
Series development of the stress tensor for the shear
viscosity of gases in the transition regime

Germán Urbina-Villalba1*, Máximo García-Sucre1, Rixio Parra1,
Luis Araque-Lameda2 and Gustavo J. Mata3

1Centro de Física, Instituto Venezolano de Investigaciones Científicas, Apartado 21827.
Caracas 1020A, Venezuela. 2Departamento de Física, Universidad de Oriente, Núcleo Sucre.
Cumaná, Venezuela. 3Departamento de Física, Universidad Simón Bolívar, Apartado 80659.

Caracas 1080 A, Venezuela

Recibido: 27-06-97  Aceptado: 09-07-99

Abstract

We discuss some relevant features of the variation of the effective viscosity of gases with
the pressure in the transition regime. Both qualitative arguments and formal ones are given in
order to explain the regular pattern of oscillation of the effective viscosity with pressure that has
been experimentally observed in gases under the transition regime. Using the Boltzmann equa-
tion under the relaxation time approximation, an infinite series expression for the tangential
stress Pzx in terms of the spatial derivatives of the gas velocity is deduced. For constant bound-
ary conditions an appropriate cut off of this series up to fifth order in the mean time between
collisions produces an ordinary differential equation that can be easily solved for Pzx assuming
laminar flow and a small dependence of the fluid velocity with the spatial distance “z”, from the
walls of the container.
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Resumen

Se discuten algunas características importantes de la variación de la viscosidad efectiva
de los gases con la presión, en el régimen de transición. Se presentan argumentos tanto cualita-
tivos como formales con el objeto de explicar el patrón regular de oscilación de la viscosidad
efectiva con la presión, el cual ha sido experimentalmente observado en gases bajo Régimen de
Transición. Usando la ecuación de Boltzmann en la aproximación del tiempo de relajación, se
dedujo una expresión en la serie infinita para el esfuerzo tangencial Pzx en términos de las deri-
vadas espaciales de la velocidad de un gas. Para condiciones de contorno constantes, un corte
apropiado de esta serie hasta orden quinto en el tiempo promedio de colisiones, da lugar a una
ecuación diferencial ordinaria que puede ser fácilmente resuelta para Pzx suponiendo flujo la-
minar y una pequeña dependencia de la velocidad del fluido con la distancia espacial “z” desde
las paredes del recipiente.
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Introduction

The first experimental evidence of the
oscillating dependence of the shear viscosity
of gases with pressure in the transition re-
gime was reported in 1978 (1). Since then,
significant advances both in the theoretical
understanding of the phenomenon (2-7) and
its experimental measurement (1,4,8-9) had
been made. According to the theory it has
been realized that the first order gradient ex-
pansions of the stress do not explain flows in
the transition regime (10-13) and therefore
higher order equations in the Chapman-
Enskog expansion appear to be necessary
(10-14). In order to illustrate this point let us
consider the Couette flow of a gas between
infinite parallel plates moving relative to
each other and separated by a distance L.
This problem, although simpler than the
flow between rotating coaxial cylinders, al-
ready presents the referred effect. The mean
force on a plane parallel to the plates and
passing through the point z lying between
z=0 and z=L is due to the momentum trans-
fer per unit area and unit time, and is given
by the usual approximate expression (15):

P nmv z zzx z c x c

1
6

� �( ) ( ) ,� � [1]

where z is an axis perpendicular to the infi-
nite parallel plates, x the axis along which
the relative motion of the plates occurs, � c

the mean free path, and m and v the mass
and mean speed of a molecule respectively.
Since we are considering the steady state of
a laminar flow, we must have unaccelerated
layers, which in turn requires that Pzx be in-
dependent of z. Therefore, the difference
� �x c x cz z( ) ( )� � appearing as a factor in
Eq. [1] must be independent of z. This oc-
curs when � x z( )is linear in z, or, more gener-
ally, when � x z( ) is a linear combination of a
periodic function of z with period 2� c , and a
linear term in z. The simplest function � x z( )
fulfilling this condition is given by (3):
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where the coefficients A, B, C and D may de-
pend on � c (or equivalently on the density

n
c

1

2��
).

