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Abstract

The statistical properties of the spectrum from large symmetric matrices are investigated.
In these matrices the elements are chosen from a power-law distribution p x x( ) = −ν ν 1 with

− ≤ ≤2 1ν . Universality classes or stable laws are explored by studying the density of states ρ(E)
and the distribution of eigenvalue spacings P(s). Various regimes could be identified as a func-
tion of the disorder strength parameter ν. For 0 1< <ν , the density of states obeys the simple
semicircular law, and P(s) follows the Wigner surmise. For ν < 0, various zones separated by
energy-dependent boundaries are observed. Furthermore, in the limit ν 0→ , we find a density
of states that corresponds to the sparse matrix limit, with the characteristic singularity

( )ρ E E∝ 1/ . However, in this limit the spacing distribution exhibits power laws tails instead of
the well known Brody form.
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Propiedades espectrales de matrices de Levy

Resumen

Se investigan las propiedades estadísticas del espectro de matrices simétricas grandes cu-
yos elementos son elegidos de distribuciones tipo ley de potencia p x x( ) = −ν ν 1, con − ≤ ≤2 1ν . Se
exploran las clases de universalidad o leyes estables a través del estudio de la densidad de esta-
dos ρ(E) y la distribución de espaciamiento de los autovalores P(s). Como función del parámetro

de desorden ν se identifican varios regímenes. Para 0 1< <ν , la densidad de estados sigue la ley
semicircular, y P(s) la premisa de Wigner. Para ν < 0, se observan varias fases separadas por
fronteras que dependen de la energía. Además, en el límite ( )ρ E E∝ 1/ , se encuentra una den-
sidad de estados que corresponde al límite de matrices ralas con la singularidad característica .
Sin embargo, en éste límite, la distribución de espaciamientos exhibe colas algebraicas en lugar
de ajustarse a la forma clásica de Brody.

Palabras clave: Densidad de estados; matrices aleatorias; matrices ralas; niveles de
energía.
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1. Introduction

Random matrices (RM) have been in-
vestigated intensively in the last decade, due
to the wide range of applications to different
branches of physics such as the theory of
mesoscopic fluctuations in disordered con-
ductors (1), some spin-glass models (2), light
propagation in dense media (3), and quan-
tum chaos, (4) among others. The simplest
case of RM is the one where the elements of a
symmetric matrix are identically distributed
random variables with zero mean and finite
variance. It has been shown that in the limit
of large matrices, the distribution of eigen-
value spacings obeys the Wigner surmise
i.e., a universal form (or stable law for the
spectra) which depends only on symmetry
and reflects strongly correlated eigenvalues
due to level repulsion (5). These matrices be-
long to the so called Gaussian orthogonal
ensemble (GOE).

Here, we consider large NxN symmetric
matrices whose elements Hij (=Hji) are inde-
pendent random variables chosen from a
power law distribution

( )p H H= −ν ν 1 [1]

with − ≤ ≤2 1ν . The power law distribution,
p(H), permits testing the limits of known sta-
ble laws for eigenvalue spectra. These matri-
ces, known as Levy matrices when
− ≤ ≤2 0ν (6), display a variety of behaviors
as a function of ν, as will be shown in the fol-
lowing sections. The limit ν → 0 of particular
interest here, since it behaves similar to an
ensemble of sparse random matrices which
do not belong to the Gaussian universality
class. Sparse Random Matrices (SRM) are
constructed by assigning a fraction p/N of
non-zero elements per matrix row. The dis-
tribution of eigenvalue spacings for SRM´s is

best fitted to a Brody form (7). It is easy to
imagine that the structure of SRM is com-
posed of fractal structures which, depend-
ing on the fraction p/N, can be isolated clus-
ters or form a connected spanning clusters
(always obeying matrix symmetries). This
behavior is related with its singular spectral
properties. In the same fashion one can talk
about an effective “connectivity” of large
Levy matrices as a function of the parameter
ν . When ν = 1, most matrix elements are
comparable in size, and the matrix could be
seen as a connected block of dimension N
(infinite cluster). As ν decreases (for ν > 0),
more and more elements become very small,
and the matrix can be separated into blocks
of finite size. Thus, in terms of ν there is a
percolation like process associated with
crucial system changes. The disintegration
of the matrix into finite blocks occurs at a
well defined value of ν = νc, which is equiva-
lent to the concept of percolation threshold
pc. Similarly, the “mean connectivity” pa-
rameter p can be defined as a continuous
function of ν* (8). The semicircular law is re-
covered in the limit where the mean “con-
nectivity” p gets close to the threshold i.e.,
the mean number of non-zero elements per
row of the SRM tends to infinity. For any
p<pc, however, there are states beyond the
semicircle. SRM are intimately related to in-
teresting problems such as Anderson model
on the Bethe lattice with a random Poisson-
like local branching number (9), and are
useful to study dilute spin systems (10).

