CIENCIA 21(3), 165 - 174, 2013 Maracaibo, Venezuela

Oxidación de CH₄ y CO en un óxido mixto de CeTb soportado sobre SiO₂ y La₂O₃-Al₂O₃

Victor Ferrer y Dora Finol*

Instituto de Superficies y Catálisis, Facultad de Ingeniería, Universidad del Zulia. Apartado Postal 15251 Maracaibo 4003-A, Venezuela.

Recibido: 05-12-12 Aceptado: 07-07-13

Resumen

Se prepararon muestras de CeO₂/SiO₂, Ce_{0.73}Tb_{0.27}O_x/SiO₂, CeO₂/La₂O₃-Al₂O₃ y Ce_{0.73}Tb_{0.27}O_x/La₂O₃-Al₂O₃, utilizando la técnica de impregnación a humedad incipiente a partir de soluciones acuosas de cloruros de cerio, terbio y lantano. Las muestras fueron caracterizadas mediante las técnicas de Fluorescencia de rayos X (XRF), área superficial, Difracción de rayos X (XRD), Reducción a Temperatura Programada (TPR), Quimisorción de CO, Capacidad de almacenamiento de oxígeno (OSC) y Espectroscopia de Infrarrojo de CO adsorbido (IR-CO). El comportamiento catalítico de las muestras fue evaluado a través de la reacción de oxidación de metano y monóxido de carbono. Los resultados de TPR mostraron que la adición de Tb mejoró la reducibilidad del óxido de cerio, iniciando la reducción a más bajas temperaturas cuando se emplea la sílice como soporte. La presencia del óxido mixto de CeTb mejoró la OSC de las muestras. Los resultados de IR-CO mostraron la formación de especies carbonatos y carboxilatos en mayor intensidad en las muestras soportadas sobre La₂O₃-Al₂O₃. Los resultados de actividad catalítica mostraron que la adición de Tb mejora el comportamiento catalítico de las muestras soportadas sobre La₂O₃-Al₂O₃.

Palabras clave: catalizadores de tres vías, óxido mixto, TPR, OSC, Oxidación de CH₄ y CO.

CH₄ and CO oxidation using a CeTb mixed oxide supported on SiO₂ and La₂O₃-Al₂O₃

Abstract

 CeO_2/SiO_2 , $Ce_{0.73}Tb_{0.27}O_x/SiO_2$, $CeO_2/La_2O_3-Al_2O_3$, and $Ce_{0.73}Tb_{0.27}O_x/La_2O_3-Al_2O_3$ samples were prepared by incipient wetness impregnation technique from aqueous solutions of cerium, terbium and lanthanum chlorides. Samples were characterized by X-ray fluorescence (XRF), surface area, X-ray diffraction (XRD), Temperature-programmed reduction (TPR), CO chemisorption, Oxygen storage capacity (OSC) and infrared spectroscopy of adsorbed CO (IR-CO). The catalytic behavior of the sample was studied using methane and carbon monoxide oxidation reaction. TPR study showed that the addition of Tb improves the reduction properties of cerium oxide, starting the reduction of cerium to lower temperatures when silica was employed as support. The presence of CeTb mixed oxide enhanced the OSC of samples. IR-CO results showed the formation of carbonates and carboxylates more clearly in samples supported on La_2O_3 -Al₂O₃.

Autor para la correspondencia: vferrer@fing.luz.edu.ve

Catalytic results showed that Tb addition favored the catalytic behavior because the lower light off temperatures registered.

Key words: Three way catalysts, mixed oxide, TPR, OSC, CH₄ and CO oxidation.

