https://doi.org/10.52973/rcfcv-e34346
Received: 05/11/2023 Accepted: 20/02/2024 Published: 24/06/2024
1 of 8
Revista Científica, FCV-LUZ / Vol. XXXIV, rcfcv-e34346
ABSTRACT
Essential oils can be used as natural preservatives in the poultry
meat industry. The aim of this research was to determine the effect
of some essential oils on the microbial, physicochemical, and
sensory properties of marinated chicken breast. For this purpose,
rosemary, thyme, and clove essential oils were used at doses of
125 mg·kg
-1
and 250 mg·kg
-1
while marinating chicken breasts. After
the marinated chicken breasts were divided into groups, they were
stored in the refrigerator at 4°C. The results showed that 250 mg·kg
-1
doses of essential oils, especially at 24 h, and rosemary had more
inhibitory effects on some microbial (total mesophilic aerobic, total
psychrophilic aerobic, and yeast–mold) parameters. However, the
sensory groups with the addition of 125 mg·kg
-1
were more accepted.
Among these groups, the most acceptable group was the group that
added 125 mg·kg
-1
of thyme essential oil. The study shows that the use
of thyme essential oil as an alternative to chemical preservatives may

breasts and in terms of consumer taste.
Key words: Essential oil compounds; marination; chicken breast;
preservation; quality parameters
RESUMEN
Los aceites esenciales se pueden usar como conservantes naturales
en la industria de la carne de aves de corral. El objetivo de esta
investigación fue determinar el efecto de algunos aceites esenciales

de la pechuga de pollo marinada. Para este propósito, se usaron
aceites esenciales de romero, tomillo y clavo en dosis de 125 mg·kg
-1

-1
mientras se marinaban las pechugas de pollo. Después
de dividir las pechugas de pollo marinadas en grupos, se almacenaron
en el refrigerador a 4°C. Los resultados mostraron que dosis de
250 mg·kg
-1
de aceites esenciales, especialmente a las 24 horas, y
romero tuvieron más efectos inhibidores sobre algunos parámetros

moho de levadura). Sin embargo, los grupos sensoriales con la adición
de 125 mg·kg
-1
fueron más aceptados. Entre estos grupos, el grupo
más aceptable fue el grupo que agregó 125 mg·kg
-1
de aceite esencial
de tomillo. El estudio muestra que el uso de aceite esencial de tomillo


como en términos del gusto del consumidor.
Palabras clave: Compuestos oleosos esenciales; marinado; pechuga
de pollo; conservación; parámetros de calidad
Antimicrobial eciency of rosemary, thyme and clove essential oils on the
preservation of marinated chicken breasts (llets)
Ecacia antimicrobiana de los aceites esenciales de romero, tomillo y clavo
en la conservación de pechugas de pollo marinadas (letes)
Pelin Demir
1
* , Mehmet Emin Aydemir
2
, Selçuk Alan
3
, Gülsüm Öksüztepe
1
1
Fırat University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology. Elazig, Türkiye.
2
Harran University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology. Sanliurfa, Türkiye.
3
Kafkas University, Faculty of Veterinary Medicine, Department of Veterinary, Food Hygiene and Production. Kars, Türkiye.
*Corresponding author: p.demir@rat.edu.tr
Essential Oils in Chicken Preservation: Rosemary, Thyme, and Clove / Demir et al. _________________________________________________
2 of 8
INTRODUCTION
Nowadays, nutritionists have stated that an adult need to obtain 1/3
of the daily protein from animal–source foods. The reasons why the
poultry meat being of great importance among animal–source foods

meat, low connective tissue and fat ratio, being prepared in a short
time, easy serviceability, containing almost all of the amino acids
that are essential for human nutrition, a quality protein structure,
less energy and calories, easily digestibility, rich in B group vitamins
and iron, lower prices than red meat, lower cost of production and
high nutritional value [1, 2, 3, 4].
Contamination of chicken (Gallus gallus domesticus) meat and
products with microorganisms is unavoidable. The microbiological

some of them are pathogens (like Salmonella and Campylobacter) for
human, while others are spoilage bacteria (such as Pseudomonas,
Enterobacteria). The level of microorganisms varies according to
the applied hygienic conditions, the storage time and temperature
of the products during the process from farm to dining table [5, 6,
7]. Food infections and poisoning may occur when sanitation and
hygienic conditions are not followed during chopping, packaging,
distribution and storage in the slaughterhouse chain [5, 8, 9]. Due

chicken meat and products by minimizing microbial activities without
compromising their quality characteristics while on the shelves for
consumer purchase. There are several preservation methods used

are emulsion technology, coating technology, canning technology,
curing and marination processes [10].
The word 'marination' derives from the Italian word 'marinare'.
The word 'marination', which has been used since 1600s, means the
preservation of meat and meat products by curing them with salt
[11]. Today, the term 'marination' is stated as a method applied to
has a remarkable effect on the evolution of the microbial growth