When � x z( ) is linear in z, i.e. A c( )�

B c( )� 0, we have from Eqs. [1] and [2] that
P nm Czc c c1 3/ ( )�� � . Then, we obtain in
this case the usual result for the continuous
regime: P Lzx � �
 / with � �1 3/ nm c�

and � � �x z L z( ) ( / )0 
 . Note that �o and
� L may depend on � c through the slip at the
boundary layers and 
� � �L 0 (13).

The need to go beyond a linear approxi-
mation for � x z( ), appears when one realizes
that, depending on � c , and on the chemical
and physical properties of the solid surfaces
and the gas, the quantities a zx z0 0( / )�

anda zL x z L( / )� may take values which
are not necessarily equal to 
� /L. In other
words, to describe cases where a L0 � 
� /
and/or a LL � 
� / , we must use for � x z( ) a
more general (flexible) function of z than the
linear one, still fulfilling that the Pzx given in
Eq. [1] is independent of z. This leads us to
take into account all the four terms in Eq.
[2], which together with the four boundary
conditions � � �x x L( ) , ( )0 0 � �L x zz,( / ) 0

a 0and ( / )� x z L Lz a , yields (3):
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The Pzx given in Eq. [3] oscillates with
density n in all situations where
( ) /a a LL �0 2
� . On the other hand, if the
boundary conditions are equal to those cor-
responding to the linear expression � x z( )
C z Dc c( ) ( )� � , i.e. a a LL0 
� / , then Eq.
[3] reduces to the usual expression
P Lzx � �
 / , as expected. Furthermore, in
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the continuous regime limit � c � 0 the ex-
pression given in Eq. [3] also reduces to
P Lzx � �
 / , even when ( ) /a a L2 0 2� 
�

, which is also the expected result.

A similar expression for Pzx, as is given
in Eq. [3], can be obtained from a less crude
procedure consisting of a series develop-
ment of the stress tensor of the shear viscos-
ity of gases which can be deduced from the
Boltzmann equation using the relaxation
time approximation (2). As shown by the ex-
periments (1, 4, 8-9) this simple formalism
is able to justify (2): 1) the oscillating varia-
tion of the shear viscosity of gases, with re-
spect to pressure in the transition regime;
2) the position of the principal signals of that
non monotonic variation of the viscosity as a
function of pressure; 3) the movement of
those signals with an external thermal gra-
dient at constant pressure; 4) the position in
pressure of the signals as a function of the
distance between the sliding parallel plates;
and 5) appears to reproduce some interest-
ing features of the shear viscosity of thin liq-
uids films sheared between parallel plates at
molecular separations (16-17).

According to the referred formalism a
third order expression for Pzx has the follow-
ing form (2):

P
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3
,

[4]

where �=(�/8)nmv c� and =(3�
2/64)nmv c

3
� ,

and ux is velocity of the gas in the x direction
(parallel to the shearing plates). Assuming a
steady state condition, (Pzx = constant), the
solution of the third order differential equa-
tion (Eq. [4]), leads to a very similar expres-
sion to that previously deduced above from
intuitive arguments (Eq. [3]):
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where � = (�/)1/2 and 
u=
�.

