQ13/ANpO3w6mH1bXcgsrnUbbxRY2R1O4u47iOVphchAMIONm1V%2BfJHH90MT0FbYPE1K0nzWIrU4wWh1legc4yD7h/wB4/wAzQBJQAUAFABQAUAc/8R/EUPhHwFrviadlC6bYy3AB/iZVO1fxbA/GlJ2Q0rs%2BR/2KNC8WeH7XXPiprGn%2Bf4f1Rfs9zvVjcSR7y0lyi/xIrfeHUjcR93DVoo2ZOrldH1L8HbuOXwaulpMs39jXEmmrIrBg8UZzAwI67oGhbP8AtUAvI7OkMKACgAoA5v4mf8iVe/78P/o5KAOkoAKACgAoAKAOZ8b/APIQ8L/9htP/AERPQB01ABQAUAFABQAUAFAGJ4ksbu5uLe4sJY1uYI5SqSLlZQdmUJ6rkgfMOnoawxFBVo8rLpzcHcq2Vwl3Zw3UYYJNGrgN1AIzg%2B9fOzi4tpnop3VyapGFABQAUAFABQAUAQajBb3NjPBdbRDIhVyxxgHvTi2noJkWjXMl1Yq8zI0qM0bvH912UkFh7Ejp26c4pyVmCdyv4ijkitG1a1XN5Yxu6L/z1TgvEfTdtHPYhTzgguD6MUu5poyugdTlWGQfUVDKFoAxte8261Cy06M2jJJveUSRs7x4X5XADLtHUbsg5K471rTfL7yIkr6E2mSa7aapY2M%2Btm%2BEsjER/ZQpEKqdxZsknBZBnIOSM5yTXq4XFVK0rW06nLVpRgrnXQ/cP%2B838zXonOSUAFABQAUAFAHHfFnwaPH3h2Dwxd3LQ6TPeRS6mqMQ80EZ3%2BUCOm51QE/3d3fFHUOh1NhZWmn2EFhY20VtaW8axQwxqFSNFGAoA6ACgErHLeCvBo8JeJ9duNMuP%2BJNq7R3C2ZPFpOoKuE/2GXZgfw7MDjAB0sD3udjQAUAFABQBzfxM/5Eq9/34f8A0clAHSUAFABQAUAFAHM%2BN/8AkIeF/wDsNp/6InoA6agAoAKACgAoAKACgDn/AB3dX1loVzdafFJLPHESRGwV1j3p5jKTxlU3MPcVFS6i7bjjvqMtoooLaKCBQsUaBUAOcADAr5iTbd2emlYkpDCgAoAKACgCG5ura2jMlzcRQoOpdwoH501FsV0Ul13T1XddGayUkhXuoWiRuuMMRtyQM4zn1AquR9BcyG21umqS/b7yFXhGVt4ZIzgDd/rCG7nAI4BA%2Bppt8uiDfU040SONY40VEUYVVGAB6AVm3coVlVlKsoZSMEEZBFAGTFZ6rp8ax2V1Bc20XCW88ZV9nZRID2HTKnpgnvWl4y3Js1sLNrcK6dPKI2jvIky1rN8rqc4yf9jJ5YZGORmjk1DmLmmWS2cL7mElxM3mTzbcGR/X6AYAHYACplK40rCC6ks9cWdbK5uQ1uYx5QUBSWB5LEDt9a78DXhSUnJmFeEptWLuj%2BJdMumW2lka0vC7K0FwhQh%2BSVDEbX45%2BUnI56V60KsJr3WckoOO5dm1rSIbxLObU7OO4kAKRvMoZsnAwM85PT1q7q9iS/TAWgAoAa7KiM7sFVRkknAAoA5%2B78V2kcx%2ByWtzfW8e3z5rdQwiBbH3R8zED5iFB4wea554qnCSi3uaKnJq5paZrWkam%2BzTtTs7twgcrDMrEKeMkA1ummZ2NCmAUAFABQAUAc38TP8AkSr3/fh/9HJQB0lABQAUAFABQBzPjf8A5CHhf/sNp/6InoA6agAoAKACgAoAKACgDN1xBJaXEZGQ1pMMfgKiorwa8ioO0kzj1ub6OGO0ttsMSuT5ykEheTt2kEdT%2BQ7V8LHHqNG32j33hm536Dpb%2B/t0D/aVkVG3EOgBYf3cgflgZp0cfKUlGUb%2BgqmGik2mb8bFo1ZlKkgEqe3tXos5CO%2BuUs7Oa6kVmSFC7BRzgDJppXdhN2MI6LPq80uoXeqahapNjyLe1uhsSPHBPBUs3U4yOwz1Ojko6JE2uU9U0jWdItHvNP1u/u44wBJby/M7xkjdhhkKVGSCqZxkYPBFRlGTs0JprZjvDB0K1ia6t0gvdRl%2BeaS0t2cgc4XOM4APUkFjknlqJ8z06BGyNmXXLCIE3iXNomflee3dVYeucYH0OD7VnyPoVzIkbWLPyhLEt3OjEhWhtJXBwexC4o5GHMgt9VR5kiubS5sTIB5RuAoDnptBDHDZPQ4z2zRydguaFQUFAGHqhg1PWrC0i%2BzXS2spmuhlSYSv3OeSDuA%2BXgnB5wCDpG8YtkvVm5WZQUARPFFNC0U0aSIxOVdQQefQ07tMRC2m2JsJrFLWKK3mUq6RKEByMHp396pTkmncTirWC3v/ABLaW4WRdO1Nkixuy1s8jADBP3xk856Dnt0r1YZlH7SOV4Z9GS33iTUo94s/DF7Oyxbx5lxDGGbsgO48%2BvYVs8fR7kewmC69qloEbUtKjeH/AJazWUjSlOwPl7dx69F3Y5695p5hTm7PQcsPJbEereIZpNOuYI/D%2BqvLIhjVQIuQwxuzvwAMnI68Hjpm3jaLT1EqM77Fs8k14B3FW7s0uJYZRNPA8T7t0L7CwIwVJ64PHTB4HNa0q0qV3EmUFLcXRNant9Z/sLVBKTIM2F0%2B0i4UKCynHIdeeSBkdO9e3hMT7aNnucVWnyPTY6eusyCgAoAKAOb%2BJn/IlXv%2B/D/6OSgDpKACgAoAKACgDmfG/wDyEPC//YbT/wBET0AdNQAUAFABQAUAFABQBjeKLpba1Zd2JZoZIoxjPJ2jP4dfwrlxuIjh6EpyfTT1NqFN1KiijmRxX5ufTlPVLyxtYf8ATJUUN91M5dyP7qjknp05p%2B09kvaXtbr2Im4294i8N6jql7Pe22mKyQ2cihjfqx3lk3bFIOVHKnnP05r2csxscZS9ondbJo8yry83uGvc6tqNraSTXek%2BUdgMbLcoyBiQoVycbeSOQGGM/SvRUU3ozJt2NDSbRbHTYLVX8zYnzP8A32PLN%2BJJP41Mnd3KSsi1UjCgAoAKAKWqaVp2qBBqFpHcBFdVD5IG4YJx644z1HOOtUpNbCauVn07U3HkHWn%2BzY2nEIExH/XQHAPuFH580%2BZb2FZ9yPUPDtjLYzx2ca2126ER3WWMiPjht2Qx55PPNNTd9QcULa6nBp7xadqMMOmHYfILXCmOUKQDtYkHOWHUAnPfmhxvqhJ20NmsywoAbH0P%2B8f502A6kAUAFABQAUAFABQBX1G0S9s5LZ5JIt4%2BWSM4eNhyGUnOGBwQfUVdObhJSRMoqSsxdN146bGbTxFdjzFwUvTCUimBzwSBtVwQRtzyMEdSB7uHxcasfe0Zw1KTi9DV0zW9J1Od4LC/gnlRQ7IjcgHviumMlLZmbTW5o1QgoA5v4mf8iVe/78P/AKOSgDpKACgAoAKACgDmfG//ACEPC/8A2G0/9ET0AdNQAUAFABQAUAFAEF9dwWVs09w4RF/Mn0A7n2qKlSNOLlJ2SKjFydkcTqN5NqGpLczDYBGyxx5zsGR%2Bp7/h6V8PmmYvGSstIrb/ADPfwmFVBa7sxNW1OQSzQW8sVrFbrm5u5sbYyQCAASOcEHJ4HHXt8lmeaxwXLTjHmqS2X36%2Beq2WprVq8uiKFnPZW8Bu47G6WNh8900BLSKP42P3iO%2BT256V8xisozfE/vKvvdbX28kunp8jCztzWLGmatLa6hqc9jLC8Wy2UI0ZKyyHcSVfcq/deIluePpx9vwPTlHASjU095/dZLb1TOare91sbc%2Bt67tkVfCstwVXlPPCktz8vzDb26hiOa%2BzUI9zLmfY09B0sadFKzNGZp23yCJAkaeioo6Ae/JJJ9hE5XKirGlUFBQAUAFABQAUAVL/AFG0siEmkZpWGVhiQySMOeQq5JHB5x2qlFsTdjMh0mXUdKeTVRINQmgkj%2BdgVg3gj5FX5Rx35OOCTVuXK9CbX3LFnJrkUeyfT7JlVQIxFcEYwoyCCuOoOMcYI9KTUWPUoa9Nrkmi39%2BjtpiW9vJJDCqh5mkVcqXIJG3IPyjJIxk8laqKimkJ3sP1fXwlmF0qe2nmEiGeQtlLeMyKGLDOdxDHapwSQfQ0lDuDl2NH7XqcKhZtLedlbDSW8ibWXH3gGYEH/Z/U955Y9x3YjXeoXO5bCy8oAcy3YKgn0Cj5j7k4HpmjlS3C7exY028S9ty4Ro5EYxzRN1jcdVP5gg9CCCODSlGw07lqpGFABQAUAFABQBkeIpNNDWkV6tx5zS77eS3t3kkjZcNuBVTtHQZPHOO9dGH9rzXp7ozqctrSJNI8Q3CTm2jeTUEUcwToYLyIepWTbvX3O08dWzmvShi50/drKxzOkpawZraJ4lstTuo7RYp4biSETIpAdWT%2B8HQsuPQkjPbNdlKtCr8JjKDjuV/iZ/yJV7/vw/8Ao5K1JOkoAKACgAoAKAOZ8b/8hDwv/wBhtP8A0RPQB01ABQAUAFABQBU1a8WxsJbgldwX5FP8Tdh%2BdZV60aNOVSXRF04Oc1FdTi5WlnlM1xK8shYt8zHCk/3R0HbpX5/i8wr4p%2B%2B9O3Q%2Bjo4anRXurUyNanma/t7C1mWJ3R3mcH50j4A2%2BhLYAJ7Bu4r5/N8x%2BoYbnivebsv1fy/Ow6s2tEZ0FjJdak9rBJDFa2ksUroYzJ5zH5iHJI%2BbgHv1UnPSvLyDDxxH%2B3Vm5VLtXe21tP6VtkZU48zudR2r6c6yulhZRwG3S0t1hZixjEahST1OMYyatVJJ3T1J5Va1i9owEWomNCwVomYruOMgr26d69TA1p1LqTuceJhGNmkbVegcoUAFABQAUAFAGZrUcdzdWFjNuaKWR2ljDEB1VDw2DyuSuQeDwDVx0TZL7FnTrC3sIykBmbOMtLM8jYHQZYk4HpUuTY0rFqkMKACgDM8QweboV2UdIpI/9IjdmCqJI2DoWJ4C7lGc9s1pF%2B8iZbF6ym%2B02UFxtK%2BbGr4PUZGahqzGiWkMy9Xjmsmk1exjaWRIybi3Un/SEA4x/wBNB2Pf7p7Fbi09GS9NUaMEsc8KTQyLJHIoZHU5DA8gioasMfQMKACgAoAKAKt9YW168bziXdHuCNHM8ZAIwRlSMj61pTqzp/C7Eygpbho1tb6g1zoutW1tqIs9klu9yglYxPuC7t2csCrru7gDPJNe7ha3tqd5bo4asOSWhv6dp2n6bEYdOsbWzjOMpBEsYOOOigV1GRi/Ez/kSr3/AH4f/RyUAdJQAUAFABQAUAcz43/5CHhf/sNp/wCiJ6ANHxHqkumW8BghSWWeXykDsVUfKzEnAPZTWtGk6suVHPia6oU%2Bdq5i/wDCRaz/AM%2Blh/32/wDhXX9Qf8x5/wDa6/k/H/gC/wDCRaz/AM%2Blh/32/wDhR9Q/vC/tdfyfj/wA/wCEi1r/AJ9LD/vt/wDCj6g/5h/2uv5Px/4BoeHtbur%2B%2Bls7u2hjdYhKrxOSCM4III47fn7VzV6DotanZhMWsSnpaxm%2BJo511nMzO8TrvgyflXAAYAdj3z/tV8bxF7ZSjr7j6eZ9HlnI09NTF1W%2BTT7P7Q6M%2BXSNVXGWZmCqOenJFfK1akaUJVJbJXfyPUnLlVzn7uS%2BttQ1DV5rWNh9lUJDFMXLBCSeSgx97pz0PrXw%2BZ4/D5tUpQptx1s29tdtm/mcc5c0rmjo8tpDKZLjUrF7y6RW2RyjGwZwF5ywB3fN3OenQfY5fl8cFQVKndrdvu2dFNKK3NW5uILaBp7iaOGJfvO7BVH4mus1bS3HvIiIXd1VfUnApqLk7JA2lqybQ/8ASb97qJgYoVMRYfxMdrcewGOff616%2BAoyhFzl1OHE1FJ8q6G5XccxU1i9%2BwWD3O0M25UUMcLuZgoyewyeT6VUY3Ym7GV9mk0W%2BbVpZhMLxlTUHClQvJEbqozgLkKcn7uCT8pzd%2BZWJ21OgrIsKACgDM0/M%2BsX80mXaBhBCR91UKqzAe5PX6KO1XLRIlbmnUFBQAUAZ1rrWn3F9LZCby545TEFk%2BXzGHXb649OvQ4wQTbg0rk8yKrbtV1byVRJLGzkZLgtIdskhGduzGG2/Kck4ySMZHD%2BFBuzbrMoKACgDJ/s%2B70%2Bffo5i8iR2aW1mkKoGbnchAJU56r0OT0PJ05k9ybW2JLfUzCzQauIrOVRkSGQCKUZxlSTwemVPIz360nG%2BqDm7kt3qdtBcC1QPc3R6QQAFwMZyckBRjuxHtzSUG9QbIbvVZ7W1kuZtHvxHEhdyGhO1QMk4D%2BmeBnp9Kain1C/kS6ncXS/ZorFrcSXDlVklBZRhS3QEZyAe4/HpRFLqDfYrvfa1HET/YqSMgO4rdAB8Z%2B4ME8joDjk4OBzRyx7hd9iWLWrB7lbeR5LaSQgRC5iaHzSeybwNxz269%2BhBocGHMiXUIbhJ4dSsApvbbdtRjgTIfvRk9s4BB7MoPTIO%2BFrujO/QirT50a%2Bh65Y6sZooDJFcW7BZreZdksZ2g8juMMORkHsa96nUjUjzR2OCUXF2Zn/ABM/5Eq9/wB%2BH/0clWI6SgAoAKACgClfzSR3doiMQsjEN%2Bn%2Bf85ABjeN/wDj/wDC3/YbT/0RPQA7xz9zTP8Ar8P/AKJkrrwf8U87NP4HzPJNb8B6zqFpqFpB4ijsxd3bXDXKwyGcjfLIisfMC/IzxgYA%2BWMA8HA73Sk1ueNGvFO7V/6X9fMg/wCFf%2BIFv7u9XxVue4llmWF43McTyeeGC/NnaFmUgdmT34PYy6P%2Btf8AMaxEbK8f6Vv8i1qnw/nna7ey1KGFriZn%2BaJuM2yRB/lYHerq8inOMueh%2BaiVG97MmFdRSTV7W/X8/wBDutP1H%2BxtVilYLc%2BZB5RTzlSVsEHcoOA3vyKyxVF1LWOnL8TGhzcy0Za8Qa/pl/PZwo0kFwu4lLhDGcH%2BEZ4Y5A%2B6SOK%2BO4kpyjQUZRe9720%2B8%2BuyivTqTbhJfr9xyXjWXUne2tdJRTcoGuPmUcqCEIXdxuw5IyQMgZOK/Ms7rUqeHUK3wydvu1162vbbW17HsYiTskjnbh/iGJE8uHTs4%2BTGP%2Behzvy3TZt%2B7k5x2zXycI5Tyu7l/S6ad779Pkcf7wNCTxCLu5HjDTbA2siEILS3Eokk3dcDLklRnpx65FaVIUa3JDLZSc/NtNK3yVvn%2BAQ52/eRrSWel6rbPp8d3fRyhA3kXE0wZcMGVjFIQSA205xz0zya2xGYZxgXbE/C/JWfdKST6dnobO7VmdN4XZINNnvNTlWU2EghR03c4RcYUk5clsdznp1xX6VkOIjjMJHEqHK5X8%2Btt9OxlVqNuz6EC6ZfaX4QnurjUb7%2B0pyHcCQDEsjKNqhABnJAGcgZAJKivd5lKVjntZHS6hf%2BTKLW1i%2B0XjYIjGdqAnG52AIVeCeeTggZNZKPVlNmVDZanftcRPqXmWDOIp1eMZlKn97sIPyofubTkjaefW21HoKzZv3EEVxbSW0yB4pEKOpPUEYIrNOzuUZXnppGoeRLNetayRZj3h5zvBOQpALZxjgn0x3q7cyFsOm1HVo7Zrj%2Bxl2BVfH2gltp7bQmd47jp6E0KMdrhdli%2B1OCGxSe3khnkmUfZk8wDzSSAMeo5GcdqSjqDZNploLKzEJfe5ZpJHAwGdmLMQMnAyTx2pSd2NKxZqRhQBHcxGa2lhEskRkQqJIzhlyMZB9RTTsxMy9MS2a3bQrywjDQxKXjZA0Uykkbx1zkqSQeefxq5X%2BJMS7GnZww21ssFvEkUSZVEQYCjPQCok7sdrEtIYUAFABQAMAylWAIIwQehouBFa21vaxeVbQRwx5ztjUKM/hTbb3FYlIBGCMg0hmQNE8q5tjaX9xBawS%2BaLXCsn3SNoLAlV56A4HGMVpz90TymvWZRW1Kyt9QtWtrlAykhlPdGHKsp7MDyDTUmmJq5QnsdWto/OstXubqRGB8i6EWx1yMrlUDA4zg569c1alF7oVmZmpXEU/iTRz/AGZeW2txXETRlRktAZFEw3ISCgHXfgDg8HFdmBU1U916dTGvbl1Ol%2BJf/IlXv%2B/D/wCjkr2ziNi7mkS/tolYhZN24fSgC5QAtABQBz3jHXtJ0BrO41W5eJWZtojt5JmIXDMdsasQAByTgDjmgCDxjIk114TlicOj6yjKw6EG3nwaNgTub2pafaalbfZ7yLzI9wYYYqVI7gggg/Q9zTTad0TKMZK0ldGZ/wAIlof/ADwuv/A6f/4ur9rPuzL6tR/kX3B/wiWh/wDPC6/8Dp//AIuj2s%2B7D6tR/kX3B/wiWh/88Lr/AMDp/wD4uj2s%2B7D6tR/kX3Fi08PaNaxzIlikizACTz2aYsBnAJck45PHTk1MpSluzSFOEFaKscPeaVYXE1yYY2ghkkO2OFysW0cLhPuYwAenNfG4zPMZSxM1Sn7qdrbrT1PYpZThalKLnBX77P8AAw9V8JzXECraaq0UkRDQSSQqzRMDnKdFTkD7qgHGCCMivPxGMw%2BMg4Ymgmnvy%2B7/AJr8LmywE6atTqO3Z6/8H8TyvxN8VfFXhjWrrTdQ8Ox3XkyGGC7ZXiWQ5GTggbhjGMY6135d4RZZmdKFWliXFPWSTjJpdO1n3vf0R85js8rYOpKDp7aJtNJ/5/gd54J8Q6t4w05Xm8N32kSxXETmSfIjKBgxKMQGJIBGAMcjJwTXymY8DLh/MoSoYuNWGt7aSXk0m1%2BPfQ9nK8XVxkeadNwt36%2Bh2er2NpdwBrhWDxAmOSNyjoT6MOecDjoeM5rplRhXXs5x5k%2BjV/6/M9mcYtakNnpttbf2bper6vtWzt4rh/3vkC5uXlLl2XPPzRkhe2T7Y%2BqoUY4ekqdJaJWXolY8bd6nYzRQ3MDRTRxzROMMjqGVh7g9aV2mXuUZFt9Jt/I061Xz7hz5cYz8z45Zj/dAAyfTAHOBVJuW4tti3YW/2Wzjg372UZd8Y3sTlmx2yST%2BNTJ3YyekMKACgDK0%2B2gtvEOoGEMDLBDIwzwuWlzj0BIzj1JNW23FEpamrUFBQAUAFAGX/rvFTK6yqLW0VoyMbWMjMGyRzxsXAPHJPOMi9oE9S1eX1np9sbi%2BuobaLeVDyuFBOTgDPUn060lFyeg20tzDgOoa5qwM6tp9ramKZYt7ea%2BTuBYcAZwB/EB8468rppBE6tnTViWFABQAUAFABQAUAFABQAUAVHKx%2BI9ImaLeC8sIOcFGZMg9eeFIxg9c9hXo5dJKo13OfEL3Sb4mf8iVe/78P/o5K9o4h3i7xDo/h6a0uNXumhRg7DZbySkKoBZyI1baq5GWOAMjmgDoVIZQynIIyDQAtABQB5L%2B0v5f/CP6V57xpH9qYjzZ2jTfsO37vzF%2Bu3%2BEc7u1LqHQ2fE%2BlX/9veFNRfxHq3kvqkQ%2BwOlsYkP2aUE5EW8nIJPzkZJxxjFPcS2O78mT/n6m/JP/AImkMPJk/wCfqb8k/wDiaAE8mT/n6m/JP/iaAOfvtekSaSKyMk4U4EjOqqT3x8hJGf6142Lzuhh5umk219x3UcBUqxUtkU7jWtUmieJXEG7gOrBmUe3yjn37elefV4jTi1Thr0udEMss1zPQzlhKqFE0gAGBwv8AhXzLld3aPWStoL5bf89pPyX/AApXXYCvc2kVxNEJ8ShMum9EbawIwRkcH3rSFWUE%2BXS%2BnX/MmUFK1yx5bf8APZ/yX/Cs7%2BRQW9g%2BoyyRm6uIooSMvHtDb%2BoxkY44PIPUe9ergKKX72S9DjxNR/AiTVtJtrPRNUnWR5Lqe2dZJ5UR5JTtwqk4GewC8CvVjNto4XGxsWkMi2sSs7QsEAMaBNqcdB8vQVDepVjM8OmO%2BE%2BpLfXUsjTyw/NwsYV9u1VIwPujJA5NVN20sStdTX8t/wDn4l/Jf8Ki/kVYPLf/AJ%2BJfyX/AAov5BYPLf8A5%2BJfyX/Ci/kFg8t/%2BfiX8l/wov5BYxLG4to/FOo2cl6/2uXymQkDldn%2BrBK4yMM20dnz3rR35U7Erc2/Lf8A5%2BJfyX/Cs7%2BRVg8t/wDn4l/Jf8KL%2BQWDy3/5%2BJfyX/Ci/kFg8t/%2BfiX8l/8AiaL%2BQWMGDTfEIacPf26TzkCS9TDMEUnAWIpgcE9WOCxPzVq5R7E2kXdP0S2trt74z3NxdsCvnzsrsq56LxhR3IUDJ61Lm9h8vUbqUOnx3YuX1RLG%2BKbFlLRKzLzhWBHzKCc4PTtiiLdtgZF4RvLnU9Le6l1AXGJ3jVo4go%2BU7SM4w3IPK/L2BOCS6iUXsKLbNjy3/wCfiX8l/wAKi/kUVre7tbi6mtYNSEk8JxJGpQsv4Y/D68U2mlewiz5b/wDPxL%2BS/wCFTfyHYPLf/n4l/Jf8KL%2BQWDy3/wCfiX8l/wAKL%2BQWDy3/AOfiX8l/wov5BYPLf/n4l/Jf8KL%2BQWDy3/5%2BJfyX/Ci/kFivqJuYbRntneWcsqRIxVVLswVcnbwMkZrSlD2k1HuTN8quZ%2Bsm/ktJLf7Bqj3sMqOsUUOVfY6tlJdgTkDjJHPBA5Fd1LC1KdVO2hhKrGUC38TIZ7j4e32Lu7tXlWHB2x74iZU/2SMj8Rkd69g5DgvjxYTadoGj2%2Boa5eao32qV47i/ljhbzNq7FXyI0G8c7Sw2DLbz92hbh0Paos%2BUmc52jr1oBD6ACgDyf9pCUxaPpBRJ2d7h4gIMK53LgjcQQV5y0YGWA6gKaQdDqvEmAvg0KAB/asWAIyg/49puin7v07VT3FHY66kMKAK%2BowG6sLi2DlDLEyBgcYyMVMo80Wu407O5wsP%2BrAKeWw4KEcqRwR%2BB4r80rUpUqkoS3R9TTkpxUlsPrIsKACgCNv8Aj4X/AHW/pVLYB1pHd3gHlW7RIWYea5UqMEgnAOT0rvpYBytKT0ZyzxKV0lqaUslto9giAM7E7Y0z880h7DPUn9PoK9eMVstkcLk92Rpp094BLqs7k%2BYsgtopP3SbSCozgFuQCc9T2xVOSWxNr7mnIWCMUUM2OATgE/WpW4zF0W9gstIht7oSJdx5WeFULuZcB3KqoJYZbOQMfMPpVyi2yU7Iu2mqW89wICk9vIwzGs8ZjMgHXbnrjuOvfpUuLQ0xb3VtMs5DFc31vHKOkW8GRjjIAQfMT7AZNCg2NtIiOp3Iwf7E1Eo2NrAxZ/Eb8j8fxxT5V3FfyKa2Ot3d9JeXF2LArHGLeOGZpUU5ffvQhQ2Qyjqfu5GO9c0UrIVmxurWkem6Nb28MN1du99DJIyxGSSVxIHZmI6Z2kZOAOB8oxgjK7BqyL0us29s3/Ewil0%2BMlgJbkoqEjn7wYgcc8/z4qeRvYfN3NFWV1DKwZSMgg5BFRYoSSSONWeR1RVXcxY4AHqfaiwjOj1mO4J/s%2Bzu75QQGeNVRRkZBBkKhh7rnqKvktuxc3Yja41jULd4rW3/ALKfBV5rgCRkbn7ig4bsdxOPY8imlFb6hdsS30zUWmIvNalntQW2xpH5MhO7I3OhGQBkYAXrzQ5Logs%2B5oWtjaW3MMCK2SS55Yk5JJY8k8nqahybHZFK3tNT06yhtrKS0uooTsVJg0TCMfdG8bskcD7vOO3WrbjLVis0JaaMkkYl1V5Lq5kO%2BVDcSNACf4VjJ27R0GR2z1pOdtg5e5Zm0y2ZLdbfNn9nJMRt1VdoPUYwRg/T360uZ9R2KnhsTJc6xBJdzXMcN6EiMsm5lHkRMQfTlice9VPZCibFZlBQAUAFABQBFGguNbsrchSI99ywJH8I2jj6uD/wGvRy6F6jl2OfEStGx0eK9o4jnPiZ/wAiVe/78P8A6OSgDh/2kJDHY6RtSd2kaaLEKjcQwQHOQd6d2iGC4GcgITS6h0PWYP8AUpjH3R0GO3p2piQ%2BgYUAc1498F6T40tbS11d7kRWs3nIsTqAW7ZDA%2Bg5GCORnBIIBH4wjENz4TiUsQmsxqCzEk4t5%2BpPU0MSVjqaBhQAUAcx4o03yZG1O3ACsQLhB%2BQcfpn257c%2BBneXKtB14fEt/Nf8A9HAYlwl7N7Mx6%2BMPcCgAoAiWK5ubgJbJjhlMrEbVPynpnJ6jivQw2DdSKlLY5quIUHZbnQ2sKW9ukKElVGMnqfU166S2Rwb6sz7X/T9be9Vw1taI1vFtbIeQkGRv%2BA7Qo994q3pGxK1ZqVBRm%2BJJtSj03y9Ks2ubqdxCD5gRYQ2cyMTzhfbJzjirglfUmV%2BhH4bh0%2BKGUWmmLY3CFY7lfLAYsFB5cD5%2BDndk5z705t9wjY0rm3guovKuIY5kyDtdQRkdD9ahNobVzNtbW2GsrHa2kUUFjGy5CADzZNp%2BX3Cjk/7YHrVtu2vUVtTWrMoKACgBHICkscDHNNCZznhvRLSTw7phkmvniNpEwhN3JsUlBnvnH%2ByTtHYCtJzakyVFWLtp4b0e2lWQWnmlAixCdjKIVX7qpuzgDrj6egxLqNj5Ua9QUFADU6H/eP86bAdSAKACgAoAxdQ0SZ9ai1bS9RbTpyNl2ghV47teNu8HB3LjhgQccHIwK0U1azRLjrdET3nii0UwNo1tqUhciO4huRDGVzwZAwLKcddofn0B4doPW4ryJbibxSY3aCw0hHSPKxtdyOJHx93d5Y2j3wc%2BgpWgO7I/wDhKLK1jf8AtyCfRpkXOy5AYScA/u2QkSHJxtHzcfdGRR7Nv4dQ5u5radfWmo2cd5Y3EdxBIMq6HI%2Bh9D6g8iocXF2Y07likMl8OI0l1fXZ%2B6XWCPg8hBkn/vp2HH932r3cvp8tK/c4a8rysbVdxgc38TP%2BRKvf9%2BH/ANHJQAzx54J0jxnFZxau90EtHMkYhcLljjnkHBBAIYYI5GcEgnW4HTKNqhRngY5OaAFoAKACgDmfG/8AyEPC/wD2G0/9ET0AdNQAUAFAHN%2BMboMI9NETMWKzO5HCgHj8SR26Y7ZFeLnmLjSw7p9Zf0zuwFFzqc3RGJXw574UAMnYpC7KMsFJA9eKqKvJITdkaumwRQRweUwffGXZw24OTt5B9K%2BmjFRjyx2R5Dk5O7IvFlxNaeGNTuLZzHOlrIYmyBtfadpyeBzjrVU1eSTJlsXrO2gs7SG0tkEcECCONR2UDAFS227saViWkMg1D7Z9im/s824u9p8rzwfL3dt2OcfSnG19RMzPCMtj/ZiW8Eym6Ch7qJnzIkh%2B9uBORyMc%2BlXUTvcUbG1WZRj6j9ttNVhbTRbsb9ysyTMQFZUOJRgEnhQpHGfl5XvorNa9CXdPQk8zVrKQmWP%2B04GAwYVWOSNu/DMAV9Ocjp83UHuvyDVBNcatdRqtjafYw5G6a5ILIM84jGc8DHJHX2pJRW4Xb2GyatNaSQ2l5YTyXcoby/swDJKVxnGTleDn5sAdMk4y%2BRPVBdrcr6omsa1YtZ28Q0uNwBNJcrvZhn5kQI4xxkbifoDnIa5YO71E7s0dJvDcxSQyxLDc2zCOaJTkKcAgr6qQQR%2BRwQQIkrFJl2pGFABQA1Oh/wB4/wA6bAdSAKACgAoAKACgAoAKLgYup6BHJLNf6ZPNYai7rL5kcziKV16CWMHawIG0nG7HQggGtI1Oj2JcexHb6/cW0wtNe06Wym2/LcRkSW07CNnfY33hgI3DhenGetP2d/hFzW3Ov0G3e10i3ilGJiu%2BXjHzsdzfqTX0dOHJFR7HnSd3cvVYjm/iZ/yJV7/vw/8Ao5KAOkoAKACgAoAKAOZ8b/8AIQ8L/wDYbT/0RPQB01ABQAlAHDa3HLba9Pbs0t1JMonQ7QWCfdI4wPlI/Ijqa%2BTzvBVqldTjqmvuPYwFeEafK9yrI9xEEaazmiR32Bm28HtwDmvGngakIObtod0cRCUuVEvauI3Kcgjnug8ULTtGQrqInb5dwzgjGDwcHPrXqYKFSO8bxZyYiUXs9UdOFVJokUAKsbAAdhla9bocJX16yOo6Hf6epUG5tpIQW6ZZSOeDxz6GlB2kmDV0Jod9FqGnRzRr5bL8kkRbLRuOqnvn64OCMgUTjZiTui9UlEdyZxbyG2WNp9h8sSEhS2OMkAkDPtTVr6iMPwvO9xqN%2BuoB/wC1oFjScHbsRGBZRHjoOucknpk9K0mtFbYmO%2Bp0FZFmXrQkiu9Pu4JD5omEAi2qRIjsu/ryCqqW4P8ACeDVx2aJZqVBQUAZUUsl5rsc1vE4t7VJoZJXXAdiycJ3OCnJ6due2m0dSd2atZlGXdebZ6w15FZ3FytzAsbiHb8rIxK9SOoduf8AZFWtY2JejLOnXy3hljaCa2nhbEkMoG4A52nIJBBA4IJ7jqCApRsNO5bqRhQA1Oh/3j/OmwHUgCgAoAKACgAoAKACgAOAMnpQBWsdMtteZLzULdJrGNt1pFIuQ7f89iPzC%2BxJ7jHt4LC8i55bs4q1XmdkdPXoHOLQBzfxM/5Eq9/34f8A0clAHSUAFABQAUAFAHM%2BN/8AkIeF/wDsNp/6InoA6agAoAKAMPxggjtLbUdq5s7hWZj/AAxt8jkn0Abcf93PaubFw56TRpSlaaKOsQvPp8iRrucFXA7nawOB7nGK%2BbnHni490elGXLJMxBtubi1twxKTt8xVtuVwScH/AA5xnp1HkYKjzVXzLY78RUcYadTpIo0ijWONFRFGAqjAFeyeeNb/AI%2BU/wBxv5rVLYRJUjMzVYktruHV44RvjPl3BRMu0R47ckKcN9N1XF3ViX3Lsl1bRwpNJcQpE%2BNjs4CtkZGCfapsx3JIpI5Y1likWSNhlWU5BHsaTVhmPqMEVz4t05Jl3LFayzIAcYdXiAJwPfpnB9OAa0TtBktalvxBNLBpMrQymGV2SJJBjKs7qgPPHVqmCuwlsOt9MtoJ0mD3UjoPk865kkC8YyAzHnHf6%2BppuXQEi7UFBQBm6H%2B4%2B06blSto4WIg5PlsoKhjk/MORzyQAe9XPuSuxpVBQUAZVxm08SwXBL%2BTewfZ25%2BVZEJZOM8ZDSc4/hHtV7xJ2Zq1BQUANTof94/zpsB1IAoAKACgAoAKACgAoAggtzq900AP%2BgwttuD/AM9m/wCeY9h/F/3z/ex6eBwvN%2B8lt0OWvVt7qOlAAGAMCvYOQWgAoA5v4mf8iVe/78P/AKOSgDpKACgAoAKACgDmfG//ACEPC/8A2G0/9ET0AdNQAUAFAGJ43eZPDN4YghQrtuNy7sQk4kIGRyFJI%2BnQ9KzrNqDaKh8SIzXzDPTKy2Fst2t0iFXXccBjtyepx0z1/OkoxTcktRuTasWaYiNv%2BPlP9xv5rVLYRJUjCgClZ6VptpOLi3s4UmC7RKRl1X%2B6GPIX2HFU5yfUXKiteWdxYtJe6Vk/MZJrQ5Ky5ILFeflfAbGOCTz1zTTT0YmraoYLlP8AhI7O4X97bX9nsglA4VlJfH/A1Of%2B2VO3u2DqWfEC%2BbYLbZ5nnij/AOAlwWx77Q1KG42aFQMKAI7sTNayrbOqTFCI2YZAbHBP401uIp%2BHTC2kRNBEYxlg%2BTks4YqzE4GSSCc4GfQdKqe4o7GhUFBQBV1Syjv7Qws7RuCHilQ4aNx0YfT9eh4NVGVhNXKtvqcltvh1hY4JlYhJI1YxzLgfMvXB5xtJJ4J5HNNxv8Ik7bmlDJHNEssUiyRsMqynII9Qahqw7gnQ/wC8f502MdSAKACgAoAKACgAoAryia8uhp1o7I7LummH/LFD6f7R5x9Ce2D2YTDe1ld7IxrVeRWW50NnbQ2ltHbW8YjijXaqjsK95KysjgJqYBQAUAc38TP%2BRKvf9%2BH/ANHJQB0lABQAUAFABQBzPjf/AJCHhf8A7Daf%2BiJ6AOmoAKAMW78RWtnrLaZd2t9C2wPFN5BeOYd9pTJyvQ5A6j1FRKpGHxOw1FvYpXd3d6uwQwtaWCyK2JBiWfaQRkfwLkdDyQOcdK83FY5NOEPvOmlRd7ssV5J1hQAUARt/x8p/uN/NapbCMrxD4n0bQ0dbu8ha7VA62aSp5zgsFGFJHGWHJwB1JxVQpSnsJzSLui6jb6tpVtqVrv8AJuIw6BxgjPY4yM/QkVMo8rsNO6uXKkYUAcj4jsbOxvLN7OLW0nSUTxfYo5J4YsZBBjztAIZhgAHBOO1bwba1M5KxJ4WuNQ1u1Mty9w1lHfO8U86orzojYQbUAwMruOQp4xjqQp2iEbs6qsTQKAKGuXDW9opS4MG6RVZ12lwpIBKhgQSM%2Bh4zVwVyZE%2Bn2iWVqtvG7uAzMXcjczMxZicADkkngAVMndjSsWKQwoAKACgDOn0XTpHaSOD7LKzFnltWMLuT13MmCc%2B9WpsnlRAl3qOmwZ1CBbm2jB33UB%2BcAHlmjPbHXaWPHQU7KWwXa3NdGV0V0ZWVhlWByCPUVm1YoWgAoAKACgAoArNNNcXLWWnKklwB%2B8ds%2BXAPVsdT3Cjk%2Bw5rrw2FlWd9kY1Kqgbmk2Een2ghRmkdjvllb70jnqx/w6AAAcCvdhCMI8sThlJyd2XKsQUAFABQBzfxM/5Eq9/34f8A0clAHSUAFABQAUAFAHM%2BN/8AkIeF/wDsNp/6InoA6agAoAoa7p/9o6e8KMI7hfnt5cf6uQfdb6diO4JHeoqQU4uLHFuLujEMt9ZymDU7SRm6pPaQSSRyD3ABKH2PHoTzjxq2BnB%2B7qjthXi9yWyu7W9h860uI5487SUbOD6H0Psa4pQcXZo2TT2JqkYUAVr%2B4S0VrmQErHE7ELyTjbwPc1cIuWiJbtqfPV54o8M%2BI/jC%2BkalKVt3V7tfs0uYzI9qsUkRlUDBbZHgHGSSCQRg%2Bk6UqcPd3/4JzcylLU928FtG3hiyETwuqK0f7ogqCrFSOOAQRgjsQRXDif4svU3pfAjYrA0MrU9UvLa9e3tdKkvljt/Oby5lV8ksFUK2AR8pyc8ccHPFximtWS2UL251G6tLcx6jbJHfSCDy4YW8xASQ%2B1iQdygEElRggkgYNWkkxF%2B4tn0ydLvTrcm3ICXNtCgGRjAkUd2HAI7r6kAVKfNox2tsK%2Bv6Uh2SXLJMAMwNE4lGenyY3c9uOe2aXs2HMi9ZXUN5ax3VuxaKQZUlSp/I8j8alpp2GncydXjkg1aLVbyMXNjboQgRMtbk4zIRglhx1BG0djyRpHVWW5L3ubgIIyDkGsmWFABQAUAFABQA1Oh/3j/OmwM46a9n5kujusBb5jbP/qHPPQdUJJ6rx6g1XNfcm1ti3p91He2cdzGGXcPmRhhkYcFSD0IOQfpUyVmNO5YpDCgBGIVSzEAAZJPagCtaxXOs4%2BzO9vp563I%2B/MPSP0H%2B3/3z/eHqYXA396p9xy1a/SJ0VlaW9lbLb2sSxRL0Vf1J9Se5PJr1kklZHIT0wCgAoAKACgDm/iZ/yJV7/vw/%2BjkoA6SgAoAKACgAoA5nxv8A8hDwv/2G0/8ARE9AHTUAFABQAlAGNrmjtNP/AGjprJBqCqAd2Qlwo/gkx%2BjdV9xlTz4jDxrRs9y4VHB6FHT7xLuJj5bwzRN5c0Mgw8T4yVP5ggjggggkEGvAq0pUpcsj0IzUldFmsyjnPE1/ZNaSzXF21tY24KtcCBpQ85ZVjjVV5YiQqSB3AHc49PBUGv3k9Ec1apf3UeU3Pg%2BGbUSNSt7SwubCGOXSEsVSFrneyk/cByqshBAO48BiVbJcKib93br8hOPc3/DGseJfDDXNlJpFvf2kms/ZFnSfbISsewYjUNksIlftjexPAzWVanGVpN6tXKhJrQ9VvPtH2Sb7J5f2jy28rzPu7scZ9s1xK19Td7GJa/atGhS7vViK3E6rOVjaScljtUsy/eO4gYCgKDxwM1btLRE6ot6RDppv7m4tvP8AtDfMyzI6FA5JO1XAwGKknHUj2pSbsNWuatZlBQBmXei2Th5bSJbO6O5lnhGxgxOTnbjcCeSD1q1N9SWjL1LxDbyW95pk%2By3uVxHO5cPDGjsVLF8gDgMdrYbjp62odUS5dDo7byfs8f2by/I2Dy/Lxt244xjjGKyd76lokpDCgAoAKACgBqdD/vH%2BdNgOpAZd55mnXj38UUsttLk3SR7nYN8oV1QAk8DBAx64PNWveVidhx1ywEiLi7AdSVY2koBIOCv3c56nHYAk9KORhzItPfWq2cd35u6KUAxlQWL56BQOST6DmiNOUpcq3BySV2TWWlTX5WfVo/LgBylkSDn0MhHBP%2ByOPXdxj2cNglS96WrOOrWctFsdAOK7zAWgAoAKACgAoAKAOb%2BJn/IlXv8Avw/%2BjkoA6SgAoAKACgAoA5nxv/yEPC//AGG0/wDRE9AHTUAFABQAUAFAGVq2ixXs5uobmeyu/L8vzoSPmHJAZWBDYJJHcZPPJzjVoQq/Ei4zlHY5jWpriGOG01q1njgEpF3Jbxs8EsQjc53YJVSwXKn5u3zA5Pn08H7KreWsTeVbmhpuIn22/wBHh0W60mC5tVtgjT36rGJiCp3CCMfLggcEofYYrerj6aVoq5EKEnq9DH8JeDdM0S9NjY2v9mS3TAK4jE0ThD5iCNhhl2lF%2BVx0VgCx%2BaijUpV04p2b6BOMoNM1LbQYE17yTcXUsGliE4JAjlufKwWI6khDGR2BPftzY5qDUY9jWgnJXZra3dS2emSz26LJNlUiVicM7MFUce5HoPUgcjzoq71OhuyM3S/D/k3xutQuHvJonXyJmc7yqhgN%2BMA43HGc889Txcp6WRKj3LeotLaanFfLbXFxCYHilWFQzKQQynHUj7449RxUx1VhvR3I5NWu2TzbbR7somHlEw2NsJx8gGdzYydvB6A4JxT5F1YXZp280VxAk8EiyRuMqynINQ1ZjRkwXGtajZmW1azgimZvKmO4yRpkgfJgqWxznOM9j3tqMWTqyG2sYo7mO20yBTLYARG7nckKSCxGxSNzAOfQDzDjuKblpdhbsauk2K6faGESby0jyuQoUbmJJwo4Ayen5knJMSlcpKxbqRhQAUAFABQA1Oh/3j/OmwG3E8NvH5txNHCmQNzsFGT05NCi3sJuxDFdTXQH9n2NxcA9JGXyo/rubGR7qGrsp4GrPdWMpV4otRaRqc4zd38dspOdlomWHsXcc9%2Big13U8ugvidzCWIk9i3pWgaTpj%2BZaWSLNlj5rkvJlvvfM2SMnk4rthTjD4UYOTe5qVYgoAKACgAoAKACgAoA5v4mf8iVe/wC/D/6OSgDpKACgAoAKACgDmfG//IQ8L/8AYbT/ANET0AdNQAUAFABQAUAFAGF4qBlm022JxE9wZJF/v7FJUf8AfW0/8Brjx8nGjp1NqCvM4G98W6vp3xQbQNQtbf7FdWv/ABKVhidpbiU7eGcEqoyJM5UABQdxyceXSoe1guXe50yqcr1PQLTS7XSrc6ndb7q8hhZ5JmYnnGW2KThB2AGOOK9ulRhSVoo4pTctzP0ZZDZfaZ1Anuna4kGc4LnIXPfaCFB9FFfP4ip7So5HoU48sUitr5e7gl0u1heS5eMOHyFSE7vkdic/xLnADH5elTDTVjlroaUAkWFBKwaQKA7AYBOOTUPcofSAKAMq40q5kFxDFqklrbzs7EQRKJAWGD87ZHXJ4UHOOfXRSXYmxpwxpFEkUahURQqqBgADoAKh6jM/QVkIup1JFpPOZbdWHzYPLN06M2WGcnB%2BgFT7CiaVQUFABQAUAR3E8FvH5lxNHCmcbpGCjP1NNRbdkJtLchhuZ7sD%2BzrC4uFbGJXHlR9uctgkc5yobpXZTwNWe6sZSrxRYtdJ1G4G68v1t03H93aICRz0LuDnv0VTXdTy%2BnH4ncwliJPY0LHRdMs5RNFbB5h0mmYyydv4mJPYd67YU4Q%2BFWMHJvc0asQUAFABQAUAFABQAUAFABQAUAc38TP%2BRKvf9%2BH/ANHJQB0lABQAUAFABQBzPjf/AJCHhf8A7Daf%2BiJ6AOmoAKACgAoAKACgDI8Q2V9cvbXFgbdpYC37udiqsGA53AEgjHoeprnxFD20OW9jSnPkdyto2mX0OsJfancW0kvkOkUUEZCxAspPzE5c8KM4UfL0GanDYZUL63bHUqOZb8UXostJkIsZr55v3KQREAuzAjBJI2j1PYVvUmqcXKRnGLk7I4y5ursjS7LUTdaTCBme5eVVErIFwm9H%2BXdljzj7vFfOpLVrU9Bt6Jm7YWEdpNNOJ553lVV3SsGKopYqoOMkDc3JyeeSazcmy0i5UjCgAoAKAKWszyQ2YSCTy555FhibbuILHBIHcgZb0454qorUllm1gitbWK2hXbFCixoM5woGB%2BgpN3YySkMKAEkdI42kkZURQWZmOAAOpJoSuIgsbW/1YRXHmSafYModcAefMDgjIIIRcf8AAuf4cc%2Bvh8vW9T7jlqYjpE1rLRdMtJhPFaq846TSkySDjHDsSR06Zr0YU4QVoqxzOTe5oVYhkH3D/vH%2BZoAkoAKACgAoAKACgAoAKACgAoAKACgDm/iZ/wAiVe/78P8A6OSgDpKACgAoAKAI5JY43RXYAvwoPf8AzmgDnfG//H/4W/7Daf8AoiegDpqACgAoAKACgAoASgDJ8S6pFo1k%2BozGPEcZCCSURqzsyKqljwoLEDPaplJRi2xpXdjF0%2B/uvEC2msSNJa2ePMtrTjLZBG9278E4A4wQTk9PIxuKcm6a2OujSt7zNIjIwehrzTpMjR7W3h1a9ayQwW8QWExI/wC7L43MQnRcBlHGO%2Be1aSbsrkpamvWZQUAFAFK81GOGY28EMt5cKMtFDg7OONxJAXPvyewPNUo9RNjNP0uGKQXt1DbzaizMzT7AWTPG1SeQoHHv17mnKXRbCSNCoKCgAoAqaTbza4yXVxEItMVy0SFtxusEgMccCM/KwHVu%2BAOfZwmD5bTmcdatf3UdTXpHMLQAUARwfcP%2B8f5mgCSgAoAKACgAoAKACgAoAKACgAoAKAOb%2BJn/ACJV7/vw/wDo5KAOgeWNJFjZgGboPWgCSgAoAKAKGojN5Zn0cn%2BVAGR43/4//C3/AGG0/wDRE9AHTUAFABQAUAFABQB5Z8cb/wCIOlRRan4Xuvs%2BmW6j7T5MUcsrliR91wSedgwoJwzHkgCsqjktUVG3U86tn%2BJvjG8spr3%2B1Ps0r3NuWurUWq28cisok2A4kKKyYdcBsEYGSTwVq6cfeZvCGuiPd4o0iiSKJFSNFCqqjAUDoAPSvJbvqdaVh1IZmx6JYRq6qbzY7FmU3sxXJOTxuxySavnZPKinpVtN519YrrGoQvby8R7o5NsbcoQZEZiMZHJIyrAdKqT2dhJdCxpmppHpaSapdwxy/aZbcM5CFysjKvHqQoPHucAUpRu9Bp6alrUbidJIbW1VPtE4Yqz/AHUVcZYjv1HHfPYZNTFdWNsqaakum6gbKeb7Qt3umSYoFYyDG9SFAHTBB64BB6Ampe8riWjNesygoAp6ldz272kVtai5muZjEqGTZ0jdzzg84QgZwMnqK2oUXWlypkVJ8iuVLi4a8mjsru2u7WE3ItrxVCsysyKyrkE/I28AsORntyR10cPGnX5KnyMZ1HKF4naRokaKiKFVRhVAwAPSvaOMdQAUAFAEcH3D/vH%2BZoAkoAKACgAoAKACgAoAKACgAoAKACgDm/iZ/wAiVe/78P8A6OSgDVvVzqNqfTdQBeoAWgAoA86%2BN/ijUPC2m6bdabPYQyyTOCbqGSThV3ZAQHgEAnPOOnNAD/FPinRJvEPhXR21S2OprqsUkkC7hgG2lbIyOmGH503oxJ3R3f2q2/57p%2BdIYfarb/nun50AH2q2/wCe6fnQAfarb/nun50AH2q2/wCe6fnQAfarb/nun50AZHjJYLzw7drDiW6ijaa1CSBWEyglCDkd/XgjINRUipxaY4uzuUob21nME8UymOSIupJ7HaRXzbi1dHpJk/2m3/57J%2BdRysdw%2B02//PZPzo5WFw%2B0wf8APZPzo5WFznvDGuafLIyMZRNdSPILh0Ply/MdqhvUJt%2BXtyOoYDWcGTFo15bfSZHmd4LQyTqUlfYu5wRjBPU8VHvDsjF0i7ga70uzaZpZLCOWKVWODEVAVXbpkleARwQ5I4q5Rdm%2B5KZs6osd1HC0N4kE9vL5sLkBgG2lSCO4Ksw6g88EGojdbopq5Xe/1NEWI29pLIx2iaOb5F5%2B%2ByNggYydoLHPGe9VyoLsGfVXO0appkSg8MLZmLfgZBj9f6UWXYWpJoIuZPEpa/1G0nis7cSR%2BXEYz5khZc/ePAVG/wC%2BvavTy%2BmtZ/I5sRJ7GxcaVotxqzalNK7yNsJjM7eUWUgqxTOCRgdfSvQdOLlzNamHM0rGp9qtv%2Be6fnVkh9qtv%2Be6fnQAfarb/nun50AH2q2/57p%2BdADIbq32H98n3j39zQA/7Vbf890/OgA%2B1W3/AD3T86AD7Vbf890/OgA%2B1W3/AD3T86AD7Vbf890/OgA%2B1W3/AD3T86AD7Vbf890/OgA%2B1W3/AD3T86AD7Vbf890/OgA%2B1W3/AD3T86AD7Vbf890/OgA%2B1W3/AD3T86AOY%2BKd/ZQeBNRnluY1jj8p3YnoBKhJoA5X4n/EWOz0nTdW8LatpUsUksyPLPDK4BRVJ4UfdG4bu/I296XWwdD1aNt0atkHIB46UwQ6gAoA8o/aRkmj0LSjFLMn%2BksTs1JLUcJ1%2BbqR2PRepzS6h0Oq8Tkn/hDySxJ1aLJZwx/49pupHB%2BtU9xLY62kMKACgAoAKACgBkql4nVXKEqQGHVfcZoA47w27vo%2Bmeau2ZbQJKmeUdQoZT7hgQfpXzVWLjOSfc9KDukatYlEdzNFbW8lxO4jiiUu7HoqgZJpq7Azo9dtA7C7iuLFCm%2BJ7lNglHfaM5yP7pAPI4q%2BR9BcyIzeWmq31pa2N7bT2yr9pkMLB/uOuwZBwoLZPqdhHrRZxV2K92XNcmlt9KmlhKqw27nboilgGfqPuqSeo6VMdWN7EmmWUVhZpbxFmI5eRjlpGxyzE8knFEpNsaVizU3GFFwCgBPCkYa/1i6MnmOZ0gBAGAiRhgvA7GRupP8ASvewEUqN%2B5wV3750FdpiFABQAUAFAEcH3D/vH%2BZoAkoAKACgAoAKACgAoAKACgAoAKACgDm/iZ/yJV7/AL8P/o5KAOI/aPlnj0/R/Jlnj/fSH93qaWnIC4PzfxDs/ROSc5FLqHQ9Yi/1SZz90dTn9aYIfQAUAeSftLxX82g6THp0F1LM93sIt9NjumCkDd99ht4zxzuGeOMhdR9DrvEwwPBwwRjVousew/8AHtN/D/D9O1U9yY7HW0hhQAUAFABQBHcTQ28RlnlSJAQCzsAOeByaAKuparZafZx3VxIxjlYJF5MbStITyNqoCTxk8DoCegqZSUVeTGk27I5S2i1iW7eQzx2dvNJJLHFJEJJ0VmDMCwbaDknAwcDHJrwcTUhOblE76cZRjZlgaFpjqftlrHfyNy8l2olLH6EYA9gAB2Fc7m%2BhfKh0WiaZHIri3LlCCiySu6oRyNqsSBj2FLnYcqNCpKEVVUkqoBY5JA6mi4CkAjBGQeooQjN8LqV8P2WSdpiDID1RDyq%2B%2B1SBnvjNXP4hR2NKoKCgCjq07%2BWbC0Er31zG4hWIAsnGN5zwACRyfUda6MNQlVmrLTqZ1JqKOl0%2B0trGzjtbSIRQxjCqDn8STySepJ5J5NfRJJKyPO3LFMAoAKACgAoAjg%2B4f94/zNAElABQAUAFABQAUAFABQAUAFABQAUAc38TP%2BRKvf8Afh/9HJQBwn7SsV/Np2jJp8F3M7zSI4t9Mju2CHZn77DsPuc7huyPlyF9oOh65D/qU/3R2x%2BnamJD6BhQAUAcz43/AOQh4X/7Daf%2BiJ6AOmoAKACgAoAKAOS1a2W68XMdQtxKkNoPsW%2BPcgDN%2B9OSMbshB1zjHqa8vMpTVl0OrDpO4tnpOnWc3m2tqkRGdqqSETPXavRc98AZrzJVZyjyt6HSoRTukWW/4%2BU/3G/mtSthklSMKACgAoAZcSeVBJLjOxS2PXAprcTKugK6aHYJJKsri2jDOvRjtHI9qc92C2LtSMKAI9BEz%2BJb6WPYbdLeKGUlfmEgLMAD3G18n6rjvXtZcmqbfQ4sQ1zHR16JzhQAUAFABQAUARwfcP8AvH%2BZoAkoAKACgAoAKACgAoAKACgAoAKACgDm/iZ/yJV7/vw/%2BjkoA6SgAoAKACgAoA5nxv8A8hDwv/2G0/8ARE9AHTUAFABQAUAFAGH4tgsTbw3l3dX0DREpGto%2BHmLYzGBjknH1HJyMZGNaFOUb1NkXByT90y/D1reWmn4v725up5GMh89lJiBAAjBVQCAB1xycnvXz9VxlL3FZHfBNLUig1q1nuIn8i%2BihcFY55bSRInyVAIYjGCSACcZ4x1FaywtWMOZrQlVYt2ua1cpqFABQAUAFAGZoSRRy6lHAoSFbw7FAwo/doWwO3z7j9ST3q59LkxNOoKGTSxwwvNK6pGilnZjgKBySaEr6CLPhKFlsJbyWKSOa8neVhIu1tudseQQCPkVODznNfSYan7OmonnVJc0rmzW5AUAFABQAUAFAEcH3D/vH%2BZoAkoAKACgAoAKACgAoAKACgAoAKACgDm/iZ/yJV7/vw/8Ao5KAOkoAKACgAoAKAOZ8b/8AIQ8L/wDYbT/0RPQB01ABQAUAFABQBznisTRanp981rc3NpCkqv5KeZ5LttCuUHzHjeMqDjJ7EmuLG0p1IWgbUZRjLUrnSbjX1aK9SS20lgA8DxlZbkZOQ3OUQ/LkEBjyDgdccLguX3qm5dWtfSJvzWttJss5LeJ7ZoHjMJQFCnyjbjpjHGK9M5jIutAu7W3dtJ1KfdGCYba42yRtx9wsRvx77jj3HFcVTAUpXa0No15IpRavBMhW3trya4HDW6W7F0b%2B63G1DnjLED3xXlrB1XK1jqdaCV7ksV3Ol%2BLDULT7JcPH5sWJA6SqPvbWwPmXIyMdxjI5oxGFlRs3sFOqplyuU1MybXdNQyokxkmTIWJY2LSEdkAHzc8ZXOMH0NXyMnmRLpFrNbpcSXAjWa5mMzrGcqp2quAcDPCjnApSd9hpF6pGVtUihm0y6huWCwSQushPZSpB/Sqi2ndCexreGJdQm0Czm1Tyvtbxhn8tSowfu8HocYyPXOK%2Boje2p5j30NKmIKACgAoAKACgCOD7h/3j/M0ASUAFABQAUAFABQAUAFABQAUAFABQBzfxM/5Eq9/34f8A0clAHSUAFABQAUAFAHM%2BN/8AkIeF/wDsNp/6InoA6agAoAKACgAoAKACgCFv%2BPyP/rm/81oAmoASgCtqWnWGpW/2fUbK3u4QwYJNGHXI6HB70mr7gcXaTfZ/CiWhWRrpVazEIxu84ZUoOfujBwc/dGc189Xg41nc9CErwRtWsEcFrBAqIFhQKoUcLgY49K529TRIlpDIrm4itow8pYAnaoVSzMfQKMkn2AqoQlN8sVqKUlFXZVu7W/1iA2cVhPbQu6757jaq7QQWGzO45xjBAByeo6%2Bjh8DNTUpaWOapXi1ZHWjpXsHILQAUAFABQAUAFAEcH3D/ALx/maAJKACgAoAKACgAoAKACgAoAKACgAoA5v4mf8iVe/78P/o5KAOkoAKACgAoAKAOZ8b/APIQ8L/9htP/AERPQB01ABQAUAFABQAUAFAELf8AH5H/ANc3/mtAE1ABQAUAclqmn22n%2BKP7RbzVju1wuSfLSclVJxjhnAQDJ/hOOWOfLzCk378V6nTh5rZl6vIOwKAINOT7R4sUOmUs7TzEO7I3yMVzjsQqsAe4dhxg59bLYLWRyYl7I6avVOUKACgAoAKACgAoAKAI4PuH/eP8zQBJQAUAFACUAMgmhuIhLBKksZzhkYEHHHUUCTT1RJQMKACgAoAKACgAoA5v4mf8iVe/78P/AKOSgDpKACgAoAKACgDmfG//ACEPC/8A2G0/9ET0AdNQAUAFABQAUAFABQBC3/H5H/1zf%2Ba0ATUAFABQBBf2lvfWr2tzHvifG4ZIPByCCOQQcEEcg0mk1Zgc5HZ65Zs9qloL2FGPlXD3IVmQ8gMCM7h93POcA55OPKq5c3JuDsjqhiElqQahqF3Z25WfS7qC5kXbbq210ll6BAyE4ySPvY4yccGsHgKsWkaKvFo3NF0S001/tCvcT3bRCOSeaVmZgOehOAM5OAO5r2adKFNWirHHKTluataEhQAUAFABQAUAFABQBHB9w/7x/maAJKACgBCQoJJAA6k0AeZab4lvNUvdAiPjfS2OpardSWaabYtLHfWcQOYGdsiNx3bjpgZqrHnRrSm4rnWrdrLdLoV/D8suhf8ACOabaKvgwX0V/DaeHZoPtKSXAJdZXmXlQPvYyMhsUE026fJFe5e9o7697nceAtWOseErG/m1XTdTnKFbi60/PkPIpIbbnnAIPWkztw9Tnpptp%2BhYsvEvhy9u1s7LX9KublyQsMV5G7nHXCg5pFRrU5Oykr%2BoReJvDct6LGLxBpL3RfyxAt5GZC2cbduc59qBKtTbspK/qI/ibw3HfGxfxBpS3Yk8swG8jEm/ONu3Oc57UWH7ane3Mr%2Bot54m8OWd41nea/pVvcoQGhlvI1dSegKk570WB1qcXZyX3jr/AMQ6BYXD219rmmWsyKGaOa6RGVT0JBOcc0BKtTi7OSXzLtjeWl/apdWN1DdW8gyksMgdG7cEcGguMlJXTuYXxM/5Eq9/34f/AEclAzpKACgAoAKACgDmfG//ACEPC/8A2G0/9ET0AdNQAUAFAHL/ABBu/EFpaWjeH45nlaVgwigEu5gjGNGyDtRnChm4wO69aOoPY5rUNY8bprWoW5i1GCE36JZyQWHnRLHukA3kRE7CiozEFjk7d0eTgQmR%2BMtV8dReIbk6RJqa6VujbMGl%2Ba8UexPuhoyXZnLZ%2B9tCEELkNS6DM34aa78RrnWbWbxMNaazkV2ltpdKEPkczYywhG8gJDwrDJl4LbSBQncuT6v8RBeIYbe8eQB9iPYqEaffEHhJ2/6lVMhWTI3EAbm6FdB9TaudT8SJ4CkuQ%2BrnUDdGO2lXTgbh03EK0kQQ7B/eOwnaOBkihiV7GXFqvxAXWnhdb6W2%2B2/LKlgFjIMwCw4Kblj8rczSZPO0BgQVIBLrur