12]. Various substances such
as vinegar, wine, yogurt, fruit juices, spices, salt, oils, phosphates
(alkaline, acidic), organic acids, and several compounds that give
aroma are used in marinating [13, 14, 15].
In recent years, consumers have found that meat products prepared
with natural additives are more reliable than conventional additives
containing chemicals such as alkaline phosphatases [16]. Essential
oils have a very important place among these additives. They have
been used for thousands of years. Essential oils, which are colloquially
called aromatic, ethereous or volatile oils, are mostly produced from
various plants with aromatic properties in countries with tropical or
temperate climates [17
and oils result from the phenolic compounds in their structures. These

terpenes [15, 18
and woody parts of plants. Therefore, they are used in the form of


[15, 19]. Many studies investigating the effects of essential oils used in

effects on food preservation [20, 21, 22]. Some herbal essential
oils are accepted as GRAS (Generally Recognized as Safe) by the

as taste, odor and food additives. In the EU, volatile oils are used
as safe food additives at the concentrations of less than 2 mg·kg
-1
bw·day
-1
[23]. Essential oils are known to have a potential effect on
food preservation [17]. Studies have demonstrated that volatile oils
of rosemary (Rosmarinus ocinalis), thyme (Thymus vulgaris) and
clove (Syzygium aromaticum) have positive effects on the shelf life
of chicken meat and products [3, 24, 25, 26].
This study used essential oils of rosemary with active substance of
cineole, thyme with active substance of thymol–carvacrol and clove with
active substance of eugenol. The purpose of this study was to investigate
the efficacy of rosemary, thyme and clove essential oils added at
different doses (125 mg·kg
-1
and 250 mg·kg
-1
) on some microbiological,
physicochemical and sensory properties of chicken breasts.
MATERIALS AND METHODS
Collection and preparation of samples
Fresh chicken breasts purchased in their original packaging from
the local market in Elazig/Türkiye, regardless of the company name,
were brought to the laboratory in the cold chain. They were diced in


until analysis (at 1 hour (h) and 24 h of marination. Then, the marination
re formed.
Preparation of marination
Marinade ingredients were supplied from a local market. Tomato
paste (200 g) (Tat Salça, Türkiye), sweet red pepper paste (200 g) (Tat

freshly–squeezed lemon juice (200 mL), garlic (70 g), salt (45 g) (Billur Tuz,


chicken breasts. The marination sauce was homogenized with the help
of a sterile blender (Prokit 444, Arzum, Türkiye) in a sterile container.
Adjusting the amounts of essential oils
The amounts of essential oils to be added to the marination were
prepared based on the doses recommended by the manufacturer. A

dose of 500 mg·kg
-1
, a half dose of 250 mg·kg
-1
and a quarter dose of
125 mg·kg
-1
recommended by the manufacturer were added to the
marination, thoroughly blended with chicken breasts and hold for

at 200
o

were evaluated sensorially by a group of 10 panelists (from academics
at the Department of Food Hygiene and Technology, a group of 10
educated panelists of the same age and gender scored them each time)

-1
was

-1
and
125 mg·kg
-1
were accepted. Based on the sensory evaluation results,
the following groups were formed.
Preparation of experimental groups
Marination was prepared in sterile bags. Groups were formed
by adding essential oils of rosemary, thyme, clove at the doses of

-1
and 250 mg·kg
-1
. No essential oils were added to the control
group. Essential oils of rosemary (Rosmarinus ocinalis
_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34346
3 of 8
20–01), thyme (Thymus vulgaris)(Syzygium
aromaticum)
USA). Microbiological analyses, pH measurement and sensory analyses
of chicken breasts were performed at 1 h and 24 h of marination at

was repeated twice at an interval of 15 days.
Microbiological analyses
Aseptically, 10 g of chicken breast was placed into the special sterile

was homogenized by adding 90 mL of 0.1% sterile peptone water on
) dilutions of the samples were prepared. By using
the same dilution and diluent, the samples were adjusted to 10–9
decimal dilutions. Microbiological cultivations were performed by
both the pour plate method and the spread plate method in double
parallel by taking 1 mL (pour plate method) and 0.1 mL (spread plate
method) from each decimal dilution of the samples. The petri dishes
containing 30 to 300 colonies were counted after they were incubated
at the appropriate temperatures and times [27, 28].
Plate Count Agar (PCA) (Merck 1.05463.0500, Darmstadt, Germany)


