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Abstract
A closed-form first-order solution to the Laplace transform of the convection-dispersion equa-

tion is derived for sorbing or partitioning tracers under conditions of chemical equilibrium. For the
given flux boundary condition, the Laplace transform of the transit-time distribution. P(t), is found
for retardation factors, R, owing an exponentially decaying covariance function. Moments of P(t),
t n , are obtained by taking derivatives of � �~

( ) ( )P S L P t� , which means that
~
( )P S is a generator of

moments. These moments are emploved to find transport coefficients, in particular the so-called
dispersion coefficient, D. The main effect of the variable R is to enhance the spreading of the sorbing
tracer, that increases the value of D. At late times (large distances), the first-order moment is ex-
pected to be insensitive to the spatial variation of R. Thus, the mean velocity of a traveling pulse be-
comes independent of these variations, unless an infinite correlation length is imposed.
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Ánalisis de perturbación estocástica del transporte
de un soluto a traves de un medio poroso con un factor

espacial de retardación variable

Resumen
Una solución analítica de la transformada de Laplace de la ecuación de convección-disper-

sión se deriva para trazadores que se absorben o participan en equilibrio químico. La transfor-
mada de Laplace de la distribución de tiempos de tránsito, P t( ), se encuentra para el caso de
factores de retardo, R, que presentan una función de covarianza que decrece exponencialmente
con la distancia. Momentos de P t( ), t n , se obtienen al tomar derivadas de � �~

( ) ( )P S L P t� , es de-

cir que ~
( )P S es la función generadora de momentos. Coeficientes de transporte pueden hallarse

a partir de los momentos, en particular el coeficiente de dispersión, D. El principal efecto de la
variación espacial de R es el incrementar D. El primer momento resulta insensible a estas varia-
ciones. Por lo tanto, la velocidad media de un pulso de trazadores es independiente de las varia-
ciones de R, a menos que la longitud de correlación sea infinita.
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I. Introduction

In recent years, great deal of effort has
been dedicated to developing theories of
groundwater solute transport. This has be-
come an issue in contamination of ground-
water resources given the stringent de-
mands on water preservation (1). In the oil
industry, the need for inexpensive reservoir
characterization strategies has attracted at-
tention to the area of wellto-well tracer tests
(2). These two interests involve detailed de-
scription of the dispersion phenomenon.
This phenomenon occurs when a solute
spreads by the action of molecular diffusion
and hydrodrynamical convection. Chemical
reaction and/or absorption tend to compli-
cate the description of this transport pro-
cess. For a linear reaction at equilibrium,
the transport is expected to obey the
convection-dispersion equation.
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where c is the mean concentration of the
sorbing species, D is the local dispersion
coefficient [scalar] and U is the mean or
Darcy velocity of the fluid that carries the
tracer. R is the socallet retardation factor.
Typically, when a sharp concentration
pulse of a chemical species in solution,
e.g. a tracer, is injected into porous media,
the interplay between convection and mo-
lecular diffusion causes the pulse to widen
with time at a rate much higher than dif-
fusion alone. The dispersion coefficient
can be interpreted as an effective diffusion
coefficient, whose character is usually ten-
sorial [though only one component is
treated here] and is strongly influenced by
the velocity field in the media. Chemical
reactions or processes that are modeled as
such tend to increase the value of the dis-
persion coefficient.

Several authors have showed that spa-
tial random variations of the retardation fac-
tor widen the transit-time distribution (3, 4),

hence increasing the spreading of a tracer.
Sugita and Gillham proved that pore-level
variations of the retardation factor can be re-
sponsible for a ten-fold increase in dispersion
(5, 6). An example from the fractured media
litterature is the work of Wels and Smith (7).

In this article, a first-order perturba-
tion analysis is carried out to study the ef-
fect of spatially variable retardation factors
on the dispersion of sorbing tracers, by the
determination of moments of the transit-
time distribution in a one-dimensional me-
dium. This paper is divided in 4 sections.
First, an introduction of the problem is
given, followed by the derivation of the first-
order perturbation analysis for the
convection-dispersion equation; the Laplace
transform of the resulting equations is
taken to obtain the evolution equation for
the generator of moments; two transport co-
efficients are derived from the moment
analysis: the mean velocity and the disper-
sion coefficient. Some results are shown to
illustrate the use of the stochastic perturba-
tion method. Finally, the conclusions are
drawn.

