Tilapia in hypersaline waters of Caribbean
51
ANARTIA
Publicación del Museo de Biología de la Universidad del Zulia
ISSN 1315-642X (impresa) / ISSN 2665-0347 (digital)
https://doi.org/10.5281/zenodo.10439215 / Anartia, 36 (junio 2023): 51-62
e Mozambique Tilapia (Oreochromis mossambicus),
in hypersaline waters of Venezuela, Southeastern Caribbean Sea
La Tilapia de Mozambique (Oreochromis mossambicus) en aguas hipersalinas
de Venezuela, Sureste del Mar Caribe
Oscar M. Lasso-Alcalá
1,2
*, Jesús A. Bello Pulido
3
, Elena uintero-T.
1,2
, Ivan D. Mikolji
1,2
& José H. Peñuela
3
1
Museo de Historia Natural La Salle, Fundación La Salle de Ciencias Naturales, Caracas, Venezuela.
2
Green Earth Alliance, Miami, USA.
3
Centro de Inestigaciones Ecológicas Guayacán, Universidad de Oriente, Guayacán, Venezuela
* Corresponding author: oscar.lasso@gmail.com / oscar.lasso1@fundacionlasalle.org.ve
(Received: 25-07-2023 / Accepted: 15-11-2023 / On line: 27-12-2023)
ABSTRACT
e Mozambique Tilapia Oreochromis mossambicus (Peters 1852), is a euryhaline species, native to Southeast Africa. Its
introduction in the Southeast Coastal Caribbean region (Venezuela) dates back to 1964. Since then, due to its adaptive
plasticity, it has invaded dierent freshwater, estuarine and marine ecosystems, such as the Manzanares and Barbacoas
rivers, the coastal lagoons of Los Patos, Punta Delgada, Campoma and Los Mártires (Isla de Margarita), as well as coastal
waters of the Golfo de Cariaco. e present study adds the hypersaline lagoon system of Chacopata and Bocaripo to these
biomes. e salinity recorded in that ecosystem varies from 32 to 71 PSU. is lagoon system is located on the North
coast of the Península de Araya, constituting an advance of the invasion of this species in the Eastern coast of Venezuela.
e rst record of this species was on November 2017 and second in March 2023, with the capture and analysis of 17
and 19 specimens, and highlights the establishment of O. mossambicus in hypersaline waters, typical of a negative estuary.
We describe the basic morphological identication characteristics, as well as the possible pathways of the introduction.
Likewise, based on the information available on its presence and establishment in at least 94 countries, and the dierent
kinds of negative impacts it has caused on biodiversity in the invaded ecosystems, management measures are proposed.
Among these measures, both the monitoring of the evolution of the species in the Chacopata and Bocaripo lagoon system
and the possible changes to the native known aquatic biota stand out.
Keywords: biological invasions, Cichlidae, coastal marine lagoons, hyperhaline waters, negative estuaries, non-native
species.
RESUMEN
La Tilapia de Mozambique Oreochromis mossambicus (Peters 1852), es una especie eurihalina, originaria del Sureste de
África. Su introducción en la región Sureste costera del Mar Caribe (Venezuela) se remonta a 1964. Desde entonces, debido
a su plasticidad adaptativa, ha invadido diferentes ecosistemas de agua dulce, estuarinos y marinos, como los ríos Manzanares
y Barbacoas, las lagunas costeras de Los Patos, Punta Delgada, Campoma y Los Mártires (Isla de Margarita), así como aguas
costeras del Golfo de Cariaco. El presente estudio agrega a estos biomas el sistema de lagunas hipersalinas de Chacopata y
Bocaripo. La salinidad registrada en ese ecosistema varía de 32 a 71 USP. Este sistema lagunar que se ubica en la costa Norte
de la Península de Araya, constituye un avance de la invasión de esta especie, en la costa oriental de Venezuela. El primer
registro de esta especie fue en noviembre de 2017 y el segundo en marzo de 2023, con la captura de 17 y 19 ejemplares, lo
Oscar M. Lasso-Alcalá, J. A. Bello Pulido, E. Quintero-T., I. D. Mikolji & J. H. Peñuela
52
que destaca el establecimiento de O. mossambicus en aguas hipersalinas, propias de un estuario negativo. Describimos las
características morfológicas básicas de identicación, así como las posibles vías de introducción. Así mismo, a partir de
la información disponible sobre su presencia y establecimiento en al menos 94 países, y los diferentes tipos de impactos
negativos que ha causado sobre la biodiversidad de los ecosistemas invadidos, se proponen medidas de manejo. Entre estas
medidas, destacan tanto el seguimiento de la evolución de las especies en el sistema lagunar de Chacopata y Bocaripo, así
como los posibles cambios en la biota acuática nativa conocida.