[29
30], Violet Red Bile Glucose
Enterobacteriaceae
31], Tryptone Bile X Glucuronide (TBX) Agar
(Merck 1.16122.0500, Darmstadt, Germany) for Escherichia coli count
32], Dichloran Rose Bengal

33
Staphylococcus–Micrococcus
[34]. Baird–Parker Agar Base (BPA) containing Egg Yolk–Tellurite
Staphylococcus aureus
Staphylococcus aureus count was
determined by the coagulase test applied to gray–black, shiny colonies
surrounded by clear zones formed in BPA medium [35].
Physicochemical analysis (pH)

using a digital pH meter (HI 11310, Hanna Instruments, USA) [36]. For
pH measurement, a 10 g sample was homogenized with 90 mL distilled
water, and the measurement was made.
Sensory analyses
At both 1 h and 24 h, chicken breasts were cooked in an oven (MF

were completely browned. Then, using the sensory analysis form, a
group of 10 educated panelists of the same age and gender scored
them each time. Sensory evaluation was based on the panelists'
basic smell and vision test. For marinated chicken breasts for which

appearance, odor, crispness, taste and overall acceptability criteria
were evaluated. For the sensory evaluation, the panelists drank water
before each sample and evaluated the samples randomly [7, 37].
Statistical analyses
Descriptive statistics of data on microbiological, pH and sensory
properties of marinated chicken breasts added with essential oils
and the relationships between values were obtained using SPSS 21.0
(IBM SPSS, IBM Corporation, USA) package program. Microbiological

10
CFU·g
-1
.

test and a homogeneity test using the Levene test were applied to
all collected data. The One–Way ANOVA was used to compare the

Independent T–Test was used to compare the sampling times. Values

level was accepted as P0.05 [38].
RESULTS AND DISCUSSIONS


breast in TABLE II, pH values of raw chicken breast and marinade
sauce in TABLE III, pH values of marinated chicken breast in TABLE IV
n TABLE V.
Microbiological analysis results
The average values of raw chicken breasts used in the analysis
was found to be 5.46 log
10
CFU·g
-1
for total mesophilic aerobic (TMA)
count, 3.23 log
10
CFU·g
-1
for total psychrophilic aerobic count, 1.24
log
10
CFU·g
-1
for coliform count, 2.17 log
10
CFU·g
-1
for Enterobacteriaceae
count, 1.43 log
10
CFU·g
-1
for Staphylococcus–Micrococcus count and
1.12 log
10
CFU·g
-1
for yeast–mold count. No E. coli and Staph. aureus
bacteria were found (TABLE I).
TABLE I
Microbiological Analysis Findings of Raw Chicken Breast Meat (log
10
CFU·g
-1
)
Microorganism Mean ± Standard Deviation
Total Mesophilic Aerobic 5.46 ± 0.29
Total Psychrophilic Aerobic 3.23 ± 0.31
Coliform 1.24 ± 0.20
Enterobacteriaceae 2.17 ± 0.13
Escherichia coli <1.00 ± 0.00
Staphylococcus–Micrococcus 1.43 ± 0.06
Staphylococcus aureus <1.00 ± 0.00
Yeast–Mold 1.12 ± 0.07

10
CFU·g
-1
in the control group and between 5.54 and 5.84 log
10
CFU·g
-1
in the
essential oil groups at 1 h. No statistical difference was observed
between the control group and other groups at 1 h of storage (P>0.05)
(TABLE II). At 24 h of storage, the count increased in the control group
(6.35 log
10
CFU·g
-1
) but there were decreases in all other groups. The
highest inhibition was found in B2 group (2.49 log
10
CFU·g
-1
) in which
rosemary was used at a dose of 250 mg·kg
-1

(2.20 log
10
CFU·g
-1

10
CFU·g
-1
), respectively. There

P>0.05) (TABLE II). The study
results were consistent with those of many studies showing that thyme
essential oil had an inhibitory effect on the total mesophilic aerobic
bacteria count [3, 39, 40, 41, 42, 43] (2–3 log
10
CFU·g
-1
; 1 log
10
CFU·g
-1
;
Essential Oils in Chicken Preservation: Rosemary, Thyme, and Clove / Demir et al. _________________________________________________
4 of 8
1–5 log
10
CFU·g
-1
; 2 log
10
CFU·g
-1
; 2.3–3.1 log
10
CFU·g
-1
; 1.14 log
10
CFU·g
-1
,