If the approximations leading to Eq. [5]
are carefully reviewed, it can be observed
that: 1) the Boltzmann approach in the
time-relaxation approximation should be a
good approximation in the range of pressure
and temperature used in the experiments
reported; 2) the supposed re-establishment
of a local maxwellian distribution after the
collisions implied in the time relaxation ap-
proximation cannot be completely guaran-
teed, though the existence of a total maxwel-
lian distribution at very low pressures has
been experimentally confirmed (18); 3) the
experimental apparatus employed in the
viscosimetric measurements presents a cy-
lindrical geometry, similar in some respects
but not equivalent to the parallel plate case
previously considered; 4) the constancy of
the boundary conditions with respect to
pressure is a rough approximation since the
mechanism by which the gas molecules ex-
change energy and momentum with the
walls of the container is complex and its ef-
fect upon the velocity distribution function
difficult to estimate; 5) although Eq. [4]
leads to the well known expression for Pzx in
the continuous regime

P
u

z

u

Lzx � �



, the zero pressure

limit of this expression is not correct, since
the coefficient of viscosity does not depend
on pressure due to their linear dependence
on the density and on the mean free path (

� c
n

1

2�
; where � is the molecular cross

section and n the density of the gas under
consideration).

In what respect to point 5) above, that
deficiency can be easily corrected with the
employment of a suitable expression for the
mean free path of the gas molecules which
takes into account that there is a physical
limit to the zero pressure mean free path
(� c ), given by the size of the container. Thus
if one defines an “effective” or “total” mean
free path (� total ) as (15):
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where � c cv� is the usual mean free path,
being v and �c , the mean molecular velocity
and the mean time between collisions, the
coefficient of viscosity will drop to zero as the
density diminishes. Furthermore, if � c is
substituted by �total in equation [4], and the
resulting differential equation solved, the
same expression previously obtained in (2)
for the viscosimetric cross section of a gas is
regained (see Appendix I), while the plot of
Pzx vs. density tends to zero as n � 0, and the
curve only shifts to higher pressures pre-
serving its original shape.

In what respect to the boundary condi-
tions (point 4 above) a numerical evaluation
of Pzx for constant, sinusoidal and random
boundary conditions has been recently
made for the specific case of two concentric
cylinders with constant relative motion,
which resemble the cylindrical geometry of
the viscometer used in experimental meas-
urements (point 3 above). As those calcula-
tions showed, the detailed variation of the
viscosity with respect to pressure is natu-
rally modified, but the periodicity of the os-
cillations does not change, preserving the
general pattern of variation fairly un-
changed (6). In any case arguments in favor
of the near constancy of the boundary con-
ditions (a0 and a1 in Eq. [5]) for gases in the
transition regime had already been given (1).

Taking into account all discussed fac-
tors, it still remains that the series develop-
ment of Pzx may be still short at third order.
This leads us to a more thoughtful consid-
eration of the series development of the
stress tensor previously employed. Accord-
ing to the authors of this paper, the order up
to which the series development of Pzx

should be preserved might be set up
through direct contrast with the experimen-
tal results. Thus, for the continuous case
the first order term is enough, and it is ex-
perimentally found that the coefficient of

viscosity does not depend on density for
pressures between 1 atm and 0.01 atm (15).
Due to the inability of this expression to jus-
tify the oscillations of viscosity found in the
transition regime, a third order term is
maintained for this specific case, and eq. [5]
results. If other experimental phenomena
(such as the detailed variation of effective
viscosity with pressure in the transition re-
gime) cannot be explained by the third order
expression, it would be useful to study
higher order contributions.

At this point however, it is important to
remark that a series development of Pzx in
terms of the mean free path �c and the spa-
tial derivatives of the gas velocity may not be
convergent. On the other hand, if the effec-
tive mean free path given by Eq. [6] is used in
the series development of Pzx , all the coeffi-
cients of the series, except the first, present
a maximum and remain bound as the pres-
sure drops to zero (see Appendix II).

The present paper presents an infinite
series development of the stress tensor of a
gas in the transition regime in terms of the
spatial derivatives of the velocity of the gas.
Additionally, the resolution of the fifth order
differential equation found for Pzx under
constant boundary conditions is also given.

