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Abstract 
In this work we analyze the time evolution of an atomic system in the presence of an elec- 

tromagnetic field. The interaction between the field and the system is modeled within the dipole 
approximation. As a zero approximation we first model the system with a harmonic oscillator 
and consider the field a s  classical. As is well known, in this case the quantal result is identical 
with the classical one. Then we model the system with a Morse oscillator which we expand 
keeping up  to fourth order terms in the displacement coordinate. We compare the response of 
the system for different depths of the potential and different intensities of the field. 
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Evolución temporal de un sistema atómico en la 
presencia de un campo eléctrico dependiente del tiempo 

Resumen 
En este trabajo analizamos la evolución temporal de un sistema atómico en la presencia de 

un campo electromagnético. La interacción entre el campo y el sistema es modelada de acuerdo 
a la aproximación dipolar. Como aproximación cero, modelamos primero el sistema como un 
oscilador armónico y consideramos el campo como clásico. Tal como es conocido. en este caso 
el resultado cuántico es idéntico con el resultado clásico. Luego. modelamos el sistema como 
un oscilador de Morse el cual desarrollamos hasta el término de cuarto orden en la coordenada 
de desplazamiento. Comparamos la respuesta del sistema para diferentes tipos de potencial y 
distintas intensidades del campo. 

Palabras clave: Algebras de Lie; oscilador armónico; oscilador de Morse. 

Introduction cause it allows for the possibility of control- 
ling the positions and kelocities of a collec- ' 

cOO1ing has been the subject of tion of atomic particles to within the limits 
much theoretical and work be- imposed by quantum fluctuations (1). The 
cause It P~~~~~~ a method to reduce first rnethod of laser cooling can be applied to re- 
and arder Doppler shifts In duce the temperature of a gas of neutral at- 
high resolution spectroscopy and also be- 
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oms a s  well a s  to ions bound in an electro- 
magnetic trap with near resonant laser ra- 
diation (2). Using this technique, it was pos- 
sible to cool a single trapped ion into its 
quantum ground state of motion for ap- 
proximately 95% of the time (3). Not long 
ago, the experimental generation of a Schro- 
dinger cat-like state of matter a t  the single 
atom leve1 was reported (4). 

In order to create this non classicai 
state of the harmonic oscillator they first 
laser-cool the ion to the quantum ground 
state of motion and then coherently ma- 
nipulate its intemal (electronic) and exter- 
nal (motional) state by applying pairs of off 
resonant laser beams which drive two- 
photon stimulated Raman transitions. A s  
pointed out by Zurek (5) a macroscopic su- 
perposition of the form of a Schrodinger cat 
state decays to a statisticai mixture on a 
short time scale (decoherence time) which is 
related to the size of the cat and is much 
faster than the e n e r a  dissipation time. this 
provides an explanation for the absence of 
superpositions in the macroscopic world. A 
numencal study of the experiment studying 
the importante of nonlinearities of the elec- 
tromagnetic field, and its effects in the tem- 
poral evolution of this non classical state is 
under way and will be presented elsewhere 
(6). Here we analyze the temporal evolution 
of an  atomic system modeled via harmonic 
and anharmonic oscillators interacting with 
an electromagnetic field using algebraic 
techniques. 

Harmonic Oscillator 

Let u s  start by considenng the Hamil- 
tonian 

with Ho the unperturbed Hamiltonian 
H ,  = pZ / 2rn + m;x2 / 2 ,  where x is the 
displacement from the equilibrium position, 
e i s  the electric charge and E(t) is the exter- 
nal,  classical electric field, given by 

E(t) = E, cos(w t). Expressing the displace- 
ment coordinate and the momentum in 
terms of the creation and annihilation op- 
erators at, a, we obtain: 

In order to study the temporal evolu- 
tion of the system, it is convenient to trans- 
form into the interaction picture where the 
free evolution has  been frozen. Schro- 
dinger's equation in the interaction picture 
takes the form 

where the Hamiltonian HI is given by 
H , ( t )  = U ,'W, with U. being the time evolu- 
tion operator corresponding to the unper- 
turbed Hamiltonian. In this simple case, it is 
given by: 

In the interaction picture, the creation 
and annihilation operators are 

a,  ( t )  = UOUU, = ae?"', and a: ( t )  = U;~'U, = ate''"f1' 

so that, the interaction picture Harniltonian 
takes the form (7) 