10
CFU·g
-1
)
was similar to Fernández–Pan et al. [41] result (2 log
10
CFU·g
-1
), with that

10
CFU·g
-1
) to Mahrour et al. [44]
result (1.6 log
10
CFU·g
-1
).
Total psychrophilic aerobic bacteria are the predominant bacteria

load of the products is considered an indicator for the preservation or
degradation of the quality of the products. [5, 45] Total psychrophilic
aerobic (TPA) bacteria count was determined as 3.23 log
10
CFU·g
-1
in
raw chicken breasts (TABLE I). It was found to be 4.10 log
10
CFU·g
-1
in
the control group and 3.60–3.93 log
10
CFU·g
-1
in the marinated groups
added with essential oils at 1 h. At 24 h, the count of the control
group increased to 5.40 log
10
CFU·g
-1
but the counts of the marinated
groups decreased to 1.20–2.90 log
10
CFU·g
-1
(TABLE II). The highest
bacterial inhibition was observed in Be2 (2.40 log
10
CFU·g
-1

log
10
CFU·g
-1

10
CFU·g
-1
) groups, respectively. It was

24th h between the control group and the marinated groups (P<0.05)
(TABLE II). In addition, the bacterial inhibition level observed in B1
(1.13 log
10
CFU·g
-1

10
CFU·g
-1

10
CFU·g
-1
)
groups was similar to the 1 log
10
CFU·g
-1
inhibition level detected by
Fernández–Pan et al. study [41]. Also, the results obtained during
the storage period in all the marinated groups were similar to the
3, 46] stating that this group of bacteria
decreased during the storage period.
TABLE II
Microbiological Analysis Findings of Marinated Chicken Breast Meat (log
10
CFU·g
-1
)
Microorganism Analysis H
Groups
Control B1 B2 Ke1 Ke2 Ka1 Ka2
TMA
1 h 5.25 ± 0.31 5.61 ± 0.04 5.54 ± 0.06 5.71 ± 0.03 5.62 ± 0.11 5.84 ± 0.05 5.78 ± 0.07
24 h 6.35 ± 0.31
a
4.46 ± 0.02
b
3.05 ± 0.07
d
4.56 ± 0.03
b
3.42 ± 0.02
dc
4.39 ± 0.41
b
3.63 ± 0.14
c
TPA
1 h 4.10 ± 0.04
a
3.68 ± 0.02
c
3.60 ± 0.25
b
3.81 ± 0.01
b
3.73 ± 0.07
b
3.93 ± 0.02
ab
3.88 ± 0.02
ab
24 h 5.40 ± 0.04
a
2.55 ± 0.07
d
1.20 ± 0.01
f
2.80 ± 0.01
c
1.65 ± 0.07
f
2.90 ± 0.01
b
1.84 ± 0.01
e
Coliform
1 h 2.02 ± 0.08
ab
1.80 ± 0.10
bc
1.57 ± 0.09
c
2.15 ± 0.21
ab
2.00 ± 0.28
ab
2.38 ± 0.11
a
2.20 ± 0.14
ab
24 h 1.05 ± 0.07
a
<1.0
b
<1.0
b
1.10 ± 0.14
a
<1.0
b
1.15 ± 0.21
a
<1.0
b
Enterobacteriaceae
1 h 2.39 ± 0.12
bc
2.29 ± 0.04
cd
2.11 ± 0.07
d
2.51 ± 0.10
ab
2.28 ± 0.02
cd
2.67 ± 0.03
a
2.45 ± 0.07
bc
24 h 1.97 ± 0.03
a
1.22 ± 0.03
c
<1.0
d
1.45 ± 0.01
b
<1.0
d
1.65 ± 0.21
b
<1.0
d
Escherichia coli
1 h <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
24 h <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
Staphylococcus–Micrococcus
1 h 1.78 ± 0.22
a
<1.0
b
<1.0
b
<1.0
b
<1.0
b
<1.0
b
<1.0
b
24 h 1.10 ± 0.14
a
<1.0
b
<1.0
b
<1.0
b
<1.0
b
<1.0
b
<1.0
b
Staphylococcus aureus
1 h <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
24 h <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
Yeast–Mold
1 h 2.48 ± 0.14
a
2.10 ± 0.13
bc
1.90 ± 0.14
c
2.30 ± 0.12
ab
2.10 ± 0.14
bc
2.42 ± 0.16
ab
2.41 ± 0.09
ab
24 h 1.85 ± 0.07
a
<1.0
c
<1.0
c
1.00 ± 0.01
b
<1.0
c
1.00 ± 0.01
b
<1.0
c
a–f
: Those with superscripts dierent from the averages in the same row are statistically signicant (P<0.05); TMA: Total Aerobic Mesophilic ; TPA: Total Psychrophilic Aerobic;
Control: Marinated chicken breast; B1: Marinated chicken breast added with 125 mg·kg
-1
of rosemary essential oil; B2: Marinated chicken breast added with 250 mg·kg
-1
of rosemary essential oil; Ke1: Marinated chicken breast added with 125 mg·kg
-1
of thyme essential oil; Ke2: Marinated chicken breast added with 250 mg·kg
-1
of thyme
essential oil; Ka1: Marinated chicken breast added with 125 mg·kg
-1
of clove essential oil; Ka2: Marinated chicken breast added with 250 mg·kg
-1
of clove essential oil
Enterobacteriaceae bacteria are a group of bacteria that
constitute an important part of the chicken meat microbiota [47].
Enterobacteriaceae count was found to be 2.17 log
10
CFU·g
-1
in raw
chicken breast (TABLE I). For the control group, it was detected to
be 2.39 log
10
CFU·g
-1
at 1 h and 1.97 log
10
CFU·g
-1
at 24 h. A decrease was
observed in Enterobacteriaceae count in all groups. The counts were