%2BORql79gi1FbXexj2aeG2DyswBCVy298CTOdn%2Bx1pFM1tAv/E8ujazJqq30U8Y/dFLNd8T/NvWFcfvUUBSrENuyfvdKOgupiXNz8QW0dr5L7UoJVtLdXi%2BwxvulLne6KIS4yqDqpx5xyq7cBh/X4l7xFq3jH%2B0bb%2Bz7bUYLdoYftCJZiXykJkE8gbb80qERhVGQwYkKw6PTUWtkWvAOoeL7q/kXxBBcootQzJJbCNFfbFsKsByzZl3DJ2lQML3XQfU5y21j4lLbIrRahNKsR/eNYALN8khkbBjUoUIjCKfvnP3wcqAzX1LVvGi6ZpjadBey3WJdwkstvnsJUEXnfKBGDCXckbcOuOPulBoP8Lal4wn1%2ByivRqEmnsSN9zYiEyR7ZSzyYUbHDrEqrxlWJweq0I9ByKQwzQAtABQAUARwfcP%2B8f5mgCSgAoAyPFllq9/ozW%2Biaz/AGReeYji5%2BzLP8oYFl2Hj5gCPbNNGVaM5RtCVn95yXg/xFph16ydNTls9P11Hj0XRJtJ%2BzPA8Bbz2yB/F975se2abRy0a0OdWdlLZWttua3jrVonj07RdM8Sx6Pq%2BrTEafcLafaQ/lENKoH3R8oI5I68c0kjXEVE0oRlZvbS%2B25l6PHc6/oGt6hpEtxHot/YTW1jo0unLZvDMPMV33Hn529RgdaZnBOpCUofC00la2v/AATyL4ZeC9VXXvC0OreHPEVo2mzRSvIPD9lbRrJGhHz3Kt5jpnPUEtxxmqdrHlYWhU9pBSi1b%2B6l%2BInhrwnr2i%2BIdJstJ8KaxJFbalEpfVPDVhsWISguzXKsXJC5IYdSBjFDsKjRqwnGMYOyfWK/M6TRfgnd6vYXTatqEWlpPqVzI9sdItpbgJ9pZlIucb/mGCD2Bx0pcx1Qy2U0%2BZ21ellffuc38S/DfizU9a8Tw/8ACIXryXFxMlm1l4bspIZY2HyO1yzCUM2csw5BJx6BqxzYqlWlOS5Hv0ivz3Nq6%2BHlzdanO2o%2BHLGS5bxRpkpeVY3/ANDS3jEq7mJOzKsNpPJ9c0N6miwj2lHXmX3WPTPgpod34f8ACt9Y3ViLFX1i9mt4QAAIWmYx4A6ArjA9MVDPTwNJ06bTVtWa3xM/5Eq9/wB%2BH/0clI7DpKACgAoAKACgDmfG/wDyEPC//YbT/wBET0AdNQAUAFAHC/HfTPGusfDHUtP%2BHt89j4jkeE2syz%2BSVAlQv8/bKBhQB4x8H/Bn7QGleIrmf4l6hrmvaU1qyQ29j4iEbpNuUhiQ6cbQw69xxQBT%2BKXgf9pDUvGE918P9Y1fRdBaOMRWl34hDyK4X5ySWfqcnrQB22neG/iVH8Lv7NvbTxTL4y/s%2BSP%2B0l8T4g%2B1FTsk2%2BcBtB2nG3t0oA8ePw5/bC81VPjK63lSR/xPF6cZ/pQBmW3hv9qm40qbVU%2BI5WwhmeGS5k19Y41dW2MNzYH3uM9D2zQA%2B28MftUXN%2BLC3%2BJtvNdklRBH4miaTIBJG0HPAB/KgD3rw22oWfhSNdft/E%2Boappdkp1me18XgqJUT94%2BxbgFQSrHG0fTtQBcg1C3ltbS5/sTxxFHdzPBF5/id4j5ibtyMHuAUI2Nw2OmPSgCawuLbULtrSwsPE93cKCWih8aq7gDAJIF1njI/MUAeO%2BNvAP7U154s1K68K%2BI9S07RJZ2axtZ9fDSRR9lY5bJ/E0AY/8Awrj9sX/oc7r/AMHi0AH/AArj9sX/AKHO6/8AB4tAHq3wl8EfGuPwfNZ%2BPPE0kmprqbTxu9%2BZfMt/s5XySy8qrOeSOQCSOcUuodDs5/D/AMSI31CTTNXtrU3E00tupnBWDIAQMpjO7gYGCAD8x3ZxVLzFbUs3WgfENLyBbPxMGtBc7pfOZTJ5fmyYwRHjHleWCO7ZPuUBS0Hw38T7azS1vvE0bLHFGiusqs5KwMBlmjP/AC02EnHIz9KatbUHe%2Bh3XhCDWLbw7aQa/PHPqKKRNJGchvmO38duM9ec8nrSBGvQMKAI4PuH/eP8zQBJQAUAFAHIx%2BGddtJLZrXxdeTRrqsl5ci8gjmaSBwf9GRuNig4wRzTucvsKitafW%2BvbsZfgzw/qX9l6eNPt5fB2lx293FLowWOaVJZJDtmWbJ2kcsB0%2BYCm2ZUKMuVW9xa6frc7Lw7p82laHZ6dcajdalLbxCN7q5IMsxH8TEd6k7KcHCKi3c0KCwoAKACgDltQ8AeFNQ1WTU73SxNcyS%2Ba7NI3zNjHIBquZnJLBUZScpRNzRdOh0nTYbC3lnkhhUKhmkLsFHAGT2ApN3N6VNU4qK6GR8TP%2BRKvf8Afh/9HJSNDpKACgAoAKACgDmPiB58Q0O%2Bhsru7Sz1VJpktojI4TypVyFHJ5ZenrQAf8Jlbf8AQA8Tf%2BCib/CgA/4TK2/6AHib/wAFE3%2BFAB/wmVt/0APE3/gom/woAP8AhMrb/oAeJv8AwUTf4UAH/CZW3/QA8Tf%2BCib/AAoAP%2BEytv8AoAeJv/BRN/hQAf8ACZW3/QA8Tf8Agom/woApTeP9Nj1y1sH0fxGt1NbzSxxnSZtzIjRhiOOgLr%2BYoAzru60yfT5LWPTfGNu7X7X6TJpDlo5SxbgMhUjkjBB/PmgCppEGg6ZdwXMOkeMXkglMoL6S/wAx8y5k5wg73Un5L75EJq5fuLzQpbTVbf8AsDxio1SN47hjZXT4DA5KB8qh%2BY9AB09KBmffQaLe2GnW91pvjOSaw1BtSiuf7JcSG5bed5ATbwXJAxjgDkUATeH/AOxNFvbe6tdH8Xs8EQjUPpMmCBFHFzhB2iU/UmhaKwmru50n/CZW3/QA8Tf%2BCib/AAoGH/CZW3/QA8Tf%2BCib/CgA/wCEytv%2BgB4m/wDBRN/hQAf8Jlbf9ADxN/4KJv8ACgA/4TK2/wCgB4m/8FE3%2BFAB/wAJlbf9ADxN/wCCib/CgA/4TK2/6AHib/wUTf4UAH/CZW3/AEAPE3/gom/woAP%2BEytv%2BgB4m/8ABRN/hQAf8Jlbf9ADxN/4KJv8KAKejfEHS9SsjdWOkeI54fOli3ppM2N6SMjjp2ZWH4UAXP8AhMrb/oAeJv8AwUTf4UAH/CZW3/QA8Tf%2BCib/AAoAP%2BEytv8AoAeJv/BRN/hQAf8ACZW3/QA8Tf8Agom/woAP%2BEytv%2BgB4m/8FE3%2BFAB/wmVt/wBADxN/4KJv8KAD/hMrb/oAeJv/AAUTf4UAH/CZW3/QA8Tf%2BCib/CgA/wCEytv%2BgB4m/wDBRN/hQAf8Jlbf9ADxN/4KJv8ACgA/4TK2/wCgB4m/8FE3%2BFAB/wAJlbf9ADxN/wCCib/CgDJ8X682taBNplloHiL7RPJEE8zTJUUYlUkliMAAAnJoA72gAoAKACgAoAKAEoAKACgAoAKAOa%2BJWu6p4c8LS6po%2BlPqd0ksaeUqF9qswBbapBOPQEdaAODn%2BJfjdZZwngqbak10ibrabJWNAy5x3U/e7N0XmhAyvD428UXfiTTNRuPAzi6jMNos3kzjy4rkI8o/u/M0SEE/c24bk00tRM9aH9p5OVhA7YpDLFn9qw32kJ1%2BXbQBPQAUAFABQAUAFABQAUAFABQAUAea%2BOPHPirRPE99pmm%2BGWvLSG0E8d0IZHUt8uEO3qXYsgAHykAktkqBag9DJ/4WV41850bwe0aiaSPc1rOQqiPcXOOojb5Wx98n5cdKA/4Js/CTVdXu7K6sG8Nf2JFGEuxG6yjbLcPJLMpL/eO47%2BOgkAIGKOgutjuB/amDkQfhQMvJnaN2M45xQAtABQAUAFABQAUAFABQAUAFABQAtABQAUAFABQAUAFABQAUAFABQAmKADAoAMCgBaACgAoAKACgAoAKACgAoAKACgAoAKAEwKADAoAMUALQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQA/9k='/%3E%0A%3C/svg%3E)
Manejo reproductivo de bovinos en Chone, Ecuador / Figueroa-Zambrano et al.___________________________________________________
2 of 9
INTRODUCCIÓN
La ganadería bovina constituye una de las principales actividades
económicas agropecuarias a nivel mundial, con una participación
estimada del 13 % en el suministro de energía de la dieta humana.
Además de su aporte directo en alimentos, este sector contribuye
indirectamente a la seguridad alimentaria al generar ingresos