Palabras clave: aguas hiperhalinas, Cichlidae, especies exóticas, estuarios negativos, invasiones biológicas, lagunas marino
costeras.
for the establishment and operation of solar salt works;
aquaculture farms and communication routes; dredging
of channels for navigation; closure of their mouths and
communication with the sea; sedimentation due to
alteration of the coastline (construction of breakwaters);
landlls for urban or industrial expansion; contamination
(organic and inorganic) of its waters; oil extraction and
transportation; deforestation of mangroves; hydrological
and sedimentary changes due to the channeling of
rivers into its interior; and the construction of dams
in their basins and climate change (Lentino & Brunni
1994, Ramírez & Roa 1994, Medina & Barbosa 2006,
Miloslavich et al. 2005, Miloslavich & Klein 2008). e
introduction of species and their consequent biological
invasions, is added to all these environmental problems
and threats (Vitule & Prodocimo 2012).
In Venezuela, as in various parts of the world, the
introduction of exotic and transferred (translocated)
species has been pointed out as a serious problem for the
conservation of its biodiversity, also causing degradation
of ecosystems and indirect (e.g.: economic activities) or
direct eects (e.g.: transmission of diseases) to humans
(Ojasti et al. 2001, Lasso-Alcalá 2003, Cassemiro et al.
2018, Pyšek et al. 2020, Doria et al. 2021, Ruiz-Allais et
al. 2021). In the long term, the worst case scenario that
can be expected with introduced species is the invasion
and homogenization of the biotas (Baiser et al. 2012,
Vitule & Pozenato 2012, Daga et al. 2020). As far as
sh and marine ecosystems are concerned, to date, some
six species of sh have been indicated as introduced
to the coasts of Venezuela, four estuarine, two marine
and nally, at least one of freshwater origin with strong
euryhaline habits (Carvajal 1965, Springer & Gomon
1975, Aguilera & Carvajal 1976, Chung 1990, Nirchio
& Pérez 2002, Pezold & Cage 2002, Lasso et al. 2004,
Lasso-Alcalá et al. 2005a,b, 2008, Lasso-Alcalá & Posada
2010, Lasso-Alcalá et al. 2011, 2019; Cabezas et al. 2020,
2022). Among these species, the Mozambique Tilapia
Oreochromis mossambicus (Peters 1852) stands out for
its adaptation and capacity to colonize coastal marine
ecosystems, until now only formally agged as invasive in
INTRODUCTION
Venezuela, with its 2,696 km of coastline in the
Southeast Caribbean Sea and 832 km in the Atlantic
Ocean as well as its more than 300 islands, islets, and
keys (436 km), has a variety of marine ecosystems, such as
sandy beaches, coral reefs, rocky coastlines, seagrass beds,
deep sea bottoms, and estuaries such as river mouths and
coastal lagoons (Conde & Carmona 2003, Miloslavich
et al. 2005, Miloslavich & Klein 2008). ese lagoons,
generally predominantly vegetated by the mangrove
forest due to their tropical location, may be associated
with uvial systems or not be part of them, so their
ecological conditions are markedly dierent, forming
estuaries of positive or negative (hypersaline) type in
each case (Cervigón & Gómez 1986). ese coastal
