_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34340
5 of 5
[17] Wang Z, Chen S, Zou X, Tian L, Sui S, Liu N. Nesfatin–1 alleviates
acute lung injury through reducing inammation and oxidative
stress via the regulation of HMGB1. Eur. Rev. Med. Pharmacol.
Sci. [Internet]. 2020; 24(9):5071–5081. doi: https://doi.org/
gncjvg
[18] TR Ministry of Environment, Urbanization and Climate Change:
General Directorate of Meteorology. Ocial Statistics [Internet].
Ankara (Türkiye) General Directorate of Meteorology; 2024 [cited
9 Jan. 2024]; 2 p. Available in: https://goo.su/zAeUwU
[19] Aydogdu U, Coskun A, Yuksel M, Basbug O, Agaoglu ZT. The effect
of dystocia on passive immune status, oxidative stress, venous
blood gas and acid–base balance in lambs. Small Rumin. Res.
[Internet] 2018; 166:115–120. doi: https://doi.org/gd6wt5
[20] Kösecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress
in children exposed to passive smoking. Intern. J. Cardiol.
[Internet]. 2005; 100(1):61–64. doi: https://doi.org/b29vtg
[21] IBM Corp. Released 2017. IBM SPSS Statistics for Windows,
Version 25.0. Armonk, NY, USA: IBM Corp; 2017. 97 p.
[22] Nakao J, Grunert E. Effects of dystocia on postpartum
adrenocortical function in dairy cows. J. Dairy Sci. [Internet].
1990; 73(10):2801–2806. doi: https://doi.org/dxbk54
[23] Uğraş, S, Dalkılıç M. Effects of aerobic exercise induced oxidative
stress on energy regulatory hormones of irisin and nesfatin–1 in
healthy females. Kastamonu Med. J. [Internet]. 2021; 1(1): 5–8.
doi: https://doi.org/m3hd
[24] Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram
M. The effects of short–term high–intensity interval training
vs. moderate–intensity continuous training on plasma levels
of nesfatin–1 and inammatory markers. Horm. Mol. Biol. Clin.
Investig. [Internet]. 2015; 21(3):165–173. doi: https://doi.org/m3hf
[25] Arıkan S. Effects of acute and chronic exercises on plasma
nesfatin–1 levels in young adults. Cyprus J. Med. Sci. [Internet].
2020; 5(1): 77–80. doi: https://doi.org/m3hg
[26] Bilski J, Mazur–Bialy AI, Surmiak M, Hubalewska–Mazgaj M, Pokorski
J, Nitecki J, Nitecka E, Pokorska J, Targosz A, Ptak–Belowska
A, Zoladz AJ, Brzozowski T. Effect of acute sprint exercise on
myokines and food intake hormones in young healthy men. Intern.
J. Mol. Sci. [Internet]. 2020; 21(22):8848. doi: https://doi.org/m3hh
[27] Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, Jiang H. Nesfatin–1
decreases excitability of dopaminergic neurons in the substantia
nigra. J. Mol. Neurosci. [Internet]. 2014; 52(3):419–424. doi:
https://doi.org/m3hj
[28] Tan Z, Xu H, Shen X, Jiang H. Nesfatin–1 antagonized rotenone–
induced neurotoxicity in MES23.5 dopaminergic cells. Peptid.
[Internet]. 2015; 69:109–114. doi: https://doi.org/f7dkhc
[29] Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu
X. The protective effect of nesfatin–1 against renal ischemia–
reperfusion injury in rats. Ren. Fail. [Internet]. 2015; 37(5):882–
889. doi: https://doi.org/m3hk
[30] Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti–inammatory
and anti–apoptotic effects of nesfatin–1 in the traumatic rat
brain. Peptid. [Internet]. 2012; 36(1):39–45. doi: https://doi.org/
gmn2rc
[31] Özsavcí D, Erşahin M, Şener A, Özakpinar ÖB, Toklu HZ, Akakín
D, Şener G, Yeğen BÇ. The novel function of nesfatin–1 as an
anti–inammatory and antiapoptotic peptide in subarachnoid
hemorrhage–induced oxidative brain damage in rats. Neurosurg.
[Internet]. 2011; 68(6):1699–1708. doi: https://doi.org/dx5bfz
[32] Kolgazi M, Cantali–Ozturk C, Deniz R, Ozdemir–Kumral ZN, Yuksel
M, Sirvanci S, Yeğen BC. Nesfatin–1 alleviates gastric damage via
direct antioxidant mechanisms. J. Surg. Res. [Internet]. 2015;
193(1):111–118. doi: https://doi.org/f6tbch
[33] Tamer SA, Yildirim A, Köroğlu MK, Çevik Ö, Ercan F, Yeğen BÇ.
Nesfatin–1 ameliorates testicular injury and supports gonadal
function in rats induced with testis torsion. Peptid. [Internet].
2018; 107:1–9. doi: https://doi.org/gd7qwh
[34] Fouad EF, Hassaneen ASA, Hussein HASA, Khalil AMH, Yousef
NAM. Association between maternal dystocia and both the
oxidant/antioxidant biomarkers and blood lactate in parturient
Egyptian buffaloes (Bubalus bubalis). SVU– Intern. J. Vet. Sci.
[Internet]. 2022; 5(4):1–14. doi: https://doi.org/m3hp
[35] Yokus B, Bademkiran S, Cakir DU. Total anti–oxidant capacity
and oxidative stress in dairy cattle and their associations with
dystocia. Med. Wet. [Internet]. 2007 [cited 27 Sept 2023];
63(2):167–170. Available in: https://goo.su/5JkC4Jv
[36] Kizil M, Rişvanli A, Abay M, Şafak T, Kilinç MA, Yilmaz Ö, Yüksel
B, Şeker İ, Güler E, Geçmez K. [Effect of Birth Type on Some
Oxidative Stress and Biochemical Parameters]. F. Ü. Sağ. Bil.
Vet. Derg. [Internet]. 2022 [cited 24 Jun 2023]; 36(3):169–178.
Turkish. Available in: https://goo.su/a1JTRB
[37] Akkuş T, Korkmaz Ö, Emre B, Zonturlu AK, Dinçer PFP, YaprakciÖ.
The effect of dystocia on oxidative stress, colostral antibody/
passive immune status, andblood gases in Damascus goats and
their kids. Turkish J. Vet. Anim. Sci. [Internet]. 2022; 46(1):18–27.
doi: https://doi.org/m3hq
[38] Noh EJ, Kim YH, Cho MK, Kim JW, Kim JW, Byun YJ, Song,
TB. Comparison of oxidative stress markers in umbilical cord
blood after vaginal and cesarean delivery. Obstet. Gynecol. Sci.
[Internet]. 2014; 57(2):109–114. doi: https://doi.org/m3hr
[39] Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of
metabolic transcriptional co–activators and transcription factors
with acute exercise. FASEB J. [Internet]. 2005; 19(8):986–988.
doi: https://doi.org/b2b7tf
[40] Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative
stress and hormesis. Ageing Res. Rev. [Internet]. 2008; 7(1):34–42.
doi: https://doi.org/cpsfqx
[41] Khaw KS, Wang CC, Ngan Kee WD, Tam WH, Ng FF, Critchley LAH,
Rogers MS. Supplementary oxygen for emergency Caesarean
section under regional anaesthesia. Br. J. Anaesth. [Internet].
2009; 102(1):90–96. doi: https://doi.org/c9jc35