Introducción

En los últimos años, la contaminación atmosférica se ha incrementado vertiginosamente debido al crecimiento y modernidad de los países desarrollados. Gran parte de esta contaminación es generada por las emisiones de los motores de combustión interna de los automóviles. El vertiginoso aumento del parque automotor se transforma en una problemática ambiental, dado que en su gran mayoría emplean combustibles derivados del petróleo. Los principales gases contaminantes generados por los vehículos son los hidrocarburos no quemados (HC), monóxido de carbono (CO) y óxidos de nitrógeno (NO,). Para el control simultáneo de estos gases se utilizan los catalizadores de tres vías (TWC), que están conformados por un soporte de alta área superficial (Al₂O₃); un promotor redox (CeO₂) y combinaciones de metales nobles (Pd, Pt, y/o Rh) (1). El dióxido de cerio tiene la capacidad de regular las oscilaciones de la atmósfera de O₂ cuando se opera en condiciones ricas o pobres en combustible (2), además estabiliza la dispersión de la fase metálica y promueve la reacción de desplazamiento de gas de agua (3). No obstante, sus propiedades se ven afectadas cuando se somete a elevadas temperaturas y ambientes reductores (4). Se ha reportado que la adición de dopantes a la ceria le confiere una alta estabilidad textural (5, 6). Bernal y col. (6) reportaron que un óxido mixto basado en cerio-terbio (CeTbOx) podría ser una alternativa para los componentes del TWC clásico, registrando un aumento significativo en la capacidad de almacenamiento de oxígeno (OSC, Oxygen Storage Capacity) comparado con la ceria pura, dado que mejora la movilidad del O₂ e incrementa la estabilidad térmica del sistema en la red. Generalmente, la alúmina es el soporte principal de los TWC, sin embargo, cuando ésta es sometida a elevadas temperaturas y/o ambien-

te reductor, se puede inducir la formación de fases mixtas tipo perovskita (CeAlO₃), que provocan la pérdida irreversible del $CeO_{2}(7)$. La formación de esta fase puede evitarse tratando la alúmina con La_2O_3 (8, 9), que induce la formación de una fase cristalográficamente muy parecida al CeAlO₃, actuando como barrera y limitando la estabilización de iones Ce³⁺. Considerando que la sílice es un soporte de carácter más inerte que la alúmina (10), su uso como soporte del óxido mixto, podría evitar la pérdida de CeO₂. Dado el creciente interés mundial en el uso del gas natural como fuente de energía alternativa (11), el estudio de la combustión catalítica de metano es de particular importancia. La generación de gases tóxicos como el CO producido en los procesos industriales y por la combustión de los vehículos, hace necesaria la búsqueda de nuevas tecnologías que mitiguen o eliminen esta problemática ambiental.

En el presente trabajo se prepararon óxidos mixtos de CeTb soportados sobre sílice y una alúmina modificada con lantana, con el propósito de evaluarlos como posibles soportes de los TWC. Estas muestras fueron caracterizadas mediante la determinación del área superficial (método BET), fluorescencia de rayos X (XRF), difracción de rayos X (XRD), reducción a temperatura programada (TPR), quimisorción de CO, capacidad de almacenamiento de O₂ (OSC) y espectroscopia de infrarrojo de CO adsorbido (FTIR-CO). La actividad catalítica fue estudiada mediante las reacciones de oxidación de CH₄ y CO desde temperatura ambiente hasta 700°C.

Materiales y métodos

Preparación de las muestras

Los soportes utilizados, SiO_2 (Baker, 60-80 mesh) y γ -Al₂O₃ (Condea) fueron pre-

viamente calcinados a 700°C por 5 h. En la preparación de la alúmina modificada con lantana (La₂O₃-Al₂O₃) se utilizó una solución acuosa de LaCl₂ (Aldrich), con la cual se impregnó la alúmina en cantidades adecuadas para obtener un 16,7% en peso nominal de La₂O₃. Para la obtención de los óxidos mixtos de Ce_{0.73}Tb_{0.27}O₂/SiO₂ (CeTb/ Si) y $Ce_{0.73}Tb_{0.27}O_x/La_2O_3-Al_2O_3$ (CeTb/LaAl), tanto la sílice como la La2O3-Al2O3 se impregnaron con una mezcla de una solución acuosa de CeCl₃ (Aldrich) y TbCl₃ (Aldrich) en cantidades adecuadas para obtener una relación molar Ce/Tb=2,64, y una composición del óxido mixto de 16,7% en la muestra. Luego de la impregnación de la sílice y de la alúmina modificada, se procedió a calcinar a 700°C por 4 h para obtener los soportes CeTb/Si y CeTb/LaAl. También se prepararon las muestras de referencia CeO₂/SiO₂ (Ce/Si) y CeO₂/La₂O₃-Al₂O₃ (Ce/LaAl).

XRF

La composición química de todas las muestras fue determinada por fluorescencia de rayos X empleando el espectrómetro SHIMADZU EDX-700HS, trabajando en base seca y a alto vacío.

Área superficial

Se utilizó un equipo Micromeritics ASAP 2010 para determinar el área superficial específica de las muestras preparadas, siguiendo el método BET. Se usaron 100 mg de muestra previamente secada a 150°C por 2 horas en alto vacío antes del análisis.

