'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M301.8 149.8h135M293.6 208H413M160.3 282.6h119m-79.9 91.2H321.9M140.4 464.9H279.6M100.8 539.6H235M82.3 647.3H222.1M82.3 754.9H204.9m104.7 74.7H445.8M269.1 904.2H404.8m-112 74.7H434m-118.3 74.7H437.9M662.3 182.8H796.9M519.5 274H643.6m147.9 58.1H883M519.5 348.6h50.7m217.4 58.2H883M519.5 423.3h45.8M686.5 530.9H825.3M645.8 605.6H769.9M662.3 696.8H786.4M685.1 787.9H827.7m-89.5 91.2H858.8m-42.5 91.1H883M519.5 986.7h68.4m-68.4 91.2H651.2' class='g1'/%3E%0A%3C/svg%3E)
Hepatorenal toxicity in rats / Keskin Alkaç et al._________________________________________________________________________________________
10 of 11
[18] Ellman GL. Tissue sulphydryl groups. Arch Biochem. Biophys.
[Internet]. 1959; 82(1):70–77. doi: https://doi.org/bz2vt8
[19] Sun Y, Oberley LW, Li Y. A simple method for clinical assay of
superoxide dismutase. Clin Chem. [Internet]. 1988; 34(3):497–
500. PMID: 3349599. Available in: https://n9.cl/obr0f3
[20] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein
measurement with folin phenol reagent. J. Biol. Chem.
[Internet]. 1951; 193(1):265–275. PMID: 14907713.
Available in: https://n9.cl/nrvmy
[21] Wang LL, Yu QL, Han L, Ma XL, Song RD, Zhao SN, Zhang WH.
Study on the effect of reactive oxygen spesies–mediated
oxidative stress on the activation of mitochondrial apoptosis
and the tenderness of yak meat. Food Chem. [Internet]. 2018;
244:394-402. doi: https://doi.org/pgpv
[22] Wang LL, Han L, Ma XL. Yu QL, Zhao SN. Effect of mitochondrial
apoptotic activation through the mitochondrial membrane
permeability transition pore on yak meat tenderness during
postmortem aging. Food Chem. [Internet]. 2017; 234:323-
331. doi: https://doi.org/g7fw42
[23] Hu ZG, Zhou L, Ding SZ. Effect of aerobic training to exhaustive
exercise rat mitochondrial permeability transition pore. J.
Shenyang Sport Univ. [Internet]. 2015; 34(3):64-67. Available
in: https://goo.su/JVvutD
[24] Steenkamp PA, Harding NM, Van–Heerden FR, van–Wyk
BE. Determination of atractyloside in Callilepis laureola
using solid–phase extraction and liquid chromatography–
atmospheric pressure ionisation mass spectrometry. J.
Chromatogr A. [Internet]. 2004; 1058(1-2):153-162. doi:
https://doi.org/ddx7q2
[25] Alkaç ZK, Korkak FA, Dağoğlu G, İncili CA, Hark BD, Tanyıldızı S.
Puerarin mitigates oxidative injuries, opening of mitochondrial
permeability transition pores and pathological damage
associated with liver and kidney in Xanthium strumarium–
intoxicated rats. Toxicon [Internet]. 2022; 213:13-22. doi:
https://doi.org/pgpx
[26] Koprdova R, Osacka J, Mach M, Kiss A. Acute Impact of
Selected Pyridoindole Derivatives on Fos Expression in
Different Structures of the Rat Brain. Cell Mol Neurobiol.
[Internet]. 2018; 38(1):171-180. doi: https://doi.org/gcwvg6
[27] Dou JP, Wu Q, Fu CH, Zhang DY, Yu J, Meng XW, Liang P.
Amplified intracellular Ca 2+ for synergistic anti–tumor therapy
of microwave ablation and chemotherapy. J. Nanobiotechnology
[Internet]. 2019; 17:1-17. doi: https://doi.org/gp5dqc
[28] Nolfi–Donegan D, Braganza A, Shiva S. Mitochondrial
electron transport chain: Oxidative phosphorylation, oxidant
production, and methods of measurement. Redox Biol.