mediante la venta de animales y productos derivados, los cuales
facilitan el acceso a alimentos básicos para las familias rurales
[1, 2]. La producción de carne y el consumo de sus derivados
pueden tener efectos positivos en la salud humana, son fuentes de
proteína de excelente calidad, aminoácidos, nutrientes esenciales,
también de hierro y lípidos. Sin embargo, se han identificado una
serie de posibles daños asociados con la producción y el consumo
de productos lácteos, incluidas enfermedades crónicas, riesgos
transmitidos por los alimentos, riesgos laborales y enfermedades
zoonóticas [3, 4].
Además, investigadores mencionan que la ganadería es una
fuente de riqueza en las regiones de bajos ingresos, tiene un impacto
en el bienestar social, cultural y contribuyen a las economías
locales, regionales y nacionales, brindando oportunidades de
empleo y generación de ingresos [3, 4]. Sin embargo, los sistemas
de producción bovina en pequeña escala, comunes en regiones
tropicales de América Latina, suelen presentar baja eficiencia
reproductiva debido a factores como, la baja condición corporal
por la escasez de forraje, la seroprevalencia de enfermedades
reproductivas [5].
Se ha demostrado que la rentabilidad de las unidades de
producción está directamente relacionada con la eficiencia
reproductiva del hato; un incremento en la tasa de gestación,
una reducción en los días abiertos y un mayor número de becerros
destetados se traduce en una mejor rentabilidad económica
[5]. Asimismo, la suplementación mineral ha mostrado efectos
positivos sobre la productividad y el desempeño reproductivo de
los bovinos [6].
La eficiencia reproductiva (ER) constituye diferentes
formas, expresiones e interpretaciones de la vida, fisiología y
comportamiento de la reproducción; la adopción y adecuada
utilización de registros reproductivos son clave para una buena
eficiencia y para la toma de decisiones y la implementación de
programas de mejoramiento genético y productivo, con estos
registros se pueden obtener los parámetros reproductivos como, la
pubertad, la edad al primer servicio, peso, la tasa de concepción, el
intervalo parto–concepción, la tasa de preñez, tiempo entre partos
y el registro de factores ambientales (temperatura, humedad,
exposición a la luz) nutricionales y sanitarios, entre otros.
Estos parámetros permiten evaluar la fertilidad y la capacidad
reproductiva tanto de hembras como de machos [7].
La gestión eficaz de los hatos depende del registro de datos
y el procesamiento de estos, para identificar los factores que
limitan o favorecen la producción, al igual de llevar detalles de
los ingresos y egresos, y la mano de obra [1]. En este sentido,
conocer las características de las unidades productivas es
importante, ya que permite transformar la información de los
registros en herramientas para identificar las posibles debilidades
y limitaciones, lo cual ayuda a realizar estrategias orientadas a
optimizar la gestión reproductiva. En Ecuador, en la parroquia
Canuto del cantón Chone, una de las actividades económicas
predominantes es la ganadería, la cual muchas veces es manejada
de manera empírica, y esto puede que genere ineficiencia en los
parámetros de producción y reproducción del hato bovino.
Por ello, este estudio tuvo como objetivo caracterizar las prácticas
de manejo reproductivo en los sistemas bovinos ubicados en la
parroquia Canuto del cantón Chone, Ecuador, con el propósito de
identificar prácticas actuales, desafíos y oportunidades de mejora
que contribuyan a optimizar la productividad y sostenibilidad del
sector ganadero local.
MATERIALES Y MÉTODOS
Tipo y diseño de investigación
Este estudio corresponde a una investigación de campo, con
un enfoque cuantitativo y un alcance descriptivo, que busca
caracterizar los sistemas de manejo reproductivo bovino en la
parroquia Canuto del cantón Chone. El diseño metodológico fue
no experimental y transversal, ya que los datos se recolectaron
en un único momento, sin manipulación de variables.
Delimitación espacial y temporal
La investigación se desarrolló entre los meses de mayo a julio
de 2025, en unidades de producción ganadera de doble propósito
localizadas en la parroquia Canuto, perteneciente al cantón Chone,
provincia de Manabí, Ecuador (FIG. 1). Esta parroquia limita al
norte con la parroquia Bachillero (Tosagua), al sur con los cantones
Junín y Rocafuerte, al este con el cantón Bolívar y al oeste con la
parroquia Tosagua, localizándose en las coordenadas geográficas:
0°41’00”S | 80°06’00”O [8].
FIGURA 1. Mapa de la parroquia Canuto perteneciente al cantón
Chone, Ecuador