10
CFU·g
-1

log
10
CFU·g
-1
) groups. These results were similar to those of the study

10
CFU·g
-1
decrease in Enterobacteriaceae bacteria count [41]. It was observed

all groups (P<0.05) (TABLE II). The relevant results were consistent
3, 42, 43, 47, 48, 49].
Coliforms are one of the most common hygiene indicators
found in foods. Also, their presence in foods is an indicator of both
environmental and fecal contamination [1, 50]. This study showed the
coliform count to be 1.24 log
10
CFU·g
-1

Coliform counts were found to be 2.02 log
10
CFU·g
-1
in the control group
and 1.57–2.38 log
10
CFU·g
-1
in the marinated groups at 1 h of marination.
At 24 h of marination, it decreased in all groups and was below the
limit of detection (<1.0 log
10
CFU·g
-1


10
CFU·g
-1
) group.

FIGURE 1. pH values of marinated chicken breast meat
_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34346
5 of 8
all groups at 1 h and 24 h (P<0.05) (TABLE II). It was observed that the
results obtained were consistent with those of some studies showing
that the addition of thyme essential oil to chicken meat and products
led to a decrease in the coliform counts [42, 46].
Escherichia coli bacteria count was below the limit of detection
(less than 1.0 log
10
CFU·g
-1
) in raw chicken breast (TABLE I). Therefore,
no growth was observed in any of the marinated groups at both 1 h
and 24 h (TABLE II).
Staphylococcus–Micrococcus count was found to be 1.43 log
10
CFU·g
-1
in raw chicken breast (TABLE I). For the control group, it was detected
to be 1.78 log
10
CFU·g
-1
at 1 h and decreased to 1.10 log
10
CFU·g
-1
at 24 h.

(P>0.05) (TABLE II). Staphylococcus–Micrococcus count was below
the limit of detection (<1.0 log
10
CFU·g
-1
) in all the marinated groups at

of some researchers stating that the essential oils used in chicken
breasts had inhibitory effects on Staphylococcus–Micrococcus
bacteria [51, 52]. S. aureus bacteria count was below the limit of
detection (<1.0 log
10
CFU·g
-1
) in raw chicken breasts (TABLE I) and in
all the marinated groups (TABLE II).
Yeast–mold count is one of the species considered as an indicator
of spoilage in poultry meats [4]. Yeast–mold count was 1.12 log
10
CFU·g
-1
in raw chicken breast (TABLE I). For the control group, the yeast–mold
count was found to be 2.48 log
10
CFU·g
-1
at 1 h and 1.85 log
10
CFU·g
-1
at
24 h. There were decreases observed in all groups during the storage
period. Yeast–mold counts were below the limit of detection (<1.0
log
10
CFU·g
-1


group and all the marinated groups (P<0.05) (TABLE II). The highest
bacterial count was found in B2 (1.90 log) group. It was similar to

decreased yeast–mold counts in chicken breasts [3, 46, 47, 48, 53].
pH analysis results
The pH values of raw chicken breast and marinade sauce were
found to be 5.50 and 3.85, respectively (TABLE III and FIGURE I). pH
values were measured as 4.86 in the control group and 4.81–4.92 in the
marinated groups at 1 h. These values increased partially at 24 h in all
groups including the control group. These increases were statistically
P<0.05) (TABLE IV).