II. First-order perturbation
analysis

The starting point for this perturbation
analysis is the convection-dispersion equa-
tion with a retardation factor, xxx, that ac-
counts for a first-order reversible chemical
reaction at equilibrium. Chemical reactions
of this type can reasonably model processes
such as reversible sorption at the pore sur-
face in a high dilution regime. The
convection-dispersion equation, taken here
in its one-dimensional form, is
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In contrast with equation [1], the retar-
dation factor changes with position in equa-
tion [2]. For the finite domain of length L
considered here, the equation above can be
written in dimensionless form as follows:
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where Pe
UL
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x
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� �; ; . The concen-

tration was made dimensionless by choos-
ing a reference concentration value.

In equation [3], Pe is the Peclet number.
In case semi-infinite media are considered,
another length scale should be selected to
make the equations unit-free. To proceed
with the stochastic-analysis, the concentra-
tion is split in a mean value, C , and a sto-
chastic term, �C originated in spatial varia-
tions of the retardation factor.

� � � �C X T C X T C X T( , ) , ,� � � [4]
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It is assumed that � � � �R C 0, which
means that C and R are stationary variables.
Expressions in [4] are replaced in equation
[3], and the ensemble average taken to ob-
tain:
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No approximation has been introduced
so far. The right-hand side of equation [5]
represents a source term for the mean con-
centration equation. The problem of the per-
turbation analysis is to find a closed-form
for the source term by carrying out a series
expansion with respect to the stochastic pa-
rameter, that is the retardation factor. Here,
only zeroth-and first-order are kept.
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The set of expressions in [6] is intro-
duced into [5] to yield the approximate
transport equations. The next step in the
analysis is to separate contributions of dif-
ferent orders in the parameter � (� at the end
is made equal to one). The zeroth-order
contribution corresponds to the solution to
the transport equation with constant coeffi-
cients:
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Factoring out terms proportional �1

yields the first-order equation:
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What has to be showed now is that the
evolution equation for C1 is not relevant for

the remaining calculations. It is readily
know that C1 0� , because the equation for

C1
has no source terms, and the boundary

conditions and initial conditions for C1
are

all zero. With this, the equation for C1
¢ is
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The right-hand side of equation [9] acts
as the source term in the evolution equation
for the stochastic contribution to concentra-
tion. As in the article by Alvarado et al. (9),
expressions for the transit-time distribution
moments are developed. However, break-
through curves and concentration profiles
can be determined, if desired, by numeri-
cally inverting the solution back into the
time domain. The generator of moments is
obtained by taking the Laplace transform of
the concentration evolution equations.

Moments of the Transit-time
Distribution

The transit-time distribution is given

here by P T
C X T

X
( )

( , )
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�

�
�X=1 as the bound-

ary conditions of the problem are
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�
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Laplace transform of � �� �P T P S L P T( ),
~
( )� , is

the generator of moments. In essence, by
solving the Laplace transform of the trans-
port equation with respect to time, one can
determine ~

( )P S at any order with respect to

the perturbation parameter by taking de-
rivatives of C X( ) at X � 1. If all the moments
of the transit-time distribution are com-
puted, then a complete set of moments suf-
fices to have a complete history of the tracer
transport. The assumption is that all mo-
ments are well defined and finite. The
zeroth-order equation is given by expression
[7]. Its Laplace transform corresponds to:
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Equation [10] is subject to the initial
and boundary conditions of the original

problem, i .e. �
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The next order in the perturbation is
found by solving for