Results and Discussion

Path integral formulation

Under the path integral formulation
the distribution function is given by:

f t f t d e t( ) ( , , ) ( )/r,v, r v0
0 0 � � , [7]

which integrated by parts gives:

f t f t

f

t
t t e dtt

( ) ( , , )

( , , ) ./

r,v, r v

r v

0
0 0

0

0 0
�

[8]

It is supposed that f 0 could be taken as a
maxwellian distribution:
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where Ux = vx - ux (z) , Uy = vy , Uz = vz.
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Then expression [7] gives:
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The last integral in Eq. [12] can be integrated
by parts to obtain:
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Now since the factor e dtt /� still persists we
can integrate by parts four more times to
get:
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The expression for the stress tensor is (15):

P m d U f tU Uzx z x
3 ( )r,v, [15]

In order to calculate Pzx from Eqs. [14] and
[15] the derivatives of the function g should
be evaluated:
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Since Uz = vz all the terms of the series
[14] which are even in vz give rise to odd inte-
grants of Uz when substituted in equation
[15] and vanish when integrated in the inter-
val (-�, +�). All the terms which contain even
spatial derivatives of g also disappear, since
these derivatives are even in Uz (as a matter of
fact do not contain Uz ) and also give rise to
odd integrands. Finally, the rest of the terms
that are product of spatial derivatives of dif-
ferent order in ux cancel out when the appro-
priate derivative of g is substituted and the
integrals evaluated (See Appendix III). If one
calls fzx the sum of all the terms of f which
produce non vanishing contributions to Pzx,
then:
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By induction it is seen that for nth order:
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Inserting this expression in equation [15] we
get:
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Let us call M(i) the remaining integral of
equation [20]:
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where 	 is the well known gamma function
which has the following properties:
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Using [22]:
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Inserting Eq. [21] in [20] and this result in
[19], one gets:
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Changing the index so that the sum-
matory runs on all positive integers (i=2j+1):
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where d is the degree up to which the series
would be preserved, and j runs over all posi-
tive integers starting with zero.

Finally taking into account that
� = 1/kT and �total v = ltotal a series expression
for Pzx is reached:
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Resolution of the differential equation
of order d

Once d is selected, Eq. [26] becomes a
differential equation in ux, which can be
solved when the stress tensor is independ-
ent of the distance z. This laminar flow con-
dition is justified if the period of the viscome-
ter is chosen large enough to avoid turbu-
lent flow. Whenever this holds true, the re-
sulting differential equation is a non homo-
geneous ordinary differential equation of or-
der d with constant coefficients. The solu-
tion of the correspondent homogeneous
equation is (19):

u c zx i
i

d

i
1

exp( )� [27]

where the lambdas (�) are solutions of the
characteristic equation of the correspon-
dent homogeneous differential equation.
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A particular solution of Eq. [26] cut off
at order d, could be easily chosen as -Pzx z/�.
The general solution of equation [26] is then:

u c z P
z

x i
i

d

i zx
1

exp( )�
�

[28]

In order to get Pzx which in above equa-
tion is one of the coefficients, boundary con-
ditions on ux and its derivatives should be
selected. If the value of the velocity ux and its
derivatives are established at z = 0 and z = L,
then differentiating Eq. [28] (d-1)/2 times,
gives d+1 algebraic equations with d+1 un-
knowns. Thus an expression for the stress
tensor can be deduced.

For first order, the resulting homoge-
neous differential equation is:

0 �
u

z
x [29]

the characteristic equation is � = 0, and the
general solution is:

u c z
P

x
zx

1
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[30]

If ux (z=L) = uL , and ux (z=0) = u0 , the follow-
ing system of equations results:

u c P LL zx1 / ,�

u c0 1 . [31]

Hence:

P u u Lzx L�( )/ .0 [32]

being [32] the usual expression for the tan-
gential stress in the continuous regime, �

being the usual coefficient of shear viscos-
ity.

