Overuse of biocides increased the risk of tobramycin E. coli resistance / Guergueb and Alloui _____________________________________
6 of 7
[5] CHEN, B.; HAN, J.; DAI, H.; JIA, P. Biocide-tolerance and antibiotic-
resistance in community environments and risk of direct transfers
to humans: Unintended consequences of community-wide
surface disinfecting during COVID-19? Environm. Pollution. 283:
117074. 2021.
[6] DONAGHY, J.A.; JAGADEESAN, B.; GOODBURN, K.; GRUNWALD,
L.; JENSEN, O.N.; JESPERS, A.D.; KANAGACHANDRAN, K.;
LAFFORGUE, H.; SEEFELDER, W.; QUENTIN, M.C. Relationship of
sanitizers, disinfectants, and cleaning agents with antimicrobial
resistance. J. Food Prot. 82(5): 889–890. 2019.
[7] DUFORT-ROULEAU, C.; CARIGNAN, A.; BELOIN-JUBINVILLE,
B.; LONGPRE, A.A.; DION, J.; LEGELEUX, L.; GILBERT, M. La
substitution de la gentamicine par la Tobramycine en contexte
de pénurie : évaluation de l’impact sur la résistance bactérienne.
Pharmactuel. 53(1): 17–22. 2020.
[8] DUZE, S.T.; MARIMANI, M.; PATEL, M. Tolerance of Listeria
monocytogenes to biocides used in food processing environments.
Food Microbiol. 97: 103758. 2021.
[9] FOOD AND DRUG ADMINISTRATION (FDA). 2018. BAM Chapter
4: Enumeration of Escherichia coli and the Coliform Bacteria.
Bacteriological Analytical Manual (BAM). Food and Drug
Administration (FDA). Online: https://bit.ly/3X1KSTf. 01/01/2018.
[10] FORBES, S.; DOBSON, C.B.; HUMPHREYS, G.J.; MCBAIN,
A.J. Transient and sustained bacterial adaptation following
repeated sublethal exposure to microbicides and a novel human
antimicrobial peptide. Antimicrobial Agents Chemotherapy.
58(10): 5809–5817. 2014.
[11] GADEA, R.; FUENTES, M.Á.F.; PULIDO, R.P.; GÁLVEZ, A.; ORTEGA,
E. Effects of exposure to quaternary-ammonium-based biocides
on antimicrobial susceptibility and tolerance to physical stresses
in bacteria from organic foods. Food Microbiol. 63: 58–71. 2017.
[12] GUERGUEB, N.; ALLOUI, N.; AYACHI, A.; AOUN, L.; CHACHOUA, I.
Factors Associated with Bacterial Contamination of Poultry
Meat at Butcher Shops in Biskra, Algeria. Vet. Stanica. 52(4):
429–437. 2021.
[13] HAMADOUCHE, M.; ALLOUCHE, S. Assessment of preventive
measures application against Covid-19 in the workplace.
Evaluation de l’application des mesures préventives contre
la Covid-19 en milieu de travail. La Tunisie Medicale. 98(08):
625–632. 2020.
[14] INTERNATIONAL BUSINESS MACHINES (IBM). Released 2012.
IBM SPSSStatistics for Windows. Version 21.0. Armonk, NY. 2012.
[15] KAMPF, G. Biocidal agents used for disinfection can enhance
antibiotic resistance in gram-negative species. Antibiotics.
7(4): 110. 2018.
[16] KOCÚREKOVÁ, T.; KARAHUTOVÁ, L.; BUJŇÁKOVÁ, D. Antimicrobial
Susceptibility and Detection of Virulence-Associated Genes
in Escherichia coli strains isolated from commercial broilers.
Antibiotics. 10(11): 1303. 2021.
[17] MAILLARD, J.Y. Resistance of bacteria to biocides. Microbiol.
Spectr. 6(2): 6.2.19 2018.
[18] MARSHALL, B.M.; LEVY, S.B. Food animals and antimicrobials:
impacts on human health. Clin. Microbiol. Rev. 24(4): 718–733. 2011.