P>0.05) (TABLE IV). The obtained results were similar

et al. study [43] on chicken breasts
added with essential oils.
Sensory analysis results
TABLE V shows the changes in the sensory properties (color,
appearance, odor, crispness, taste, overall acceptability) of marinated

change in the color and appearance scores of all groups, including
the control group, at both 1 h and 24 h (P>0.05). Based on odor scores,
a decrease was observed in the control group but an increase in B1,
s at 24 h.

P>0.05). However,

P<0.05). Based on crispness and taste



between the control group and other groups (P<0.05) but not to be
P>0.05). In terms

P>0.05). Based on overall
TABLE IV
pH Values of Marinated Chicken Breast Meat
Analysis Analysis H
Groups
Control B1 B2 Ke1 Ke2 Ka1 Ka2
pH
1 h 4.86 ± 0.01
a
4.82 ± 0.02
a
4.80 ± 0.01
a
4.92 ± 0.02
b
4.91 ± 0.01
b
4.87 ± 0.02
a
4.81 ± 0.02
a
24 h 5.60 ± 0.01
c
4.87 ± 0.02
a
4.87 ± 0.03
a
4.95 ± 0.03
b
5.03 ± 0.03
c
5.08 ± 0.01
c
5.08 ± 0.02
c
a–c
: Those with superscripts dierent from the averages in the same row are statistically signicant (P<0.05); Control: Marinated chicken breast; B1: Marinated
chicken breast added with 125 mg·kg
-1
of rosemary essential oil; B2: Marinated chicken breast added with 250 mg·kg
-1
of rosemary essential oil; Ke1: Marinated
chicken breast added with 125 mg·kg
-1
of thyme essential oil; Ke2: Marinated chicken breast added with 250 mg·kg
-1
of thyme essential oil; Ka1: Marinated
chicken breast added with 125 mg·kg
-1
of clove essential oil; Ka2: Marinated chicken breast added with 250 mg·kg
-1
of clove essential oil
TABLE III
pH Values of Raw Chicken Breast Meat and Marinade Sauce
Analysis Raw Chicken Breast Meat Sauce
pH 5.50 ± 0.02 3.85 ± 0.07
Essential Oils in Chicken Preservation: Rosemary, Thyme, and Clove / Demir et al. _________________________________________________
6 of 8
acceptability and total scores, a decrease was observed in B2 and

acceptability scores, there were differences between other groups
(P<0.05) but no differences between the control group and B2 and
P
control group and all other groups in terms of total score (P<0.05).




some researchers stating that thyme essential oil was accepted in
chicken breasts [3, 47, 54].
It was found that 250 mg·kg
-1
doses of essential oils, especially at 24
h, and rosemary had more inhibitory effects on some microbial (TMA,
TPA and yeast–mold) parameters. However, the sensory groups with
the addition of 125 mg·kg
-1
were more accepted. Among these groups,

-1
of
thyme essential oil.
CONCLUSION
The use of essential oils in chicken breast can be recommended as a
natural preservative. Microbiological analyses have demonstrated that
marinated chicken breasts added with different doses of essential
oils could control the growth of microorganisms at 4°C and at 1 h
and 24 h of storage. In particular, it was concluded that the use of
thyme essential oil as an alternative to chemical preservatives may be

and in terms of consumer taste. This study presents a wide range of
use of natural preservatives for healthier poultry meat. Due to short


Thus, this study strongly supports the claim that natural preservatives
can be replaced by chemical preservatives in ready–to–cook poultry
meats without reducing quality, shelf life and consumer acceptance.
Financial support
anization.
Ethics statement
This study was conducted in Elazig with the approval of Firat University
Non–Interventional Research Ethics Committee with protocol number
2023/04–25 and dated March 09, 2023.
Conict of interest statement
f interest
BIBLIOGRAPHIC REFERENCES
 
Hygiene, Health Controls on Animal Source Food]. 2nd ed.