XRD

Los patrones de difracción de rayos X de las muestras fueron registrados en un difractómetro Bruker D8 Focus, operando a 40 kV y 40 mA, a una velocidad de barrido de 12° 20 min⁻¹, con un tamaño del paso de 0,02° y un tiempo por paso de 0,1 s, empleando una radiación Cu K α (λ =0,15004 nm). Las muestras fueron corridas como polvo prensado en un portamuestras de dispersión. Con el propósito de identificar la formación del óxido mixto de CeTb sobre los soportes de LaAl y SiO₂, se llevaron a cabo registros de XRD en condiciones específicas de 1,8° 20 min⁻¹, 0,15° tamaño del paso y tiempo por paso de 5 s, en un rango de 2-theta entre 27 y 32°.

TPR

Las medidas de TPR fueron realizadas en una línea de reacción de acero inoxidable acoplada a un detector de conductividad térmica (TCD). La muestra (100 mg) fue sometida inicialmente a un tratamiento de limpieza (TL) que consiste en el calentamiento en flujo de 30 mL min⁻¹ de $O_{2}(5,09\%)$ /He (Gases Industriales de Venezuela) por 1 h a 550°C, luego de enfriada en el mismo flujo hasta 150°C, se conmutó a Ar (Praxair, 99,995%, 30 mL min⁻¹) y se enfrió hasta temperatura ambiente. Seguidamente, el flujo se conmutó a H₂(5,225%)/Ar (Praxair, 30 mL min⁻¹), y se registró el perfil de TPR calentando la muestra desde temperatura ambiente hasta 950°C a 10°C min⁻¹. El consumo de H₂ se obtuvo calculando el área bajo la curva y calibrando el detector con CuO.

Quimisorción de CO

La quimisorción de CO fue llevada a cabo en la misma línea empleada para las pruebas de TPR. La relación CO/Pd fue evaluada mediante el método de pulsos. 100 mg de muestra fueron secadas en un flujo de 30 mL min⁻¹ de Ar a 120°C por 1 h. Seguidamente, la muestra ya enfriada, fue reducida en un flujo de 30 mL min⁻¹ de H₂ (generador Packard 99,999%) hasta 500°C por 1 h. A continuación, se bajó la temperatura hasta 300°C en el mismo flujo de H₂ para conmutar a Ar, manteniéndola a esta temperatura por 30 min. Posteriormente, la muestra fue enfriada hasta temperatura ambiente en flujo de Ar. Finalmente, se inyectaron pulsos de 1,47 μ mol de CO en Ar hasta verificar que las áreas de las invecciones fuesen constantes.

osc

Para esta prueba, se utilizó la misma línea empleada en las pruebas de TPR. Inicialmente, la muestra (50 mg) fue sometida al TL antes descrito. Culminado el tratamiento de limpieza, se bajó la temperatura en el flujo de la mezcla de O₂(5%)/He hasta 500°C. Alcanzada esta temperatura, el flujo se conmutó a 30 mL min-1 de gas He (Praxair, 99,999%) y se mantuvo por 30 min. Finalizada la evacuación, se hizo pasar un flujo de 60 mL min⁻¹ de mezcla reductora de H₂(5,22%)/ Ar por 1 min a 500°C, y luego, se evacuó a la misma temperatura con He por 15 min. Transcurridos los 15 min, la muestra fue enfriada hasta 150°C en el mismo flujo de He. Finalmente, se enviaron al reactor pulsos de 65,2 μ L de mezcla de O₂(5%)/He a 150°C, hasta observar constancia en las áreas de los pulsos.