Some comments on the properties of
p(H) of equation [1] are in order: For ν < 0, the
matrix elements take values1 < < ∞Hij

. The

distribution p(H) has finite variance and
mean for ν < -2, this parameter range should
give rise to the classical GOE limit. For
− < ≤2 0ν , p(H) has diverging variance, and

Scientific Journal from the Experimental Faculty of Sciences
at La Universidad del Zulia, Volume 9 Nº 4, October-December 2001

428 Spectral properties of Levy matrices
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Medina in J. Stat. Phys. 75:135, 1994 will be published elsewhere.



new spectral properties are expected. For
0 1< <ν , the matrix elements are confined
to the interval 0 1< <Hij

, and thus both the

mean and variance are always finite. Never-
theless, interesting phenomena is seen in
the limit ν→ +0 , where a hierarchy of matrix
elements sizes arises with long tails towards
small elements. We perform numerical
simulations diagonalizing matrices for sizes
up to N = 2025. The IMSL Fortran subrou-
tines were used to calculate the eigenvalues
and eigenvectors of such matrices. Samples
of ~ 400 matrices were typically generated to
get good statistical data. Numerical eigen-
values are analyzed to compute the density
of states and the distribution of eigenvalue
spacings presented in this paper.

The outline of this paper is as follows.
In Section 2 we present results on the den-
sity of states. Section 3 is dedicated to the
study of the distribution of eigenvalue spac-
ings, and we end with the conclusions.

2. Density of States

The average density of states of the ma-
trix spectrum for Gaussian ensembles of RM
is a universal function. Its limit form for
large matrices is independent of the disorder
of the matrix elements (they always have fi-
nite variance), and whether the symmetry is
orthogonal, unitary, or symplectic. Changes
in this function should certainly signal new
spectral behavior. For positive ν values
(0<ν<1), p(H) has finite mean and variance.
We find that for ν > νc ~ 0.01 the density of
states obeys the semicircular law

ρ
π σ

( )
/

E
E= −








1
2

4
2 1 2

, [2]

where σ is the variance (Figure 1). This is ex-
actly the form observed for Gaussian ensem-
bles. However, as the value of ν<0.01, ρ(E)
develops deviations from the semicircular
law of equation (2). A sharp singularity of
1/ E develops as E → 0 as depicted in the
sequence of plots for various ν shown in Fig-
ure 1. Furthermore, additional singulari-
ties arise around E ~ 1. A similar1/ E singu-
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Figure 1. Density of states for matrices of size N = 1600 and the following sequence ofν values (from top to
bottom):ν= 0.01, 0.0025, 0.001, and 0.0005 diplaying the appearance of the 1/|E| singularity.



lar behavior was previously shown in SRM
with matrix elements from a distribution
with finite variance* (11). Nevertheless, this
behavior renormalizes as a function of N and
finally converges to the Gaussian limit for
ν ≠ 0.

For the range − < ≤2 0ν , the average
density of states ( )ρ E is found to be sym-
metric around E = 0 and not bounded in the
energy range. Cizeau and Bouchaud (6) de-
termined analytically the behavior of ( )ρ E
in the limits of small and large energies by
using a recursion method. They found that
for E → 0 that

( ) ( ) ( )E a b E≅ −ν ν 2, [3]

where a( ν) and b( ν) are parameters that de-
pend on ν. Whereas for large energies

( ) ( )ρ ν νE c E≅ −/ 1 [4]

Our numerical data confirm these ex-
pressions. The behavior for large energies is
determined from a double logarithmic plot of
the density and the extrapolation of these
values as a function of the matrix size to in-
finity.