marine ecosystems are numerous in the country, with
at least 35 continental and 24 insular, most of the latter
with hypersaline or hyperhaline ecological conditions in
negative estuaries (Cervigón & Gómez 1986, Lentino &
Brunni 1994, Ramírez & Roa 1994, Ramírez-Villarroel
1996, Conde & Carmona 2003, Medina & Barbosa
2006, Miloslavich et al. 2005, Miloslavich & Klein 2008),
which have been relatively well studied since the mid-20th
century. Regarding the sh fauna, at least 25 important
studies have been carried out in at least 23 of these lagoon
systems (Weibezahn 1949, Carvajal 1965, Mago 1965,
Fernández-Yépez 1970, Carvajal 1972, Gómez 1981,
Heredia 1983, Oliveros & Marnez 1984, Acosta 1985,
Cervigón & Gómez 1986, Meaño 1986, Jory 1988,
Rodenas & López-Rojas 1993, Ramírez-Villarroel 1993,
Valecillos 1993, Ramírez-Villarroel 1994a,b, López-Rojas
et al. 1996, Marín 2000, Andrés De Grado & Bashirullah
2001, González-Bencomo & Borjas 2003, Andrade de
Pasquier et al. 2005, Barreto et al. 2009, Bonilla et al. 2010,
Pérez et al. 2012).
However, environmental problems and threats to
the conservation of biodiversity and the marine lagoon
ecosystems of Venezuela are numerous and have increased
in recent decades. e following stand out among a
long list of these: the construction of dams and roads
Tilapia in hypersaline waters of Caribbean
53
other coastal lagoons systems of Northeastern Venezuela,
such as Laguna de Los Patos, Laguna de Punta Delgada
and the Laguna de Campoma, as well as at the mouths of
the Manzanares and Barbacoas rivers, the coastal waters
of the Golfo de Cariaco and Laguna de Los Mártires, Isla
de Margarita (Aguilera & Carvajal 1976, Chung 1990,
Chung & Méndez 1993, Solorzano et al. 2001, Nirchio &
Pérez 2002, Marín et al. 2003, Gaspar 2008, Bonilla et al.
2010, Rodríguez et al. 2021; Fig. 1).
e main objective of this work is to record the
introduction of Oreochromis mossambicus in the
hypersaline lagoon system of Chacopata and Bocaripo,
on the Northeastern coast of Venezuela, highlighting
its presence in high salinities of this negative estuarine
ecosystem. In addition, the possible route of introduction,
its implications, biological and ecological consequences
on the native fauna and ecosystem are discussed, as well
as some recommendations for its study and management
are given.
MATERIAL AND METHODS
Study area
e Chacopata and Bocaripo lagoon system is located
on the Northeast coast of the Península de Araya, Sucre
State, Venezuela (10°40’14” N- 63°48’07” W), Southeast
Figure 1. Map of the Southeastern Caribbean Sea (Northeast of Venezuela), showing: A. Coasts of Cumaná and Golfo de Cariaco;
B. Chacopata and Bocaripo lagoon system; C. Laguna de Los Mártires, Isla de Margarita. Localities with established populations of
Oreochromis mossambicus: 1. Río Barbacoas mouth, 2. Laguna de Los Patos, 3. Río Manzanares mouth, 4. Golfo de Cariaco coast, 5. La-
guna de Punta Delgada, 6. Laguna de Campoma, 7. Laguna de Bocaripo, 8. Laguna de Chacopata, 9. Laguna de Los Mártires. Source:
Modied from Google Earth 2023 base map. SIO, NOAA, NGA, GEBCO data. Image Lansat / Copernicus.