IR-CO

La medición de los espectros se realizó en un espectrofotómetro SHIMADZU modelo IR PRESTIGE-21, empleando el detector de alta sensibilidad MCT enfriado con N₂ líquido, resolución de 2 cm⁻¹, dentro de un rango de 2300 a 1000 cm⁻¹ y utilizando 100 barridos. La muestra en forma de pastilla (densidad de la pastilla≈18 mg cm⁻²) se colocó en el portamuestra y fue secada en flujo de 20 mL min⁻¹ de Ar (Aga, 99,999%) a 120°C por 1 h. Seguidamente, la pastilla fue reducida en un flujo de 20 mL min⁻¹ de H₂ (Aga, 99,999%) incrementando la temperatura desde 120°C hasta 450°C a razón de 10°C min⁻¹. La pastilla se mantuvo en flujo de H_o a 450°C por 1 h. Seguidamente, se bajó la temperatura hasta 300°C y se conmutó el gas a Ar, manteniendo la evacuación por 30 min. Terminado el tratamiento, la pastilla se enfrió hasta temperatura ambiente. Se tomó el background de la pastilla sin saturar, y seguidamente, la pastilla se sometió a un flujo continuo de CO (Praxair, 99,5%) a presión atmosférica por 10 min. Nuevamente, se evacuó en Ar por 30 min y se tomó el espectro, de tal forma que se obtienen las señales correspondientes a la adsorción de CO.

Actividad catalítica

Las reacciones de oxidación de CH₄ y CO se llevaron a cabo desde temperatura ambiente hasta 700°C, en un reactor de cuarzo con 50 mg de muestra en un lecho fijo. Antes de la reacción, las muestras fueron sometidas al TL descrito anteriormente. Para la reacción de oxidación de CH₄ el reactor fue alimentado con una mezcla gaseosa de 103 mL min⁻¹ (velocidad espacial=24517 h^{-1}) constituida por CH_4 (Matheson 99,99%) y 5%O₂/He (GIV) en proporción estequiométrica ($CH_4/O_2=0,5$). La composición de CH_4 que no reaccionó fue analizada a la salida del reactor con un cromatógrafo de gases Perkin Elmer Clarus 500, equipado con una columna capilar de tamiz molecular 5A y un detector de ionización a la llama (FID). En la reacción de oxidación de CO, el reactor se alimentó con una mezcla gaseosa de 27 mL min⁻¹ (velocidad espacial=6382 h⁻¹) constituida por CO (Praxair, 99,5%) y 5%O₃/ He (GIV) en proporciones estequiométricas (CO/O₂=2). La composición de CO que no reaccionó se determinó haciendo uso del cromatógrafo y de la columna antes descrita, empleando un detector de conductividad térmica (TCD).

Resultados y discusión

Pruebas de caracterización

En la tabla 1 se reportan las muestras preparadas con los valores de área superficial y composición química (XRF) obtenidas. El área superficial de los soportes no se ve afectada en gran magnitud por la adición de CeO_2 o de los óxidos mixtos. Las ligeras disminuciones observadas en el área son producidas por el decrecimiento en el volumen de poros debido a la deposición de los óxidos en las cavidades de los mismos durante el proceso de impregnación y calcinación (12). Los

resultados de XRF indicaron que para el soporte LaAl se obtuvo un 12,82% de La_2O_3 , ligeramente inferior al valor nominal de 16,7%, carga de La_2O_3 necesaria para formar una monocapa sobre la superficie de la alúmina (13). La carga nominal de óxido mixto sobre los soportes fue de 20 g de óxido mixto/100 g de soporte, equivalente a 16,7% g de óxido mixto y a una monocapa de óxido mixto (14). La presencia de cloro sólo fue detectada para las muestras soportadas sobre LaAl.

En la figura 1 se reportan los diagramas de XRD registrados para las muestras de Ce

y CeTb soportadas sobre sílice (1A) y La_2O_3 - Al_2O_3 (1B). Las señales registradas corresponden a la estructura tipo fluorita del CeO₂, las cuales aparecen bien identificadas en la muestra de referencia (figura 1-A2, 1-B3). La señal intensa a 2-Theta igual a 28,6° ha sido asignada al plano (1 1 1) de la estructura tipo fluorita del CeO₂ (15, 16). También se observan otras señales a 2-Theta alrededor de 47 y 55°, las cuales corresponden a los planos de reflección (2 2 0) y (2 2 2) del CeO₂, respectivamente. La amplia señal alrededor del ángulo 2-Theta igual a 18° (Figura

Tabla 1
Área superficial específica, composición química (%)
de las muestras preparadas y distancia interplanar d $_{ m _{111}}$ (Å)

Muestra	Área (m ² g ⁻¹)	CeO_2	$\mathrm{Tb}_4\mathrm{O}_7$	La ₂ O ₃	Al_2O_3	SiO_2	Cl	d ₁₁₁ (Å)
Al	136	-	-	-	100,00	-	-	-
LaAl	98	-	-	12,82	85,87	-	1,31	-
Ce/LaAl	100	17,39	-	14,50	65,41	-	2,70	3,1175
CeTb/LaAl	80	14,91	11,19	11,43	59,57	-	2,90	3,0963
Si	247	-	-	-	-	100,00	-	-
Ce/Si	210	17,47	-	-	-	82,53	-	3,1175
CeTb/Si	224	12,36	9,95	-	-	77,69	-	3,1175

d₁₁₁: Distancia interplanar correspondiente al plano (1 1 1) del CeO₂ calculada por la Ley de Bragg.

