_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34401
7 of 8
[12] Ahmad MI, Kumar P, Singh S, Kumar N. Method development and
characterization of liposomal formulation of ısotretinoin. Borneo
J. Pharm. [Internet]. 2021; 4(2):117–127. doi: https://doi.org/m7xx
[13] Wang FC, Acevedo N, Marangoni AG. Encapsulation of
phytosterols and phytosterol esters in liposomes made with
soy phospholipids by high pressure homogenization. Food Funct.
[Internet]. 2017; 8(11):3964–3969. doi: https://doi.org/n6b8
[14] Wang S, Chen Y, Guo J, Huang Q. Liposomes for tumor targeted
therapy: A review. Int. J. Mol. Sci. [Internet]. 2023; 24(3):2643.
doi: https://doi.org/gsd5s5
[15] Hu CMJ, Zhang L. Nanoparticle–based combination therapy toward
overcoming drug resistance in cancer. Biochem. Pharmacol.
[Internet]. 2012; 83(8):1104–1111. doi: https://doi.org/fzws4c
[16] Çoban Ö, Yıldırım S, Bakır T. Alpha–lipoic acid and Cyanocobalamin
Co–Loaded Nanoemulsions: Development, Characterization,
and Evaluation of Stability. J. Pharm. Innov. [Internet]. 2021;
17(2):510–520. doi: https://doi.org/m7xz
[17] Çoban Ö, Barut B, Yalçın CÖ, Özel A, Bıyıklıoğlu Z. Development
and in vitro evaluation of BSA–coated liposomes containing Zn (II)
phthalocyanine–containing ferrocene groups for photodynamic
therapy of lung cancer. J. Organomet. Chem. [Internet]. 2020;
925:121469. doi: https://doi.org/m7x2
[18] Akbarzadeh A, Rezaei–Sadabady R, Davaran S, Joo SW, Zarghami
N, Hanifehpour Y, Samiei M, Kouhi M, Nejati–Koshki K. Liposome:
classication, preparation, and applications. Nanoscale Res.
Lett. [Internet]. 2013; 8(1):102. doi: https://doi.org/f4qfjh
[19] Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal
drug delivery. Chem. Rev. [Internet]. 2015; 115(19):10938–10966.
doi: https://doi.org/ggzm94
[20] Liu R, Xie Y, Xu JR, Luo Q, Ren YX, Chen M, Duan JL, Bao CJ,
Liu YX, Li PS, Li JW, Wang GL, Lu WL. Engineered stem cell
biomimetic liposomes carrying levamisole for macrophage
immunity reconstruction in leukemia therapy. Chem. Eng. J
[Internet]. 2022; 447:137582. doi: https://doi.org/m7x3
[21] Fülöp V, Jakab G, Bozó T, Tóth B, Endrésik D, Balogh E,
Kellermayer M, Antal I. Study on the dissolution improvement
of albendazole using reconstitutable dry nanosuspension
formulation. Eur. J. Pharm. Sci. [Internet]. 2018; 123:70–78.
doi: https://doi.org/gd7jcw
[22] Zhang H, Zhao J, Chen B, Ma Y, Li Z, Shou X, Wen L, Yuan Y, Gao H,
Ruan J, Li H, Lu S, Gong Y, Wang J, Wen H. Pharmacokinetics and
tissue distribution study of liposomal albendazole in naturally
Echinococcus granulosus infected sheep by a validated UPLC–Q–
TOF–MS method. J. Chromatogr. B [Internet]. 2020; 1141:122016.
doi: https://doi.org/m7zh
[23] Torrens F, Castellano G, Campos A, Abad C. Negatively cooperative
binding of melittin to neutral phospholipid vesicles. J. Mol. Struct.
[Internet]. 2007; 834–836:216–228. doi: https://doi.org/dwwr5j
[24] Matos C, de Castro B, Gameiro P, Lima JLFC, Reis S.