[19] MINISTRY OF AGRICULTURE AND RURAL DEVELOPMENT OF
ALGERIA (MARD). List of medicines for veterinary use registered
as of 24/10/2018. 57 pp. 2018.
[20] MORENTE, E.O.; FERNÁNDEZ-FUENTES, M.A.; BURGOS, M.J.G.;
ABRIOUEL, H.; PULIDO, R.P.; GALVEZ, A. Biocide tolerance in
bacteria. Intern. J. Food Microbiol. 162(1): 3–25. 2013.
[21] NHUNG, N.T.; CHANSIRIPORNCHAI, N.; CARRIQUE-MAS, J.J.
Antimicrobial resistance in bacterial poultry pathogens: a
review. Front. Vet. Sci. 126(4): 1–17. 2017.
[22] NICHOLS, D.P.; HAPPOLDT, C.L.; BRATCHER, P.E.; CACERES,
S.M.; CHMIEL, J.F.; MALCOLM, K.C.; SAAVEDRA, M.T.; SAIMAN,
S.; JENNIFER L. TAYLOR-COUSAR, J.L.; NICK, J.A. Impact of
azithromycin on the clinical and antimicrobial effectiveness of
tobramycin in the treatment of cystic brosis. J. Cystic Fibrosis.
16(3): 358–366. 2017.
[23] ALGERIAN DEMOCRATIC AND POPULAR REPUBLIC OFFICIAL
JOURNAL. Executive Decree No. 20-159 of June 13, 2020 on the
reorganization of home connement and the measures taken
within the framework of the prevention and control system
against the spread of Coronavirus (COVID-19), Art 12. N° 35,18.
2020. Online: https://bit.ly/3YmDlj1. 30/10/2020.
[24] O'NEILL, J. Tackling drug-resistant infections globally: nal
report and recommendations. 2016. Pubkisher Government
of the United Kingdom. United Kingdom. Online: https://bit.
ly/3X4SaFO. 12/11/2020.
[25] ONICIUC, E.A.; LIKOTRAFITI, E.; ALVAREZ-MOLINA, A.; PRIETO,
M.; LÓPEZ, M.; ALVAREZ-ORDÓÑEZ, A. Food processing as a risk
factor for antimicrobial resistance spread along the food chain.
Curr. Opinion Food Sci. 30: 21–26. 2019.
[26] R CORE TEAM . R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria.2021.
[27] RIZVI, S.G.; AHAMMAD, S.Z. COVID-19 and antimicrobial resistance:
A cross-study. Sci. Total Environm. 807: 150873. 2022.
[28] SENAPATI, I.A.; MISHRA, R.; KUNDU, A.K.; MISHRA, B.P.; RATH,
P.K. Prevalence and Characterization of Escherichia coli from
Poultry Meat in Bhubaneswar. Intern. J. Curr. Microbiol. App.
Sci. 9(9): 2047–2055. 2020.
[29] SOCIETE FRANÇAISE DE MICROBIOLOGIE. CASFM/EUCAST (Comité
de l’Antibiogramme de la Société Françaisede Microbiologie/
European Committee on Antimicrobial Susceptibility Testing
guidelines). Recommendations 2019 V.2.0 Mai. 144 pp. 2019.
[30] SOCIETE FRANÇAISE DE MICROBIOLOGIE. 2020. CASFM/
EUCAST (Comité de l’Antibiogramme de la Société Françaisede
Microbiologie/European Committee on Antimicrobial Susceptibility
Testing guidelines). Recommendations 2020 V.1.1 Avril. 181 pp. 2020.
[31] THOMAS IV, J.C.; OLADEINDE, A.; KIERAN, T.J.; FINGER JR, J.W.;
BAYONA‐VÁSQUEZ, N.J.; CARTEE, J.C.; BEASLEY, J.C.; SEAMAN,
J.C.; MCARTHUR, J.V.; RHODES JR, O.E.; GLENN, T.C. Co‐occurrence
of antibiotic, biocide, and heavy metal resistance genes in bacteria
from metal and radionuclide contaminated soils at the Savannah
River Site. Microbial. Biotechnol. 13(4): 1179–1200. 2020.