Oscar M. Lasso-Alcalá, J. A. Bello Pulido, E. Quintero-T., I. D. Mikolji & J. H. Peñuela
54
of the Caribbean Sea. It is made up of two coastal or
marine lagoons (Fig. 1B), the Laguna de Chacopata with
770 ha and the Laguna de Bocaripo with 77 ha. ese two
lagoons are separated only by a narrow bar of irregularly
shaped sand (Bello et al. 2016). Both lagoons, with a depth
between 0.5-2 m (Chacopata) and 0.4 to 1 m (Bocaripo),
maintain direct communication with the adjacent
Caribbean Sea through two openings (mouths), through
which seawater enters, a product of the diurnal tide rate
(change every 12 hours). Its range is approximately 50
cm, which increases during the spring tide season, in the
September to November quarter (Pérez et al. 2006a). Due
to the high water levels of this last period, the two lagoons
enter into direct communication.
Physiographically, this lagoon area is part of the
continental coastal region of Venezuela, in both cases
bordered by a mixed mangrove forest, dominated in order
of surface occupied by Rhizophora mangle, Avicennia
germinans, Laguncularia racemosa and Conocarpus
erectus (Cumana et al. 2000), as well as seagrass meadows
dominated by alassia testudinum and Syrigodium
liforme and abundant macroalgae (Cladophora sp. and
Chaetomorpha sp.) (Jiménez-Ramos et al. 2019).
e climate of the region is characterized by strong
aridity, caused by the joint action of a very marked
dry season (December-May), when the oceanographic
phenomenon of coastal upwelling occurs in the adjacent
sea; a low rainfall (100-300 mm); high air temperatures
(28-35 °C) and relative humidity (75-77%); as well as
the action of the winds in a northeast direction (4.0 m/s-
5.0 m/s during the drought and 2.0 m/s-3.0 m/s during
rains); which result in high evaporation throughout the
year (3430 mm), which exceeds precipitation by more
than 10 times (Cumana et al. 2000, López-Monroy &
Troccoli-Ghinaglia 2014). ese lagoons only receive a
slight entry of freshwater, from two intermittent runos,
which drain in its southern part during the rainy season
(June-November), when the wind speed is very low
(Herrera & Febres 1975, Bello et al. 2016). Regarding
the physicochemical characteristics of the waters of the
lagoon system, temperature values have been recorded
between 36.6 to 34.4 ºC, pH between 4.55 and 7.65,
dissolved oxygen between 6.98 and 7.08 mg/l, and salinity
between 32.00 to 70.67 PSU (Todelo et al. 2000, Prieto
et al. 2009, Pérez et al. 2012, Jiménez-Ramos et al. 2019).
Even somewhat high salinity values (38-40 PSU) have
been found in waters outside the lagoon system, west of
Chacopata (Lara-Rodríguez et al. 2015). is gives this
lagoon ecosystem the typical characteristics of a negative
or hypersaline estuary (Cervigón & Gómez 1986, Potter
et al. 2010, Tweedley et al. 2019).
Samplings
e specimens were provided by shermen from the
town of Guayacán on the Península de Araya. ese
shermen use hanging nets, placed in front of the roots
of the red mangrove (Rhizophora mangle), in dierent
internal sectors of the Chacopata Lagoon (Fig. 1B). e
shing period was always between 6:00 p.m. and 6:00 a.m.
e captured specimens were labeled and refrigerated for
transport and analysis in the laboratory.
Specimen analysis
For the identication of the specimens, the keys and
descriptions of revision works of marine and estuarine sh
were used, as well as of the Cichlidae family in Venezuela
(Luengo 1970, Lasso & Machado-Allison 2000).
Specialized works on the group of sh known as “Tilapias
were also consulted (Trewavas 1982, 1983; Skelton 1993,
Lamboj 2004). Reference specimens were deposited in the
sh collection of the Museo de Historia Natural La Salle,
Caracas, Venezuela, under number MHNLS 26188.