For third order the homogeneous dif-
ferential equation is:

0
3

3
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z
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and the characteristic equation is:

�� �3 0. [34]

Solving Eq. [34] one gets: � � 1
1 2i( / ) ,/

� � 2
1 2i( / ) ,/ and � 3 0.

The general solution of Eq. [33] is
therefore:

u c z c z P
z

cx zx1 1 2 2 4exp( ) exp( )� �
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.

[35]

Differentiating Eq. [35], and specifying
the boundary conditions for u x and u x at
z = L and z = 0, a system of four equations
with 4 unknowns is obtained, from which
the expression of Pzx given in Eq. [5] is ob-
tained (� = i�2 ).

As a final example it might be noticed
that for fifth order, the procedure outlined in
the previous section leads to:
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where the lambdas are the solutions of the
characteristic equation:
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and � is the coefficient of the fifth order de-
rivative in Eq. [26], and � 5 0.
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The general expression of the stress
tensor generated from the correspondent
system of six equations (u u ux x x, , for z=L
and z=0) is:

P N Dzx / [40]
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and

D=
[exp( / ) ( / )]
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sin 8 84 2 3
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[ ( / )][ ]sin 2 8 84 2 3BL l A Bl A B l [42]

where A = 0.44880405, B = 0.67533176,
and b u z LL x ( ) and b u zx0 0( ).

Notice that the boundary conditions at
each wall of the viscometer appear as sums
in Eq. [41], so that only the values of 
u, (a0
+ aL) and (b0 + bL ) are needed instead of the
six boundary conditions that should be in
principle required for a fifth order deve-
lopment of Pzx . The behavior of this high or-
der expression of Pzx as a function of density
along with its dependence under distinct
boundary conditions will be given in fo-
llowing articles.

Conclusions

As shown in this article, the use of the
Boltzmann equation under the time relaxa-
tion approximation allows to deduce a gene-
ral series expression for the stress tensor for
a gas. Appropriate cut off of the series to a gi-
ven order open the possibility of a systema-
tic study of the influence of high order terms
in the behavior of the stress tensor, as well
as the search of qualitative criteria in order
to bound this series in an appropriate way
for different regimes.
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Appendix I
Separation in density of the regions of

non monotonic variation of the gas
viscosity, employing a suitable

expression for the mean free path in the
transition regime

As was previously found [2] the regions
of rapid variation in a Pzx vs pressure plot
satisfy the following condition:


� �L 2 [I.1]

Now if the Eq. [6] is used to calculate
� � ( / ) /1 2 and this expression is substi-
tuted in the left handside of Eq. [I.1], one
gets:


�
�

L L
L l

l

L l

l
c

c

c

c

8
3

1 2/

Introducing l nc ( )/21 2 1� in the above
equation, the known expression for the vis-
cosimetric cross reported in references (3)
and (7) is reproduced:


n
L

�
�

1

4 3 3 1 2( / )
,

/
[I.2]

where 
n n n .

Thus, the approximate expression of
the mean free path for low pressures given
by Eq. [3] does not change the separation in
density of the regions of non-monotonic
variation of the shear viscosity (
n).

Appendix II
Mathematical form of the maxima of

the coefficients of Eq. [23]

If usual expression of the mean free
path (� c ) is used instead of Eq. [6], the coeffi-
cients of the series development of the stress
tensor go to infinity very rapidly as the pres-
sure diminishes. Though the value at which
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they get out of bounds depends on the cross
section of the gas, it is usual that atT 300 K
this pressure stays around 10 µmHg (i.e. for
He it is located around 17 µmHg and for N2 it
is around 8 µmHg). If the wall correction on
the mean free path is taken into account, the
coefficients increase toward a maximum but
then drop towards zero as pressure is fur-
ther decreased.

