'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M402.1 166.3h43.7M82.3 182.8h95.3m5.3 74.7H326.1m-78.8 74.6h124m29.9 41.7h44.6M82.3 390.3h79.4m65.2 74.6H348m-22 74.7H443.6M235.1 630.8h121m-132 58.1H350.8m-28 58.2h123M108 854.7H241.2m-92.6 91.2h137m45.1 74.7H445.8M52 1045.7H82.3m241.7 66H443.1M672.3 182.8H796.7M584.3 274H724.5M538 398.1H657.4m45.1 58.2H838.8M622.7 530.9H745.6m4.7 58.2H868.6M519.5 663.8H646.1M545.8 771.4H668.9M545.8 862.6H668.3m45 91.1H832.4m-312.9 91.2H643.8' class='g1'/%3E%0A%3C/svg%3E)
Effects and antimicrobial properties of freeze-dried colostrums / Cingöz et al._______________________________________________________
8 of 9
bovine polymorphonuclear function and mammary epithelial
cells colonisation by Staphylococcus aureus. Vet. Immunol.
Immunopathol. [Internet]. 2003; 95(1-2):33-42. doi: https://
doi.org/bb2mrd
[15] Rybarczyk J, Kieckens E, Vanrompay D, Cox E. In vitro and in
vivo studies on the antimicrobial effect of lactoferrin against
Escherichia coli O157: H7. Vet. Microbiol. [Internet]. 2017;
202:23-28. doi: https://doi.org/gbphqm
[16] Menadi S, Kucuk B, Cacan E. Promoter hypomethylation
upregulates ANXA2 expression in pancreatic cancer and is
associated with poor prognosis. Biochem. Genet. [Internet].
2024;62:2721–2742. doi: https://doi.org/pg6p
[17] Criscitiello C, Corti C. Breast cancer genetics: diagnostics and
treatment. Genes [Internet]. 2022; 13(9):1593. doi: https://
doi.org/pg6q
[18] Miranda C, Igrejas G, Poeta P. Bovine Colostrum: Human and
Animal health benefits or route transmission of antibiotic
resistance—One Health perspective. Antibiotics [Internet].
2023; 12(7):1156. doi: https://doi.org/pg6r
[19] Lotito D, Pacifico E, Matuozzo S, Musco N, Iommelli P, Zicarelli
F, Tudisco R, Infascelli F, Lombardi P. Colostrum composition,
characteristics and management for buffalo calves: A review.
Vet. Sci. [Internet]. 2023; 10(5):358. doi: https://doi.org/pg6s
[20] Sharma A, Shandilya UK, Sodhi M, Mohanty AK, Jain P,
Mukesh M. Evaluation of Milk colostrum derived Lactoferrin
of Sahiwal (Bos indicus) and Karan fries (cross–bred) cows
for its anti–cancerous potential. Int. J. Mol. Sci. [Internet].
2019; 20(24):6318. doi: https://doi.org/pg6t
[21] Amiri F, Moradian F, Rafiei A. Anticancer effect of lactoferrin
on gastric cancer cell line AGS. Res. Mol. Med. [Internet].
2015; 3(2):11-16. doi: https://doi.org/pg6w
[22] Farziyan MA, Moradian F, Rafiei AR. Anticancer effect of bovine
lactoferrin on human esophagus cancer cell line. Res. Mol.
Med. [Internet]. 2016; 4(1):18-23. doi: https://doi.org/pg6x
[23] Shahzad MM, Felder M, Ludwig K, Van Galder HR, Anderson
ML, Kim J, Cook ME, Kapur AK, Patankar MS. Trans10, cis12
conjugated linoleic acid inhibits proliferation and migration
of ovarian cancer cells by inducing ER stress, autophagy, and
modulation of Src. PLoS One [Internet]. 2018; 13(1):e0189524.
doi: https://doi.org/gctt7m
[24] Sugihara Y, Zuo X, Takata T, Jin S, Miyauti M, Isikado A,
Imanaka H, Tatsuka M, Qi G, Shimamoto F. Inhibition of
DMHDSSinduced colorectal cancer by liposomal bovine
lactoferrin in rats. Oncol. Lett. [Internet]. 2017; 14(5):5688-
5694. doi: https://doi.org/gch2vd
[25] Abu–Serie MM, El–Fakharany EM. Efficiency of novel
nanocombinations of bovine milk proteins (lactoperoxidase
and lactoferrin) for combating different human cancer cell lines.