Figura 1. Diagramas de difracción de rayos X obtenidos para los soportes preparados sobre sílice (A) y LaAl (B). Si (A1); Ce/Si (A2); CeTb/Si (A3); Al₂O₃ (B1); LaAl (B2); Ce/LaAl (B3), CeTb/LaAl (B4).

1A) se corresponde con el de una muestra amorfa. En la figura 1B aparecen representados los diagramas de XRD registrados para los óxidos soportados sobre LaAl, observando las señales correspondientes a los planos del CeO₂ y de la γ -alúmina, al compararlas con las muestras de referencia γ -Al₂O₃ (figura 1-B1) y Ce/LaAl (figura 1-B3).

En la figura 2 se observan los patrones de difracción de los óxidos de CeTb/LaAl y CeTb/Si, realizada en condiciones específicas para detectar la formación del óxido mixto. En la muestra de CeTb/LaAl se observa un ligero desplazamiento hacia ángulos mayores comparado con la muestra de Ce/LaAl. Este resultado junto con los valores de la distancia interplanar d_{111} calculados (tabla 1) indica la substitución de cationes de Ce⁴⁺ (radio iónico=1,01 Å) por Tb⁺⁴ (radio iónico= 0.92 Å) dentro de la red del dióxido de cerio, promoviendo la formación del óxido mixto correspondiente (17). A pesar de no observar el desplazamiento de la señal principal en la muestra de óxido mixto de CeTb/Si, los resultados de OSC y TPD-O, de esta muestra sugieren la formación del óxido mixto.

En la figura 3 se registran los perfiles de TPR de los soportes preparados. Las muestras de SiO₂ y La₂O₃-Al₂O₃ no reportaron señales de reducción. En el perfil de reducción de la muestra Ce/Si (figura 3a) se observaron tres máximos a las temperaturas de 529, 724 y 822°C. La señal a 529°C ha sido atribuida a la reducción de los iones Ce4+ superficiales, mientras que las señales a más altas temperaturas corresponden a la reducción del Ce4+ másico (18, 19). La incorporación del ión Tb a la estructura de la ceria promueve una mejora en el comportamiento redox de las muestras, al desplazar a más bajas temperaturas el máximo correspondiente a la reducción de los iones Ce4+ superficiales. La muestra de CeTb/Si (figura 3b) inició su reducción alrededor de los 370°C y con un máximo a 465°C, temperatura menor a los 529°C reportados para la muestra de Ce/Si. Para la muestra de Ce/LaAl (figura 3c) se observaron dos máximos a 697 y 890°C correspondien-

Figura 2. Patrones de difracción de las muestras soportadas sobre LaAl y SiO₂ (1.8° 20 min⁻¹, 0.15° tamaño del paso, tiempo por paso de 5 s).

Figura 3. Consumo de H₂ registrado para los soportes preparados. (a) Ce/Si, (b) CeTb/ Si, (c) Ce/LaAl, (d) CeTb/LaAl.

tes a la reducción de los iones Ce⁴⁺ superficiales y másicos, respectivamente, máximos que disminuyeron hasta 555 y 861°C con la incorporación del Tb. Este comportamiento es considerado ventajoso debido a que disminuye la temperatura a la cual está disponible el ión Ce⁴⁺ para su reducción, mejorando el funcionamiento de los catalizadores TWC durante el arranque en frío del automóvil.