RESULTS AND DISCUSSION
On November 21, 2017, a total of 17 specimens
(between 180 and 230 mm SL) of Oreochromis
mossambicus were captured, in an internal sector of the
Laguna de Chacopata, between the 10°39’28.55” N -
63°49’09.40” W (Fig. 1B). Likewise, other specimens
from the Laguna de Bocaripo were observed but not
examined, because they were used by other shermen
for consumption. ese specimens were only measured
and not preserved (Fig.2). Additionally, on March 15,
2023, about 19 specimens were captured, preserved
and transferred to the MHNLS. A summary of the
basic meristic and morphometric data of the examined
specimens is presented in Table 1.
e examined specimens presented the morphological
and chromatic diagnostic characters of the species
(Trewavas 1982, 1983; Skelton 1993, Lamboj 2004):
Long head and snout, with two to three scales in the
interocular region and 9 to 12 scales in the nuchal region,
up to the origin of the dorsal n. Dorsal with 15-18 spines
and 10-13 rays. Anal n with 3 spines and 7 to 12 rays, 14
to 20 gill rakers on its lower arm. Fine teeth closely knit
in several rows on both jaws. External ones in unicuspid
or caninoid mature males. Caudal n abundantly scaled in
the initial two-thirds of its surface, with the nal third free
of scales. In females and juveniles, the color of the body
is light gray, with cream on the ventral region, presence
of two to ve spots along the middle region, yellow iris,
and dark gray ns. Males present a characteristic sexual
Tilapia in hypersaline waters of Caribbean
55
dimorphism expressed by the elongation of the lower
jaw, which gives it a concave prole in the upper part of
the muzzle. is modication is developed to attend
reproductive activities, such as the excavation of nests
at the bottom of the substrate. Likewise, the coloration
is from a very dark gray to black throughout the body,
including ns and irises, cheeks with yellowish tones, with
red edges of the dorsal and tail ns, as well as the pectorals,
in hyaline red tone (Fig. 2).
Oreochromis mossambicus is a species of the Cichlidae
family, native to seven countries of the Southeast Africa,
including the middle and lower basins of the Zambezi,
Shire, Brak, Bushmans, Kwazulu-Natal and Limpopo
rivers, coastal plains from the Zambezi Delta to Algoa
Bay, in Mozambique, Malawi, Botswana, Zimbabwe,
Eswatini, Lesotho, and South Africa (Philippart & Ruwet
1982, Trewavas 1982, 1983; Pullin 1988, Skelton 1993,
Lamboj 2004, Firmat et al. 2013). For mainly aquaculture
purposes, this species has been introduced in around 104
nations; of these, in at least 94 countries in the world (13
in Africa, one in Europe, 26 in Asia, 23 in Oceania and 31
in America [including Venezuela]), it has been successfully
established (Welcomme 1988, Canonico et al. 2005,
Froese & Pauly 2023).
Figure 2. Specimens of Oreochromis mossambicus captured in the Chacopata and Bocaripo lagoon system, Península de Araya,
Venezuela, in 2017. A. Male (215 mm SL); B. Female (200 mm SL). Photos: J. A. Bello P.
Oscar M. Lasso-Alcalá, J. A. Bello Pulido, E. Quintero-T., I. D. Mikolji & J. H. Peñuela
56
In Venezuela, this species was introduced from Trinidad
Island (formally Republic of Trinidad and Tobago) in
1958, for the purpose of experimental aquaculture in the
Estación de Piscicultura, Ministerio de Agricultura y Cría,
located at El Limón, Maracay (endorheic basin of Lago
de Valencia, central region of Venezuela), as indicated
by some studies (Luengo 1963, 1970; Ramírez 1971,
Welcomme 1988, Lasso-Alcalá 2001, 2003). From there,
in 1964, 800 specimens were introduced into the coastal
system adjacent to the mouth of the Río Manzanares,
known as Laguna de Los Patos (coast of the city of
Cumaná, eastern region of Venezuela: Fig. 1A); with the
aim of experimental aquaculture by the Universidad de
Oriente (Kahndker 1964, Carvajal 1965, Luengo 1970).