As was previously noted ( Eq. [26] ), the
referred coefficients have the following form:

mv
l

l L

l L
p

c

c

c

d d

P

d1

2 8
2 1

1

2

0�

�
(

( 1 2)/

) [II.1]

where d is again the order of the coefficient
(d=1,3,5...). In order to get the position of the
extrema, we have the condition:

l

l

l L

l L

d

l

l L

l L

L

l Lc

c

c

d

c

c

c

d

c
2

1 2

0 [II.2]

After some arithmetic, the expression:

l L dc ( )1 [II.3]

is obtained; which in terms of the pressure
is equal to:

P
KT

L d� 2

1
1( )

[II.4]

As can be deduced from [II.3] and
[II.4], the coefficient of first order do not
present a maximum value but instead, de-
creases monotonically with the gas den-
sity. The position of the maxima of the rest
of the coefficients moves towards zero as
the order of the coefficient increases. For
most gases, these maxima lay between
1.5 µmHg and 0 µmHg.

Introducing Eq. [II.3] in Eq. [II.1], one
gets for the coefficient of order d:
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[II.5]

From which the final expression for the
maximum value of the coefficient can be de-
duced:

mv L d

d
p

d

d

d

p

d

�

�
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1

8
2 1

1
1

2

0

1 2( )
( )
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[II.6]

Figure 1 illustrates the dependence on
pressure of the coefficients (given in Eq.
[II.1]) of the terms contributing to Pzx (Eq.
[26]) up to fifth order. This figure corre-
sponds to a helium gas at T= 298 K, con-
fined between solid surfaces separated by a
distance L = 2 cm. According to this figure
the first order coefficient largely predomi-
nates for pressures beyond 50 µmHg, and
this tendency increases for still larger pres-
sures. In the continuos regime it may then
be expected that only the first order term
contributes to Pzx. In the transition regime
it can be seen in this figure that the inclu-
sion of the third order term may be expected
to be adequate to describe Pzx for pressures
larger than ~ 20 µmHg. Still for pressures
below this value the fifth order term should
be included. Moreover, according to our nu-
merical results (which are not illustrated in
Figure 1) for pressures below 10 µmHg still
higher order terms also contribute to Pzx in
a sizable way. However, the important fea-
ture of the oscillations of viscosity with
pressure may be expected to occur accord-
ing to our model beyond 20 µmHg for the
system corresponding to Figure 1. Thus the
cut off of the series for Pzx up to third, or
even fifth order, seems to be appropriate for
the description of the expected oscillations.
Experimental results tend to confirm this
view.

The same coefficients presented in
Figure 1 are shown in Figure 2, but this time
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calculated excluding the wall correction for
the mean free path, i.e. calculated with � c in-
stead of � total , Eq. [6]. Two important features
should be remarked: (i) The inclusion of the

wall correction avoids the divergence of the
coefficients as the pressure goes to zero; (ii)
The region where the high order coefficients
are relevant is more extended when the wall
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Figure 1. Coefficients up to fifth order in the spatial derivative of the fluid velocity in the expression for
Pzx as a function of pressure, Eq. [II.1]. The numerical values corresponds to a Helium gas at
T = 298 K between solid surfaces separated by a distance L = 2 cm.

Figure 2. The same coefficients vs. pressure illustrated in Fig. 1 but this time excluding the wall correc-
tion for the mean free path (see Eq. [6]).

�



correction is not included. This clearly
shows the two-fold importance of the wall
correction for the mean free path.

Appendix III
Vanishing integrals of equation [14]

After all the considerations concerning
the parity of the variables of integration in
Eq. [14] are made, the following high order
terms still survive (those integrals of 3rd or
lower order are already calculated in refer-
ence (2)):
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Introducing the appropriate expres-
sion for the function g (Ux , Uy, U z) , the first
term ([III.1]) is equal to:
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Expression [III.2] is equal to:
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Eq. [III.3] is equal to:
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Finally, of all expressions [III.1] to
[III.4], expression [III.4] constitute the only
higher-order non-vanishing term, and
therefore is explicitly taken into account in
the series development of Pzx.
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