[2] Ergezer H, Gokce R. Comparison of marinating with two different
types of marinade on some quality and sensory characteristics
of Turkey breast meat. J. Anim. Vet. Adv. [Internet]. 2011 [cited

 
effect of oregano essential oil and modified atmosphere packaging on


TABLE V
Sensory Analysis Findings of Marinated Chicken Breast Meat
Analysis Analysis H
Groups
Control B1 B2 Ke1 Ke2 Ka1 Ka2
Color
1 h 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
24 h 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
Appearance
1 h 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
24 h 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
Odor
1 h 4.00 ± 0.00
a
2.00 ± 0.00
c
2.00 ± 0.00
c
3.00 ± 0.00
b
2.00 ± 0.00
c
2.00 ± 0.00
c
1.00 ± 0.00
d
24 h 3.00 ± 0.00
b
3.00 ± 0.00
b
2.00 ± 0.00
c
4.00 ± 0.00
a
2.00 ± 0.00
c
3.00 ± 0.00
b
1.00 ± 0.00
d
Crispness
1 h 2.00 ± 0.00
b
3.00 ± 0.00
a
2.00 ± 0.00
b
3.00 ± 0.00
a
2.00 ± 0.00
b
2.5 ± 0.00
ab
1.00 ± 0.00
c
24 h 3.00 ± 0.00
c
4.00 ± 0.00
ab
2.00 ± 0.00
d
4.50 ± 0.70
a
2.00 ± 0.00
d
3.50 ± 0.70
bc
1.00 ± 0.00
e
Taste
1 h 2.00 ± 0.00
b
3.00 ± 0.00
a
2.00 ± 0.00
b
3.00 ± 0.00
a
2.00 ± 0.00
b
2.00 ± 0.00
b
1.00 ± 0.00
c
24 h 2.50 ± 0.70
cd
4.00 ± 0.00
b
2.00 ± 0.00
d
5.00 ± 0.00
a
2.00 ± 0.00
d
3.00 ± 0.00
c
1.00 ± 0.00
e
Overall
Acceptability
1 h 42.50 ± 3.53
e
57.5 ± 3.48
b
52.50 ± 3.50
bc
70.00 ± 0.00
a
50.00 ± 0.00
d
57.50 ± 3.56
b
45.00 ± 0.00
de
24 h 52.50 ± 2.48
d
69.00 ± 1.41
ab
47.50 ± 3.50
d
74.0 ± 01.38
a
52.50 ± 2.53
d
62.50 ± 3.20
c
40.00 ± 0.00
e
Total
1 h 60.50 ± 3.46
ef
75.50 ± 3.42
b
68.5 ± 3.46
cd
89.00 ± 0.00
a
66.00 ± 0.00
de
74.0 ± 04.24
bc
58.00 ± 0.00
ef
24 h 71.00 ± 4.24
c
88.50 ± 3.53
b
63.00 ± 2.82
d
97.50 ± 2.12
a
68.50 ± 3.51
cd
82.00 ± 4.24
b
53.00 ± 0.00
e
a–f
: Those with superscripts dierent from the averages in the same row are statistically signicant (P<0.05); Control: Marinated chicken breast; B1: Marinated
chicken breast added with 125 mg·kg
-1
of rosemary essential oil; B2: Marinated chicken breast added with 250 mg·kg
-1
of rosemary essential oil; Ke1: Marinated
chicken breast added with 125 mg·kg
-1
of thyme essential oil; Ke2: Marinated chicken breast added with 250 mg·kg
-1
of thyme essential oil; Ka1: Marinated chicken
breast added with 125 mg·kg
-1
of clove essential oil; Ka2: Marinated chicken breast added with 250 mg·kg
-1
of clove essential oil
_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34346
7 of 8
 
some bacteria and indicator microorganisms in chicken meat
offered for sale]. Manas J. Agric. Vet. [Internet]. 2017 [cited 12

[5] Álvarez–Astorga M, Capita R, Alonso–Calleja C, Moreno B,



[6] Can HY. Investigation of Pseudomonas species in chicken drumstick


[7] Mahdavi–Roshan M, Gheibi S, Pourfarzad A. Effect of propolis



 
quality of poultry meat on the Croatian market. Vet. Arh.


[9] Magdelaine P, Spiess MP, Valceschini E. Poultry meat consumption


 
S, Singh S. Effect of low temperature preservation on quality
characteristics of meat. JAFST. [Internet]. 2019 [cited 14 Aug.

[11] The might of marinades [Internet]. Prepared Foods. 2003 [cited

 
marinades on the microbiological, chemical and sensory quality of


 
breast muscle has physical, chemical, and sensory properties
similar to those of phosphate–marinated controls. Poult. Sci.