En la tabla 2 aparece registrado el $\rm H_2$ consumido por las distintas muestras estudiadas, obtenidos a partir de los perfiles de

Tabla 2Consumo de H2 (μ molH2 g⁻¹), relación CO/soporte y capacidad de almacenamientode O2 (μ mol O2 g⁻¹) de las muestras preparadas

Muestra	Consumo de H_2 , μ mol H_2 g ⁻¹	Consumo Teórico CeO ₂ *, μ molH ₂ g ⁻¹	OSC, $\mu mol O_2 g^{-1}$
Ce/LaAl	466,7 (92)	505,5	4,6 [26,4]
CeTb/LaAl	331,3 (77)	432,8	5,4 [36,2]
Ce/Si	472,2 (93)	508,4	2,2 [12,6]
CeTb/Si	317,1 (88)	360,2	4,2 [33,9]

Valores entre () corresponden al porcentaje de reducción de CeO_2 . *Consumo teórico basado en los resultados XRF. Valores entre [] µmol O₂ g⁻¹ CeO₂.

TPR. Para la muestra de CeTb/LaAl, el porcentaje de reducción fue de 77%, mientras que el consumo registrado para la muestra de Ce/LaAl fue de 466,7 μ molH₂ g⁻¹, equivalente a una reducción del 92% del CeO₂ presente. La disminución en el porcentaje de reducción de los óxidos mixtos sugiere que no todo el Ce³⁺ fue oxidado completamente, o que el proceso de calcinación del óxido mixto promovió la formación de especies de Ce estabilizadas irreversiblemente en forma de Ce³⁺.

Los estudios de TPD- O_2 (figura 4) realizados sobre la muestra de La₂O₃-Al₂O₃ y SiO₂ no registraron señales de desorción, lo cual indica que las señales observadas están relacionadas con la desorción de $\mathrm{O}_{_{2}}$ por parte de la ceria. El perfil de TPD-O₂ de la muestra de CeTb/Si (figura 4b) indica que la desorción comienza a los 200°C y presenta un máximo a 670°C. De los perfiles de TPD-O₂ de las muestras de Ce/Si (figura 4a) y CeTb/ Si, es evidente que la incorporación de Tb en la red de la ceria incrementa la desorción de O₂, iniciando la desorción desde bajas temperaturas y sugiriendo una mejor movilidad del oxígeno en la red con la formación del óxido mixto (4, 6). Para la muestra de CeTb/ LaAl (figura 4d) se observa una señal amplia de desorción de O_2 que se inicia a los 100°C incrementándose a 450°C y que no retornó a la línea base. El perfil de desorción de O₂ de la muestra de Ce/LaAl (figura 4c) estaría dando cuenta de la reducción del ión Ce4+, iniciándose con los iones superficiales y con-

tinuando con los másicos. Este resultado se podría correlacionar con en el perfil de TPR de esta muestra (figura 3c), al observar dos señales con máximos de reducción a 697 y 890°C, atribuidos con la reducción de los iones antes citados.

Las pruebas de quimisorción de CO en las muestras indicaron que este gas no fue quimisorbido por los mismos. Investigaciones realizadas por Kepinski y col. (20), reportaron que el uso de sales precursoras de los metales a base de cloro en catalizadores que contienen ceria, promueven la presencia en superficie de CeOCl tetragonal, afectando las propiedades de quimisorción y actividad catalítica de catalizadores de M(Pt,Rh;Pd)/ CeO₂.

En la tabla 2 se reportan los resultados de OSC para las muestras preparadas. No se reportó quimisorción de O_2 para las muestras de Si O_2 y La₂ O_3 -Al₂ O_3 . El soporte de CeTb/LaAl y la muestra de referencia Ce/ LaAl, reportaron valores de OSC muy similares. Sin embargo, al expresar estos valores como μ mol O_2 por gramo de CeO₂ (valores entre corchetes), se observó un incremento en la OSC. Esta OSC mejorada puede explicarse por las vacantes de O_2 que se generan al sustituir los iones de la red del CeO₂ por el ión Tb⁴⁺, promoviendo la disminución de la energía para la reducción del Ce⁴⁺ y de una alta movilidad del O₂ en la red (3, 21).

En la figura 5 se reportan los espectros de infrarrojo obtenidos para los óxidos soportados sobre sílice y alúmina. Para la muestra de sílice no se observaron bandas bien definidas, excepto para la muestra de CeTb/Si (figura 5c), la cual mostró una señal de absorbancia con máximo a 1616 cm⁻¹, relacionada con especies de carbonatos formadas sobre la superficie de la ceria (22). Las figuras 5d-f corresponden a los espectros de infrarrojo de CO adsorbido para los óxidos soportados sobre alúmina. Las bandas de absorbancia observadas a 1599, 1425, 1222 y 1051 cm⁻¹ pueden ser asignadas a especies bicarbonato (CO₂²⁻) bidentadas (22-24). En las figuras 5d-e también se observaron bandas a 1503 y 1347 cm⁻¹, siendo la primera de estas atribuida a la presencia de especies carboxilatos (25), mientras que la banda observada a 1347 cm⁻¹ se puede asociar al estiramiento simétrico de la especie de carbonato monodentado (26, 27).

