Stability of bifurcating periodic orbits: an application to laser equations

  • Mario Cosenza Universidad de Los Andes-Venezuela
  • Javier González Estévez Universidad Nacional Experimental del Táchira-Venezuela
Palabras clave: hopf bifurcation, limit cycles, nonlinear dynamical systems, single mode laser

Resumen

Based on the Poincar í¨-Lindstedt perturbation method, we propose a general analytical procedure to determine the stability of periodic solutions arising from a Hopf bifurcation in dynamical systems. As an application of our method to a physical system, we analyze the stability of bifurcating periodic orbits in a single mode laser. An analytic expression for the associated stability coefficient is obtained and the stability regions are characterized in the space of parameters of this system.

Descargas

La descarga de datos todavía no está disponible.
Publicado
2011-04-15
Cómo citar
Cosenza, M., & González Estévez, J. (2011). Stability of bifurcating periodic orbits: an application to laser equations. Ciencia, 13(4). Recuperado a partir de https://produccioncientificaluz.org/index.php/ciencia/article/view/9293
Sección
¢#∞¬÷ø ¥†®€å∫å