Zeta–potential measurements as a tool to quantify the
effect of charged drugs on the surface potential of egg
phosphatidylcholine liposomes. Langmuir. [Internet]. 2004;
20(2):369–377. doi: https://doi.org/fjfd8b
[25] Soema PC, Willems GJ, Jiskoot W, Amor JP, Kersten GF. Predicting
the inuence of liposomal lipid composition on liposome size,
zeta potential and liposome–induced dendritic cell maturation
using a design of experiments approach. Eur. J. Pharm. Biopharm.
[Internet]. 2015; 94:427–435. doi: https://doi.org/f7ng3w
[26] Kotyńska J, Naumowicz M. Theoretical considerations and the
microelectrophoresis experiment on the inuence of selected
chaotropic anions on phosphatidylcholine membrane surface
charge density. Molecules. [Internet]. 2020; 25(1):132 doi:
https://doi.org/gmtg3z
[27] Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a
case study of cationic, anionic, and neutral liposomes. Anal.
Bioanal. Chem. [Internet]. 2017; 409(24):5779–5787. doi: https://
doi.org/gbwdrr
[28] Kotyńska J, Figaszewski Z. Adsorption equilibria between
liposome membrane formed of phosphatidylcholine and aqueous
sodium chloride solution as a function of pH. Biochim Biophys
Acta. [Internet]. 2005; 1720(1–2):22–27. doi: https://doi.org/dztbhv
[29] Brgles M, Jurasin D, Sikirić MD, Frkanec R, Tomasić J. Entrapment
of ovalbumin into liposomes—factors affecting entrapment
eciency, liposome size, and zeta potential. J. Liposome Res.
[Internet]. 2008; 18(3):235–248. doi: https://doi.org/cf93gd
[30] Matsumura H, Watanabe K, Furusawa K. Flocculation behavior of
egg phosphatidylcholine liposomes caused by Ca2+ ions. Colloids
Surf. [Internet]. 1995; 98(1–2):175–184. doi: https://doi.org/fhpf2c
[31] Wang X, Swing CJ, Feng T, Xia S, Yu J, Zhang X. Effects of
environmental pH and ionic strength on the physical stability
of cinnamaldehyde–loaded liposomes. J. Dispers. Sci. Technol.
[Internet]. 2020; 41(10):1568–1575. doi: https://doi.org/m7x5
[32] Sai VL. Extraction of cinnamaldehyde from cinnamomum
zeylanicum. Int. Res. J. Mod. Eng. Technol. Sci. [Internet] 2020
[cited 12 Jan 2024]; 2(7):185–187. Available in: https://goo.su/rT6BT
[33] Zhili L, Rao F, Song S, Uribe–Salas A, López–Valdivieso A. Effects
of common ions on adsorption and otation of malachite with
salicylaldoxime. Colloids Surf. A [Internet]. 2019; 577:421–428.
doi: https://doi.org/m7zp
[34] Arin DR, Palmer AF. Determination of size distribution and
encapsulation eciency of liposome–encapsulated hemoglobin
blood substitutes using asymmetric ow eld–ow fractionation
coupled with multi–angle static light scattering. Biotechnol. Prog.
[Internet]. 2003; 19(6):1798–1811. doi: https://doi.org/ftxppn
[35] Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Róg
T, Bunker A. Cholesterol level affects surface charge of lipid
membranes in saline solution. Sci. Rep. [Internet]. 2014; 4:5005.
doi: https://doi.org/gprscj
[36] Katragadda AK, Singh M, Betageri GV. Encapsulation, Stability,
and In Vitro Release Characteristics of Liposomal Formulations
of Stavudine (D4T). Drug Deliv. [Internet]. 1999; 6(1):31–37. doi:
https://doi.org/b9v2pn
[37] Chen D, Xia D, Li X, Zhu Q, Yu H, Zhu C, Gan Y. Comparative study
of Pluronic® F127–modied liposomes and chitosan–modied
liposomes for mucus penetration and oral absorption of
Cyclosporine A in rats. Int. J. Pharm. [Internet]. 2013; 449(1–2):1–9.
doi: https://doi.org/f4vzn5