Twelve years aer this introduction, the disappearance of
75% of the sh and crustacean species previously known
for said littoral ecosystem is noted (Aguilera & Carvajal
1976, Jiménez 1977). Subsequently, from the Laguna de
Los Patos, where it still lives today, this species quickly
dispersed and invaded the coasts of the Caribbean Sea
in the Golfo de Cariaco (Nirchio & Pérez 2002, Gaspar
2008) and the Laguna de Punta Delgada (Marín et al.
2003) (Fig. 1A), thanks to its known broad tolerance to
salinity (Philippart & Ruwet 1982, Trewavas 1982, Pullin
1988). In the Río Manzanares basin, it has invaded from
its mouth or estuary to the middle system (Aricagua
River, 250m asl, pers. obs.), as well as the rainwater and
wastewater collection systems of the city of Cumaná (Fig.
1A) (Nirchio & Pérez 2002. Pérez et al. 2003, Senior et al.
2004, Ruíz et al. 2005, Pérez et al. 2006b). Likewise, it has
also been registered as introduced into the Río Barbacoas
and its mouth (Chung 1990), as well as the Laguna de
Campoma and mouth of Campoma river (Bonilla et al.
2010; pers. obs.), belonging to the Campoma and Casanay
rivers basin, which empties in the eastern end or Saco at
Golfo de Cariaco (Fig. 1). Additionally and recently, it
has also been recorded in Laguna de Los Mártires, in the
northwest coast of Isla de Margarita (Rodríguez et al.
2021; Fig.1C). In this coastal lagoon, a generalized loss
of biodiversity was found, due to the displacement and
extinction of native species, where the disappearance of
at least 85% of the sh community is estimated, as well
as changes in the specic composition and the native
community structure; and the dramatic reduction of the
abundance, biomass and frequency of the native species.
In the hypersaline lagoon system of Chacopata and
Bocaripo (Fig. 1B), the shes constitute one of the
relatively best documented groups, with ve studies on
their biodiversity, community structure and predation,
which from 1983 to 2018 quantied about 47 native
species of marine and estuarine habits (Oliveros &
Martínez 1984, Acosta 1985, Meaño 1986, Valecillos 1993,
Pérez et al. 2012, Rojas et al. 2018). Likewise, according
to the local shermen, the discovery of Oreochromis
mossambicus during their shing operations in this lagoon
system dates from at least 2011. is coincides with our
investigations, since in the samplings carried out between
2007 and 2008, this species was not recorded (Pérez et
al. 2012). Although it is not fully certain, we believe that
its introduction into this ecosystem has been intentional,
due to its proximity to other systems where the species
has already been introduced. ose nearby systems are the
Laguna de Campoma and Campoma river mouth (27 km
away), where it has been established since at least 2009,
the Laguna de Punta Delgada (38 km away), since at least
2000 (Elizabeth Mén dez, pers. com.) and Laguna de Los
Patos (48 km away) since 1964, as stated at the beginning
of this work (see Figs. 1A, B). In addition to the short
distance between these ecosystems, another argument that
supports this hypothesis of intentional introduction is the
importance of this species for subsistence shing of other
communities of artisanal shermen, such as those located
on the coast of Cumaná and some coastal area communities
of the Golfo de Cariaco. In those shing communities,
O. mossambicus is appreciated as a subsistence food and
locally known by the common name of “universitario”,
since its origin in the region is recognized and attributed
to the Universidad de Oriente.
Due to its tolerance of large variations in environmental
parameters (e.g.: temperature, salinity, dissolved oxygen,
Table 1. Morphometric and meristic data of the Oreochromis
mossambicus specimens (n=19), captured in the Chaco-
pata and Bocaripo lagoon system, Península de Araya,
Venezuela (MNHLS 26188). Total Length (TL), Stan-
dard Length (SL), Dorsal Fin (DF), Anal Fin (AF), Pecto-
ral Fin (PF), Caudal Fin (CF), Inter Ocular Scales (IOS),
Pre-Nucal Scales (PNS) and Lower Gill Rakers (LGR).