 
Nychas GJ. Effect of wine–based marinades on the behavior
of Salmonella Typhimurium


[15] Thanissery R, Smith DP. Marinade with thyme and orange
oils reduces Salmonella Enteritidis and Campylobacter coli on


[16] Jarvis N, O'Bryan CA, Ricke SC, Crandall PG. The functionality



antimutagenic activities]. Akad. Gida. [Internet] 2014 [cited 08

 


 
applications in foods–a review. Int. J. Food Microbiol. [Internet].

 


[21] Pizzale L, Bortolomeazzi R, Vichi S, Überegger E, Conte LS.
Salvia ocinalis and S. fruticosa)
and oregano (Origanum onites and O. indercedens
related to their phenolic compound content. J. Sci. Food Agric.

[22] Güran S, Öksüztepe G. Effects of chitosan and some essential
oils (thyme, clove, roemary), individually or in combination, on
inactivation of Salmonella Typhimurium in raw meatball (Turkish


[23] EFSA Panel on Food Additives and Nutrient Sources added to



[24] Damien Dorman HJ, Deans SG, Noble RC, Surai P. Evaluation in
vitro

 



[26] Harmankaya S, Vatansever L. The Effect of Essential Oils of
Rosemary and Clove on Shelf Life Chicken Meat. Van Vet. J.


[27] American Public Health Association (APHA). Standards Methods



[28] Harrigan WF. Laboratory methods in food microbiology


 
bacteria in foods as sanitary indicators [Internet]. 2015 [cited

 
Microbiology of Food and Animal Feeding Stuffs–Horizontal
Method for the Enumeration of Coliforms–Colony–count

[31] International Organization for Standardization. ISO 21528–



Essential Oils in Chicken Preservation: Rosemary, Thyme, and Clove / Demir et al. _________________________________________________
8 of 8
 
Microbiology of food and animal feeding Stuffs–Horizontal
method for the enumeration of beta–glucuronidase–positive
Escherichia coli
C using membranes and 5–bromo–4–chloro–3–indolyl beta–D–

 
Microbiology of Food and Animal Feeding Stuffs–Horizontal

Count Technique in Products with Water Activity Less Than or

 
Basak Printing; 2005. 358 p. Turkish.
 
Microbiology of food and animal feeding Stuffs–Horizontal
method for the enumeration of coagulase–positive staphylococci
(Staphylococcus aureus

2021.2 August 2023; 20 p.
[36] AOAC International. Official methods of analysis of AOAC
International. Horwitz W, Latimer GW, editors. 18th ed. 3rd Rev.

 
encapsulation and wall material on the probiotic survival and

with univariate and multivariate analyzes. Heliyon [Internet].

 

[39] Tsigarida E, Skandamis P, Nychas GJ. Behavior of Listeria
monocytogenes

with or without the presence of oregano essential oil at 5 oC.


[40] Skandamis PN, Nychas GJ. Effect of oregano essential oil on



[41] Fernández–Pan I, Carrión–Granda X, Maté JI. Antimicrobial




Combined effects of thymol, carvacrol and packaging on the
shelf–life of marinated chicken. Int. J. Food Microbiol. [Internet].

 
Escherichia
coliListeria monocytogenes, and Salmonella enterica in
raw ground chicken meat with added oregano oil or tannic acid


 
Antimicrobial properties of natural substances in irradiated fresh


 
Staphylococcus aureus


su/ODvbsB7
 
of cinnamon, oregano and thyme essential oils in marinade on


[47] Petrou S, Tsiraki M, Giatrakou V, Savvaidis IN. Chitosan dipping
or oregano oil treatments, singly or combined on modified
atmosphere packaged chicken breast meat. Int. J. Food Microbiol.

[48] Giatrakou V, Ntzimani A, Savvaidis IN. Combined chitosan–thyme

to–cook poultry product. J. Food Prot. [Internet]. 2010 [cited 14

[49] Gill CO, Harrison JCL, Penney N. The storage life of chicken


[50] Soare C, Mazeri S, McAteer S, McNeilly TN, Seguino A. Chase–
Topping M The microbial condition of Scottish wild deer
carcasses collected for human consumption and the hygiene
risk factors associated with Escherichia coli and total coliforms


 

microbial quality of poultry. J. Sci. Food Agric. [Internet]. 2013;

 

food spoilers and foodborne pathogens. J. Food Sci. [Internet].

[53] Conner DE, Beuchat LR. Effects of essential oils from plants on
growth of food spoilage yeasts. J. Food Sci. [Internet]. 1984;

 

shelf life and control Listeria monocytogenes in raw chicken meat

