Stability of bifurcating periodic orbits: an application to laser equations

  • Mario Cosenza Universidad de Los Andes-Venezuela
  • Javier González Estévez Universidad Nacional Experimental del Táchira-Venezuela
Palabras clave: hopf bifurcation, limit cycles, nonlinear dynamical systems, single mode laser

Resumen

Based on the Poincar í¨-Lindstedt perturbation method, we propose a general analytical procedure to determine the stability of periodic solutions arising from a Hopf bifurcation in dynamical systems. As an application of our method to a physical system, we analyze the stability of bifurcating periodic orbits in a single mode laser. An analytic expression for the associated stability coefficient is obtained and the stability regions are characterized in the space of parameters of this system.

Descargas

Publicado
2011-04-15
Cómo citar
Cosenza, M., & González Estévez, J. (2011). Stability of bifurcating periodic orbits: an application to laser equations. Ciencia, 13(4). Recuperado a partir de https://produccioncientificaluz.org/index.php/ciencia/article/view/9293
Sección
¢#∞¬÷ø ¥†®€å∫å