Actividad catalítica

En la figura 6 se registran las curvas de % Conversión de CH_4 vs Temperatura en la reacción de oxidación de metano para los óxidos preparados. En la tabla 3 se registran las temperaturas para la cual se alcanza el 50% de conversión (T_{Light off}). Pruebas realiza-

Figura 5. Espectros de IR de CO adsorbido a 25°C para los soportes preparados. (a) Si, (b) Ce/Si, (c) CeTb/Si, (d) LaAl, (e) Ce/LaAl, (f) CeTb/LaAl.

Figura 6. Curvas de % Conversión vs Temperatura correspondientes a la oxidación de metano en condiciones estequiométricas (CH₄/O₂=0.5) luego del tratamiento de limpieza para los soportes preparados. (●) Ce/Si, (x) CeTb/Si, (◆) Ce/LaAl, (■) CeTb/LaAl.

das en un reactor sin catalizador no registraron actividad para la reacción de oxidación de CH_4 . Medidas realizadas sobre sílice y alúmina modificada con lantana no reportaron actividad catalítica, indicativo de que la actividad catalítica es promovida por la presencia de óxido de cerio o del óxido mixto. Las $T_{Light off}$ registradas para estas muestras son muy similares, siendo la muestra de CeTb/LaAl la más activa para la reacción de oxidación de CH₄, al reportar la más baja temperatura para alcanzar el 50% de conversión (630°C). La muestra de Ce/Si resultó ser inactiva para esta reacción, de la misma forma que la OSC y la quimisorción de CO mostrada fue casi nula para este mismo óxido (tabla 2). Cabe destacar que los óxidos soportados sobre La₂O₃-Al₂O₃ mostraron ser activos, siendo mejorada la actividad por la presencia del óxido mixto de CeTb. En los resultados de la T_{Light off} para la reacción de oxidación de CO (tabla 3) se observó la mejora introducida por los óxidos mixtos en la actividad catalítica con respecto a los óxidos de cerio soportado. Pruebas realizadas en un reactor sin catalizador indicaron que la conversión obtenida para las muestras está relacionada sólo con el efecto catalítico de las mismas. La disminución en las T_{Light off} del óxido mixto de CeTb soportado es un resultado favorable, ya que indica una mejora en la actividad al compararla con los catalizadores de Ce/Si y Ce/LaAl, por lo cual resultaría importante estudiar su comportamiento catalítico con la incorporación de Pd o Pt como fase activa, y de esta forma tener un catalizador con características análogas a los TWC clásicos.

Conclusiones

Los resultados de XRD mostraron la formación del óxido mixto de CeTb/LaAl, sin embargo, las pruebas de OSC y TPD-O₂ sugieren la formación del óxido mixto de CeTb/ Si. Los resultados de TPR mostraron que la adición de Tb mejoró la reducibilidad del óxido de cerio, iniciando la reducción a más bajas temperaturas cuando se emplea la sílice como soporte. Los resultados de IR-CO mostraron la formación de especies carbonatos y carboxilatos en mayor intensidad en las muestras soportadas sobre La₂O₂-Al₂O₂. Los resultados de actividad catalítica mostraron que la adición de Tb mejoró el comportamiento catalítico de las muestras, al registrar las menores temperaturas de light off.

Tabla 3 Temperaturas de *light off* (T_{Light off}) de los soportes preparados determinadas para un 50% de conversión de CH₄ y CO

Muestra	$T_{Light off} CH4$ (°C)	T _{Light off} CO (°C)				
Ce/LaAl	670	495				
CeTb/LaAl	630	475				
Ce/Si	_(a)	500				
CeTb/Si	678	445				
(a) No alcanzó el 50% de conversión						

Agradecimientos

Al Consejo de Desarrollo Científico y Humanístico de La Universidad del Zulia (CONDES) y al Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT) por el apoyo financiero prestado. Agradecemos al Instituto Zuliano de Investigaciones Científicas y Tecnológicas (INZIT) por su colaboración en los pruebas de XRD.