3. Distribution of Eigenvalues
Spacings

The unfolded eigenvalue spacing is de-
fined as the difference between successive
eigenvalues normalized by its average value,
i.e., ( )S E E Sα α α α= −+1 / . From the nu-
merical distributions of P(s) we find different
behaviors as function of the energy E and ν.
For 0.01<ν<1, the spacing distribution has
the classical Wigner form

( )P c s s wβ ββ

β= −exp / ,2 2 [5]

with β a parameter related to the symmetry
of the system. cβ ywβ are constants that also
depends on the system’s symmetry. For the
GOE β= 1, and c1 = π/2, ( )w1

1 24= π/ / . For

smaller values of ν our numerical data is not
well fitted by this form. We observed that as
ν decreases towards zero, the distribution
deviates more and more from the Wigner
form. In fact, the tail of the distribution is
power law in this regime, as suggested in
Figure 2b (although less than a decade is
sampled). There is also level repulsion for
small spacings. From Figure 2a we see that
the level repulsion increases as ν decreases.
These results differ from those found in the
regular sparse random matrix ensemble
where the distribution is well fitted to an ex-
ponential based distribution, commonly
known as Brody distribution (7)

( ) ( )P s as bsσ
σ σΒ = − +exp 1 , [6]

with a=(σ+1)b, and ( )( )b = + +Γ σ σ σ+1
2 1/ .

However, the Brody form has no rigorous
justification.

For small spacings, we evaluate the
slope of the straight line that best fit the data
in the double logarithmic plot of P(s) vs. s,
and found a ν-dependent value. This slope
gets smaller as ν decreases. We propose the
following simple form for the spacing distri-
bution, P(s), in this regime ( ) ( )P s F s s≈ µ/
with ( )F s s≅ τ for s→ 0, and ( )F s ≅ const for

s >> >µ1and τ .

When ν is negative, the limit distribu-
tion appears to be energy dependent. We
find that − < <1 0ν , P(s) is of Wigner type for
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* Since, the sparse limit is observed for very small values of ν where the distribution has very
strong tails towards zero, one may argue that the matrix elements used as input to the IMSL
routines are just zeros in this limit. We checked our algorithms to guarantee that the computer
was able to read and process those matrix elements as nonzero values.



energies less than a critical value E < Ec1,
whereas for energies E > Ec1, the distribu-
tion has exponential form, i.e., it is of Pois-
son type. This change in the form of P(s) re-
flects the existence of a transition from ex-
tended (GOE) states to localized (Poissonian)
states. The critical value Ec1 is a function of ν,
which is not trivial to determine.

For − < < −2 1ν , we also find a critical
energy Ec2 that separates two regions where

the spacing distribution has different forms.
For E < Ec2, the distribution is very close to
the Wigner form, and it is non-universal for
E > Ec2 depending continuously on E. In this
regime the distribution has an intermediate
form between Wigner and Poisson, and be-
comes pure Poissonian for large energies.
The range of negative ν, has also been
studied numerically studied by Cizeau and
Bouchaud (6).

4. Conclusions
We have shown that the ensemble of

Lévy matrices display a variety of behaviors
ranging from the classical GOE (character-
istic of extended states) to Poissonian (for
localized states) according to the value of
the exponent ν of the power law distribu-
tion from which the matrix elements are
chosen.

For positive ν values, the density of
states perfectly satisfy the semicircle law
down to a νc ~ .001, and a crossover to a den-
sity of states with a 1/|E| singularity for
|E| near zero is seen as ν → +0 . A similar
behavior is seen for GOE matrices in the
sparse limit. For negative ν values, the den-
sity comprises the whole energy axis and
presents long ν-dependent tails for large en-
ergies.

The eigenvalue spacing distribution
P(s), has also different forms depending on
the ν value. For ν > 0, P(s) changes from the
classical Wigner form to a power law form
in the sparse matrix regime. Negative ν val-
ues also display interesting behaviors,
with distributions which are also energy
dependent. Thus we are able to see a tran-
sition from GOE Wigner distribution (for
small energies) to a Poisson like one (at
large E), and a “mixed” region in the transi-
tion zone. We have also verified the exis-
tence of this transition following Cizeau
and Bouchaud´s (6) suggestion of using
the matrix eigenvectors to compute the in-
verse participation ratio that readily indi-
cates if the states are extended or local-
ized.
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Figure 2. Eigenvalue spacing distribution for
matrices in the sparse regime. Data
are for matrices of size N = 2025 withν
= 0.001 (+) and 0.0005 (∆). a) linear and
b) double logarithmic scale.
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