H, ( t )  = -e ' E" C O S ( O I ) ~ ~ - ~ ' ~ , ~ '  + ateiwof) 
2mw, [SI 

Since this a linear combination of op- 
erators which form a finite Lie algebra, the 
time evolution operator can be written a s  a 
product of exponentials (8,9) 

with unknown. complex, time dependent 
functions ai . Substitution of Equation [6] 
into Equation [3] yields the following set of 
first order differential equations: 
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Due to the simple form of the function 
f,(t). these can be integrated obtaining: 

a, ( t )  = - 

Once we have the explicit form of the 
time evolution operator, we can evaluate the 
temporal evolution of a given observable 
through its matrix elements, that is: 

Using Equations [4] and [6], the opera- 
tors a and at transform according to: 

at(t) = UjUAatU,~ ,  = e" ' (at + a,) 1 141 

so that, the temporal evolution of the dipolar 
moment of the system is: 

where we have used Equations [ 101 and [ 1 11 
and we see that the linear polarizability of 
the system (harmonic oscillator) coincides 
with the classical result 

We can also evaluate the temporal evo- 
lution of the momentum: 

Time evnluation of nn atomic systern 
-. - -  ~ ~ - ~~~ - - 

and of the dispersions in the displacement 
and the momentum operators: 

For example, the squared of the dis- 
placement operator is given by: 

In a similar form we can construct the 
expression for the square of the momentum 
operator, the result obtained for the ground 
state of the oscillator 

Amo, 
and Ap = 

2 

so that the ground state is a minimum un- 
certainty state at  al1 times. 

Anharmonic Oscillator 

Consider now a quartic oscillator given 
by the following expression: 

where h is an annharmonicity parameter 
with units of energy/distance4. First we in- 
troduce creation-annihilation operators de- 
fined in the usual form and the unperturbed 
Hamiltonian takes the form: 

where 
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notice that we have separated the contribu- 
tion which arises from the quartic (q) term 
and we have written it as  a sum of two terms, 
the first one being a bilinear form and the 
second one containing higher order terms. If 
we approximate the unperturbed Hamilto- 
nian and neglect the part containing terms 
higher than quadratic we get 

We now introduce a Bogoliubov trans- 
formation (1 O), which defines operators b 
and bt through: 

with real transformation coefficients ti. For 
the transformation to be unitary the com- 
mutation relation must be preserved: 

and we thus obtain the condition 

To single out the transformation coeff- 
cients we impose the condition that the Ha- 
rniltonian in the new variables must have 
the form of a displaced harrnonic oscillator 

where Q is an effective frequency and A E  
gives an estimate of the ground state energy. 
Using the inverse of the transformation 
equations [24], (251 and substituting into 

Equation [23], we obtain a set of algebraic 
equations whose solutions yield: 

-2 

and N = 6h( ) ito, 
2n7.00 

Notice that when h -+ O, t, -+ 1 and t, + 0. 
Writing the interaction in terms of operators 
bt and b. we obtain the following effective 
Hamiltonian: 

with the function f,(t) defined in Equation 
[5]. In analogy with the previous case, we go 
into the interaction picture where the Ha- 
miltonian takes the form: 

Since the set of operators appearing in 
Equation [3 11 forms a finite Lie algebra, the 
time evolution operator can be written as a 
product of exponentials with unknown com- 
plex functions Bi (see Equation [6] which ful- 
fill equations similar to Equations [7-91 with 
g(t) instead off, ( t ) .  

In order to study the temporal evolu- 
tion of the displacement and the momentum 
operators, we first transform the operators b 
and bt 
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Expressing the displacement operator 
in terms of these, we obtain: 

Fi 
n l x l n  = (t, - t 2 ) ( e i " '~ ,  - e-'"'p,) [34] 

2-0 

and 

from the above equations we find the disper- 
sions in the two quadratures to be: 

h 
( A X ~  = [2n(tl - t27 - 2t,(tl - t,) + 1: 1381 

2-0 

finally : 

and we see that the ground state of the an- 
harmonic oscillator is no longer a minimum 
uncertainty state. If the anharmonicity pa- 
rameter h is time dependent, the transforma- 
tion coefficients t ,  and t, , and the effective 
frequency R dso  become time dependent 
and the effective Harniltonian becomes that 
of a linearly driven parametric harmonic os- 
cillator with the possibility of squeezing (1 1). 