Sci. Rep. [Internet]. 2017; 7(1):16769, doi: https://doi.org/pg6z
[26] Niezgoda N, Gliszczyńska A, Kempińska K, Wietrzyk J,
Wawrzeńczyk C. Synthesis and evaluation of the cytotoxic activity
of conjugated linoleic acid derivatives (esters, alcohols, and their
acetates) toward cancer cell lines. Eur. J. Lipid Sci. Technol.
[Internet]. 2017; 119(10):1600470. doi: https://doi.org/pg62
[27] Alsayed AR, Hasoun LZ, Khader HA, Basheti IA, Permana AD.
Bovine Colostrum Treatment of Specific Cancer Types: Current
Evidence and Future Opportunities. Molecules [Internet].
2022; 27(24):8641. doi: https://doi.org/pg63
[28] Ebrahimabadi AH, Djafari–Bidgoli Z, Mazoochi A, Kashi
FJ, Batooli H. Essential oils composition, antioxidant and
antimicrobial activity of the leaves and flowers of Chaerophyllum
macropodum Boiss. Food Control [Internet]. 2010; 21(8):1173-
1178. doi: https://doi.org/d6w3nn
[29] Oskay M, Aktaş K, Sarı D, Azeri C. Asphodelus aestivus
(Liliaceae)’un antimikrobiyal etkisinin çukur ve disk diffüzyon
yöntemiyle karşılaştırmalı olarak belirlenmesi [A comparative
study of antimicrobial activity using well and disk diffusion
method on Asphodelus aestivus (Liliaceae)]. Ekoloji. [Internet].
2007 [cited 12 Dec. 2024]; 16(62):62-65. Turkish. Available
in: https://goo.su/xkc3
[30] Berkel C, Cacan E. In silico analysis of DYNLL1 expression
in ovarian cancer chemoresistance. Cell Bio. Int. [Internet].
2020; 44(8):1598-1605. doi: https://doi.org/gk58rp
[31] Berkel C, Cacan E. Involvement of ATMIN–DYNLL1-MRN
axis in the progression and aggressiveness of serous ovarian
cancer. Biochem. Biophys. Res. Commun. [Internet]. 2021;
570:74–81. doi: https://doi.org/pg7v
[32] Cacan E, Ozmen ZC. Regulation of Fas in response to bortezomib
and epirubicin in colorectal cancer cells. J. Chemother.
[Internet]. 2020; 32(4):193–201. doi: https://doi.org/pg7t
[33] Gülmez Y, Aydın A, Can İ, Tekin Ş, Cacan E. Cellular toxicity
and biological activities of honey bee (Apis mellifera L.) venom.
Marmara Pharm. J. [Internet]. 2017; 21(2):251-260. doi:
https://doi.org/pg7w
[34] Ariffin SMZ, Hasmadi N, Syawari NM, Sukiman MZ, Ariffin MFT,
Hian CM, Ghazali MF. Prevalence and antibiotic susceptibility
pattern of Staphylococcus aureus, Streptococcus agalactiae,
and Escherichia coli in dairy goats with clinical and subclinical
mastitis. J. Anim. Health Prod. [Internet]. 2019; 7(1):32-37.
doi: https://doi.org/pg7x
[35] Mansor R, Diauudin NS, Syed–Hussain SS, Khalid SF. Antibiotic
susceptibility of Staphylococcus aureus and Escherichia coli
isolated from dairy goats in selected farms in Selangor,
Malaysia. J. Vet. Malaysia. [Internet]. 2019; 31(1):12-16.
doı: https://doi.org/pg7z
[36] Bantaw K, Sah SN, Subba Limbu D, Subba P, Ghimire A. Antibiotic
resistance patterns of Staphylococcus aureus, Escherichia coli,
Salmonella, Shigella and Vibrio isolated from chicken, pork,
buffalo and goat meat in eastern Nepal. BMC Res. Notes
[Internet]. 2019; 12(1):766. doi: https://doi.org/pg72
[37] Rana EA, Fazal MA, Alim MA. Frequently used therapeutic
antimicrobials and their resistance patterns on Staphylococcus
aureus and Escherichia coli in mastitis affected lactating
cows. Int. J. Vet. Sci. Med. [Internet]. 2022; 10(1):1-10. doi:
https://doi.org/pg73
[38] Shahidi F, Roshanak S, Javadmanesh A, Tabatabaei Yazdi
F, Pirkhezranian Z, Azghandi M. Evaluation of antimicrobial
properties of bovine lactoferrin against foodborne pathogenic