[Internet]. 2020; 37:101674. doi: https://doi.org/gmxqv7
[29] Wang Y, Han T, Xue M, Han P, Zhang QY, Huang BK, Zhang H,
Ming QL, Peng W, Qin LP. Hepatotoxicity of kaurene glycosides
from Xanthium strumraium L. fruits in mice. Pharmazie.
[Internet]. 2011; 66(6):445-449. doi: https://doi.org/pgpz
[30] Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Xanthatin
Promotes Apoptosis via Inhibiting Thioredoxin Reductase
and Eliciting Oxidative Stress. Mol. Pharm. [Internet]. 2018;
15(8):3285-3296. doi: https://doi.org/gdsvwj
[31] Atlante A, Valenti D, Latina V, Amadoro G. Dysfunction of
Mitochondria in Alzheimer’s Disease: ANT and VDAC Interact
with Toxic Proteins and Aid to Determine the Fate of Brain
Cells. Int. J. Mol. Sci. [Internet]. 2022; 23(14):7722. doi:
https://doi.org/pgp3
[32] Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution,
energetics, and membrane interactions. J. Gen. Physiol.
[Internet]. 2020; 152(11):e201912475. doi: https://doi.org/
g89s3m
[33] Campanella M, Parker N, Tan CH, Hall AM, Duchen MR. IF1:
setting the pace of the F1F0-ATP synthase. Trends. Biochem.
Sci. [Internet]. 2009; 34(7):343-350. doi: https://doi.org/
cpcpn3
[34] Grover GJ, Atwal KS, Sleph PG, Wang FL, Monshizadegan H,
Monticello T, Green DW. Excessive ATP hydrolysis in ischemic
myocardium by mitochondrial F1F0-ATPase; effect of selective
pharmacological inhibition of mitochondrial ATPase hydrolase
activity. Am. J. Physiol. Heart. Circ. Physiol. [Internet]. 2004;
287(4):H1747-H1755. doi: https://doi.org/d98427
[35] Koc S, Aktas A, Sahin B, Ozer H, Zararsiz GE. Protective effect
of ursodeoxycholic acid and resveratrol against tacrolimus
induced hepatotoxicity. Biotech. Histochem. [Internet]. 2023;
98(7):471-478. doi: https://doi.org/pgp4
[36] Simental–Mendía M, Sánchez–García A, Simental–Mendía LE.
Effect of ursodeoxycholic acid on liver markers: A systematic
review and meta–analysis of randomized placebo–controlled
clinical trials. Br. J. Clin. Pharmacol. [Internet]. 2020;
86(8):1476-1488. doi: https://doi.org/pgp5
[37] Rajagopala SV, Singh H, Yu Y, Zabokrtsky KB, Torralba MG,
Moncera KJ, Pieper R, Sender L, Nelson KE. Persistent gut
microbial dysbiosis in children with acute lymphoblastic
leukemia (ALL) during chemotherapy. Microb. Ecol. [Internet].
2020; 79:1034-1043. doi: https://doi.org/gmwp4f
[38] Qi H, Shen D, Jiang C, Wang H, Chang M. Ursodeoxycholic
acid protects dopaminergic neurons from oxidative stress via
regulating mitochondrial function, autophagy, and apoptosis
in MPTP/MPP
+
–induced Parkinson’s disease. Neurosci. Lett.
[Internet]. 2021; 741:135493. doi: https://doi.org/pgpt
[39] Ali FEM, Hassanein EHM, Bakr AG, El–Shoura EAM, El–Gamal
DA, Mahmoud AR, Abd–Elhamid TH. Ursodeoxycholic acid
abrogates gentamicin–induced hepatotoxicity in rats: Role
of NF–KB–p65/TNF–a, Bax/Bcl–xl/Caspase-3, and eNOS/
iNOS pathways. Life Sci. 2020; 254:117760. doi: https://doi.
org/gt5kh7
[40] Xue LM, Zhang QY, Han P, Jiang YP, Yan RD, Wang Y, Rahman
K, Jia M, Han T, Qin LP. Hepatotoxic constituents and
toxicological mechanism of Xanthium strumarium L. fruits.
J. Ethnopharmacol. [Internet]. 2014; 152(2):272-282. doi:
https://doi.org/f5wjfd