~
C1
¢ . The Laplace trans-

form of equation [9] gives
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The solution to equation [12] is ob-
tained by the standard Green function
method for the Liouville’s operator (10):
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The Laplace transform of expression [5] is
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Equation [15] contains the covariance
function between R´ and C´, that is the
source term sought in this analysis. Substi-
tution of [13] into [15] completes the per-
turbed evolution equation.
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The only additional consideration to
using the Green function is to take into ac-
count the inhomogeneous boundary condi-
tion given by the flux at the inlet boundary.
This is easily overcome by splitting the solu-
tion as

~
C v v� �1 2 where v1 is a solution

that satisfies the equation with a source
term, but has homogeneous boundary con-
ditions, and where v2 holds the homogene-
ous differential equation with inhomogene-
ous boundary conditions. Thus, �1 is
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v2, on the other hand, satisfies the
same equation and boundary conditions as
� �

~
C0

, and hence it amounts to having the

zeroth-( )v1
and a first-order (

~
)v C2 0�� �

terms. In the next section, the result of solv-
ing equation [17] is employed to evaluate the
effect of R´ on spreading [the lengthy ana-
lytical result is not shown].

III. Results

The perturbation solution of
~
( )P S con-

tains two separate contributions, and so do
the moments. Henceforth, all moments can
be written as follows:
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The subscripts indicate the order with
respect to the perturbation. The first-order
solution has a leading term proportional to
S 2, as can be seen from equation [17]. This
means that the there are no contributions at

this order to the first moment of the transit-
time distribution. In practice, the mean tran-
sit time should be insensitive to small spatial
variations of the retardation factor, that is up
to a first-order approximation. To evaluate
predictions of the perturbation analysis, a
finite-difference type of an approximation
was implemented (11). The approximation
requieres sampling of the distribution of R for
many realizations of disorder.

Figure [1a] shows that� �t indeed does
not change with increasing values of
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Figure 1.(a) Mean-transit time as a function of
standard deviation of R b t( )� � 2 as
a function of the standard deviation
of R. The parameters are
Ul D R L l x/ . , . , /2 20 20 5 10 4� � �� �
and!� -10 4 . The error bars represent
the standard deviation of 103 to 104

realizations.



� �� � �R 2 . Thus, measurements of mean flow

should be insensitive to this type of disorder.
However, perturbation analysis shows that
second- and higher-order moments are af-
fected by spatial variations of the retarda-
tion factor. The variance,  t

2, was computed
for the parameters employed in Figure [1a],
as Figure [1b] shows. Large deviations from
the lowest value of  t

2 are observed, even for
small values of � �� � �R 2 . The expression for
the dispersion coefficient of the zeroth-order
approximation in the limit of large Peclet
numbers is (12):
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L®¥

�
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2 2

3 2 

It should be noticed that small incre-
ments in the size of the perturbation
causes considerable increments in the dis-
persion, that is 10% deviation from the
mean value originates twice as much dis-
persion (when measured at zeroth order),
as Figure (1b) indicates.

A comparison between the perturba-
tive calculation and the numerical calcula-
tion is carried out in Figure (2). As can be
seen, both the curves are very close and fol-
low a straight line. This is expected at low
values of � �� � �R 2 . The difference between
the two curves can be attributed to higher-
order corrections.

IV. Conclusions

A closed-form solution to the Laplace
transform of the convection-dispersion
equation for sorbing solutes was found un-
der conditions of a spatially varying retarda-
tion factor. The solution yields the generator
of moments. Moments of the transit-time dis-
tribution are affected by the spatial disorder
in the retardation factor. As expected from
the perturbation analysis, the first-order so-
lution exhibits a linear contribution with re-
spect to the variance of the retardation factor.
The first moment of the distribution is nearly

independent of � �� � �R 2 , but probably is af-
fected by higher-order contributions.

The dispersion coefficient is enhanced
by the distribution of R. The first-order solu-
tion leads to a dispersion coefficient that ap-
proximates better the local value of D. This
suggests that experiments carried out with
neutral tracers would give the right value of
the dispersion coefficient, and if information
on the distribution of R were known, then
the transport would be correctly predicted.
Perphaps the information on R could be ac-
cessed through imaging of rock samples, in
the case of oil reservoirs.
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