In order to evaluate the evolution of the 
transition and permanency probabilities we 
have to calculate the matrix elements of the 
time evolution operator in the interaction 
picture. This can be accomplished in the 
harmonic and the anharmonic cases using 
the fact that the operator Ui has the form of a 
product of exponentials. Consider first the 
matrix element 

A,,,. = nr 1 U ,  1 n = n' 1 e~"c'e"2ced3' 1 n [411 

where I is the identity operator and where 
the functions 6 are used instead of either a 
or B and the o erators and c, ct are used to P designate a, a or b, bt . The matrix element 
can be calculated as  follows: 

each one of the matrix elements in the sum- 
mation give: 

so that when the summations over m and p 
are done one is left with a finite summation 
over q where the maximum number of terms 
is n. Taking the absolute value squared we 
obtain the transition probabilities P,,,. +: 

Nurnerical Results 

In order to set the parameters defining 
the oscillator we used those given by Clark 
and Dickinson (12) in their calculation of 
transition probabilities in collinear colli- 
sions between an atom and a diatom which 
was modeled through harmonic and Morse 
oscillators. 

In Figure 1 we show the time evolution 
of the displacement operator for a harmonic 
oscillator and an anharmonic one. The fre- 
quency of the harmonic oscillator i s  
o, = 8.05 x 1 014 / sec, the effective frequency 
R = 22.57 x lo i4  / sec, the externa1 electric 
field frequency is o = 9.585 x loi4 / sec and 
the anharmonicity parameter h = 8.44. The 
units of time are 1 0 . ' ~  sec., and those of the 
displacement are A. Notice that the effect of 
the anharmonicity is manifested by a short- 
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ening of the amplitude of the oscillation and intensity twice and three times that of Fig- 
the appearance of a secondary frequency ure 1. The arnplitude of the oscillation is in- 
giving rice to a beating phenomena. In Fig- creased and the beating behavior is main- 
ure 2 we also show the average vaiue of the tained. 
displacement operator (for the anharmonic 

In Figure 3 we show the transition 
case) with the same set of parameters de- 

probabilities PiUo and P,,, for de-excitation 
scribing the atomic system but  with a field 

from the first excited state to the ground 

Figure 1. Average value of the displacement operator as a function of time. The dotted line corresponds 
to the harmonic case; the continuous line to the anharmonic case. 

Figure 2. Average value of the displacement operator as a function of time for a anharmonic oscillator 
and severa1 values of the field intensity. The largest amplitude corresponds to E, = 3E,, the 
next to E, = 2E,, and the smallest to EO = 1. 
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Figure 3. Transition probabilities Plro (full line) and P1,2 (dotted line) for the anharmonic oscillator as a 

function of time. The effective frequency of the oscillator is R = 22.96 and the field frequency is 
w = 9.58. 

state and excitation from the first excited 
state to the second excited state a s  a func- 
tion of time for a system characterized by the 
same set of parameters a s  the one used in 
the previous figure. We can see a semi peri- 
odic behavior for both with marked differ- 
ences. The (1-0) transitions, first increases 
a s  the system interacts with the field until it 
gets to a maximum value, then it starts to 
decrease and after a short time (when t = 2) it 
starts to increase again reaching a value 
near the previous maximum and then it de- 
creases again but  this time it attains a vaiue 
a practically zero (at t = 4), after that the cy- 
cle starts again. On the other hand. the (1-2) 
transition follows a similar conduct a s  the 
previous one with the difference that when 
the (1-0) transition gets to a local minima 
(when t - 2) the (1 -2) transition becomes ai- 
most zero, then the (1-2) transition in- 
creases to a maximum value and ctecreases 
again to a zero when t - 4. 

an approximation for the time evolution op- 
erator of a anharmonic oscillator forced by an 
extemal classicai field. The method relies in 
the fact that when the Harniltonian can be 
written as  a linear combination of operators 
which form a finite Lie aigebra, the corre- 
sponding time evolution operator can be ex- 
pressed a s  a product of exponentiais. Using 
this fact, the temporal evolution of physical 
observables like the position and momentum 
can be evaiuated. It is aiso possible to obtain 
an explicit expression for the permanency 
and transition probabilities. The method can 
be applied to the case of a pararnetric oscilla- 
tor since its validity depends only upon the 
aigebraic properties of the Hamiltonian. 
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