3-(4-hydroxyphenyl) propionic acid, anti-inflammatory, kidney, in vitro / Kucukgul and Nita _______________________________________
6 of 7
Conict of interests
The authors of this study declare that there is no conict of interest
with the publication of this manuscript.
ACKNOWLEDGEMENTS
This study was supported as a master's thesis at Hatay Mustafa
Kemal University, Institute of Health Sciences.
BIBLIOGRAPHICS REFERENCES
[1] Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S,
Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco
C. Acute renal failure in critically ill patients: a multinational,
multicenter study. JAMA. [Internet]. 2005; 294(7):813–818. doi:
https://doi.org/bpxx33
[2] Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML.
Incidence and outcomes of acute kidney injury in intensive care
units: a Veterans Administration study. Crit. Care Med. [Internet].
2009; 37(9):2552–2558. doi: https://doi.org/bwf73r
[3] Murugan R, Karajala–Subramanyam V, Lee M, Yende S, Kong L,
Carter M, Angus DC, Kellum JA. Acute kidney injury in non–severe
pneumonia is associated with an increased immune response
and lower survival. Kidney Int. [Internet]. 2010; 77(6):527–535.
doi: https://doi.org/fwqwp3
[4] Langenberg C, Wan L, Egi M, Bellomo R. Renal blood ow in
experimental septic acute renal failure. Kidney Int. [Internet].
2006; 69(11):1996–2002. doi: https://doi.org/bnz7pq
[5] Bacanlı M, Başaran AA, Başaran N. The antioxidant and antigenotoxic
properties of citrus phenolics limonene and naringin. Food Chem.
Toxicol. [Internet]. 2015; 81:160–170. doi: https://doi.org/f7gbqz
[6] Amini N, Sarkaki A, Dianat M, Mard SA, Ahanqarpour A, Badavi
M. Protective effects of naringin and trimetazidine on remote
effect of acute renal injury on oxidative stress and myocardial
injury through Nrf–2 regulation. Pharmacol. Rep. [Internet].
2019; 71(6):1059–1066. doi: https://doi.org/mvxm
[7] Constanza KE, White BL, Davis JP, Sanders TH, Dean LL. Value–
added processing of peanut skins: antioxidant capacity, total
phenolics, and procyanidin content of spray–dried extracts. J.
Agric. Food Chem. [Internet]. 2012; 60(43):10776–10783. doi:
https://doi.org/f4b5sh
[8] Martinez–Micaelo N, González–Abuín N, Ardèvol A, Pinent M,
Blay MT.Procyanidins and inammation: Molecular targets and
health implications. BioFactors. [Internet]. 2012; 38(4):257–265.
doi: https://doi.org/gtd2zm
[9] Sawyer GM, Stevenson DE, McGhie TK, Hurst RD. Suppression of
CCL26 and CCL11 generation in human alveolar epithelial cells
by apple extracts containing procyanidins. J. Funct. Foods.
[Internet]. 2017; 31:141–151. doi: https://doi.org/f93hzh
[10] Fraga CG, Oteiza PI. Dietary avonoids: Role of (−)–epicatechin
and related procyanidins in cell signaling. Free Radical Biol. Med.
[Internet]. 2011; 51(4):813–823. doi: https://doi.org/ctkd72
[11] Monagas M, Urpi–Sarda M, Sánchez–Patán F, Llorach R, GarridoI,
Gómez–Cordovés C Andres–Lacueva C, Bartolomé B. Insights
into the metabolism and microbial biotransformation of dietary
avan–3–ols and the bioactivity of their metabolites. Food Funct.
[Internet]. 2010; 1(3):233–253. doi: https://doi.org/cw88gg
[12] Lee J. Proanthocyanidin A2 purification and quantification of
American cranberry (Vaccinium macrocarpon Ait.) products. J. Funct.
Foods. [Internet]. 2013; 5(1):144–153. doi: https://doi.org/mvxn
[13] López–Cobo A, Gómez–Caravaca AM, Pasini F, Caboni MA, Segura–
Carretero A, Fernández–Gutiérrez A. HPLC–DAD–ESI–QTOF–MS
and HPLC–FLD–MS as valuable tools for the determination of
phenolic and other polar compounds in the edible part and by–
products of avocado. LWT. [Internet]. 2016; 73:505–513. doi:
https://doi.org/f8249q
[14] Appeldoorn MM, Sanders M, Vincken JP, Cheynier V, Le Guernevé
C, Hollman PCH, Gruppen H. Efficient isolation of major
procyanidin A–type dimers from peanut skins and B–type dimers
from grape seeds. Food Chem. [Internet]. 2009; 117(4):713–720.
doi: https://doi.org/fh8czf
[15] Zhang JY, Wang M, Tian L, Genovese G, Yan P, Wilson JG,
Thadhani R, Mottl AK, Appel GB, Bick AG, Sampson MG, Alper
SL, Friedman DJ, Pollak MR. UBD modifies APOL1–induced
kidney disease risk. Proc. Natl. Acad. Sci. USA. [Internet]. 2018;
115(13):3446–3451. doi: https://doi.org/gdbrfg
[16] Chen Y, Wu H, Nie YC, Li PB, Shen JG, Su WW. Mucoactive effects
of naringin in lipopolysaccharide–induced acute lung injury mice
and beagle dogs. Environ. Toxicol. Pharmacol. [Internet]. 2014;
38(1):279–287. doi: https://doi.org/f62x
[17] Tsan MF, Gao B. Cytokine function of heat shock proteins. Am.
J. Physiol. Cell Physiol. 2004; 286(4):739–744. doi: https://doi.
org/cx2h33
[18] Zhang W, Zhou P, Jiang X, Zhe Fan, Xu X, Wang F. Negative Regulation
of Tec Kinase Alleviates LPS–Induced Acute Kidney Injury in Mice
via the TLR4/NF–[kappa] B Signaling Pathway. Biomed Res. Int.
[Internet]. 2020; 20:3152043. doi: https://doi.org/mvxq
[19] Fu H, Hu Z, Di X, Zhang Q, Zhou R. Tenuigenin exhibits protective
effects against LPS–induced acute kidney injury via inhibiting
TLR4/NF–κB signaling pathway. European J. Pharmacol.
[Internet]. 2016; 791:229–234. doi: https://doi.org/f9dq9z
[20] Darehgazani R, Peymani M, Hashemi MS, Omrani MD, Movafagh
A, Ghaedi K, Nasr–Esfahani MH. PPARγ ameliorated LPS induced
inammation of HEK cell line expressing both human Toll–like
receptor 4 (TLR4) and MD2. Cytotechnol. [Internet]. 2016;
68(4):1337–1348. doi: https://doi.org/f8w3kd
[21] Chen Y, Nie YC, Luo YL, Lin F, Zheng YF, Cheng GH, Wu H, Zhang
KJ, Su WW, Shen JG, Li PB. Protective effects of naringin against
paraquat–induced acute lung injury and pulmonary brosis in
mice. Food Chem. Toxicol. [Internet]. 2013; 58:133–140. doi:
https://doi.org/f47xw4
[22] Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, Zhou NJ,
Xie J, Jiang H. Naringin ameliorates metabolic syndrome by
activating AMP–activated protein kinase in mice fed a high–fat
diet. Arch. Biochem. Biophys. [Internet]. 2012; 518(1):61–70. doi:
https://doi.org/bjcwzd