Referencias bibliográficas

- HECK R., FARRAUTO R. Appl Catal A: Gen 221(1-2): 443-457. 2001.
- HARRISON B., DIWELL A., HALLET C. Precious Metals Rev 32(2): 73-83. 1988.
- HE H., DAI H.X., NG L.H., WONG K.W., AU C.T. J Catal 206(1): 1-13. 2002.
- DI MONTE R., FORNASIERO P., KASPAR J., RUMORI P., GUBITOSA G., GRAZIANI M. *Appl Catal B: Environ* 24(3-4): 157-167. 2000.
- TROVARELLI A., DE LEITENBURG C., BOA-RO M., DOLCETTI G., *Catal Today* 50(2): 353-367. 1999.
- BERNAL S., BLANCO G., CAUQUI M., CORCHADO M., LARESE C., PINTADO J. RODRÍGUEZ-IZQUIERDO, J.M. Catal Today 53(4): 607-612. 1999.
- GRAHAM G., SCHMITZ P., USMEN R., MC-CABE R. *Catal Lett* 17(1-2): 175-184. 1993.

- HONG Y., CHEN F., FRIPIAT J. Catal Lett 17(3-4): 187-195.1993.
- SHANNON R., PREVITT C. Acta Crystallogr. B25: 925-946. 1969.
- SATTERFIELD C. Heterogeneus Catalysis in Practice. Mc Graw Hill. New York (USA). 92-93. 1980.
- 11. DE GROUTE A.M., FROMENT G.F. *Appl Catal A: Gen* 138(2): 245-264.1996.
- DAMYANOVA S., PEREZ C., SCHMAL M., BUENO J. *Appl Catal A: Gen* 234(1-2): 271-282. 2002.
- BETTMAN M., CHASE R., OTTO K., WEBER
 W. J Catal 117(2): 447-454. 1989.
- BERNAL S., CALVINO J., CIFREDO G., GAT-ICA J., PÉREZ OMIL J., PINTADO J. *J Chem Soc Faraday Trans* 89(18): 3499-3505. 1993.
- DALEY R., CHRISTOU S., EFSTATHIOU A., ANDERSON J. *Appl Catal B: Environ* 60(1-2): 117-127. 2005.
- SASIKALA R., GUPTA N., KULSHRESHTHA S. *Catal Lett* 71(1-2): 69-73. 2001.
- KOZLOV A., KIM D., YEZERETS A., AN-DERSEN P., KUNG H., KUNG M. J Catal 209(2): 417-426. 2002.
- FINOL D., MONCADA A., MÉNDEZ J., SÁN-CHEZ J., VIDAL H. *Rev Téc Ing Univ Zulia* 25(3): 149-157. 2002.

- BASTOS A., FINOL D., MÉNDEZ J., DOMÍN-GUEZ F., RODRÍGUEZ D., FERRER V. *Ciencia* 21(1): 25-35. 2013.
- 20. KEPINSKI L., WOLCYRZ M., OKAL J. **J Chem Soc Faraday Trans** 91(3): 507-515. 1995.
- BALDUCCI G., KASPAR J., FORNASIERO P., GRAZIANI M., SAIFUL ISLAM M., GALE J. J Phys Chem B 101(10): 1750-1753. 1997.
- FEIO L., HORI C., DAMYANOVA S., NORONHA F., CASSINELLI W., MARQUES C., BUENO J. *Appl Catal A: Gen* 316(1): 107-116. 2007.
- GALTAYRIES A., BLANCO G., CIFREDO G., FINOL D., GATICA J., PINTADO J., VIDAL H., SPORKEN R., BERNAL S. Surf Interface Anal 27(10): 941-949. 1999.
- 24. SICA A., GIGOLA C. Appl Catal A: Gen 239(1-2): 121-139. 2003.
- HUNGRÍA A., CALVINO J., ANDERSON J., MARTÍNEZ-ARIAS A. *Appl Catal B: Environ* 62(3-4): 359-368. 2006.
- VALDEN M., KEISKI R., XIANG N., PERE J., AALTONEN J., PESSA M., MAUNULA T., SAV-IMÄKI A., LAHTI A., HÄRKÖNEN M. *J Catal* 161(2): 614-625. 1996.
- DAVYDOV A. Infrared spectroscopy of adsorbed species on the surface of transition metal oxides. John Wiley & Sons. New York (USA). First Edition, p. 38,39. 1990.