(n = 19)
Range Mean Mode
TL 129 254 191,5
SL 99 200 149,5
DF XV, 13 XVI, 12 XVI, 12
AF III,10 III,11 III,10
PF 13 14 13
CF 17 19 18
IOS 3 4 3
PNS 10 12 10
LGR 17 19 17
Tilapia in hypersaline waters of Caribbean
57
pH, etc.), the Mozambique Tilapia has successfully
colonized and invaded freshwater lakes, rivers, swamps,
estuaries, coastal brackish lagoons, coral atolls, hypersaline
desert lakes and hot springs where it has been introduced
throughout the world (Trewavas 1983). Some authors
indicate that it is a common species in closed estuaries
and coastal lagoons (Blaber 1997), but generally absent
in permanently open estuaries and open seas (de Moor &
Bruton 1988). Contrary to this, in Venezuela, it has been
recorded in the mouths of rivers such as the Manzanares
and Barbacoas, and open lagoons such as Los Patos, and
Punta Delgada, as well as in the adjacent sea in the Golfo
de Cariaco (Chung 1990, Nirchio & Pérez 2002, Marín et
al. 2003, Gaspar 2008; Fig. 1A), Laguna de Los Mártires
(Isla de Margarita: Rodríguez et al. 2021; Fig. 1C) and
in the present work we recorded it in the open coastal
lagoons of Chacopata and Bocaripo (Fig. 1B).
Also, Oreochromis mossambicus has been successfully
introduced and established in other marine ecosystems.
In the Greater Caribbean region (Caribbean Sea and
Gulf of Mexico), just to name a some cases, this species
is found introduced in coastal marine lagoons, river
estuaries, internal salt ponds, and open bays on islands and
coastal waters, for example the USA (Baker et al. 2004),
México (Raz-Guzmán et al. 2018), Puerto Rico (Burger
et al. 1992), Aruba, Curaçao and Bonaire islands (Debrot
2003; Hulsman et al. 2008), Trinidad Island (Joseph
et al. 2022) and Tobago Island (Mohammed 2014), in
salinities ranging from 5 to 39 PSU. In the Southeastern
Caribbean Sea (Northeastern region of Venezuela),
salinities between 0 and 38 PSU have been recorded
at the mouths of the Manzanares and Barbacoas rivers,
Laguna de Los Patos, Laguna de Punta Delgada, Laguna
de Campoma, the Golfo de Cariaco (Fig. 1A) and Laguna
de Los Mártires (Fig. 1C) (Carbajal 1972, Chung 1990,
Nirchio & Pérez 2002, Marín et al. 2003, Gaspar 2008,
Rodríguez et al. 2021). is corresponds in part to the
hypersaline conditions (> 40 PSU) in which we found
O. mossambicus in the negative estuary of Chacopata and
Bocaripo, whose registered salinity values range from
32.00 to 70.67 PSU (Todelo et al. 2000, Prieto et al. 2009,
Pérez et al. 2012, Jiménez-Ramos et al. 2019); the latter
is one of the highest values recorded for this species in a
natural ecosystem. is salinity is even higher than other
hypersaline ecosystems (internal lakes) where this species
has been introduced; such as the Salton Sea (lake), in
California (USA), where maximum salinity is 44 PSU
(Caskey et al. 2007). However, in its natural range, for
example in Saint Lucia Lake, an originally open estuary in
South Africa, Whiteld and Blaber (1979) indicated that
O. mossambicus can tolerate gradual changes in salinity to
120 PSU. According to these authors, ecologically, owing
to its freshwater origin, Oreochromis mossambicus has been
classied as a highly Euryhaline species (tolerance of 0 to
36 PSU). It is very likely that its extraordinary adaptive
plasticity to new marine and hypersaline ecosystems,
although with certain limitations in some locations, is due
to genetic characteristics such as epigenetic modications
or adaptive mutations (Pérez et al. 2006b).
It is important to state that the introduction,
establishment and invasion of Oreochromis mossambicus
has a series of implications and consequences, given other
biological and ecological characteristics of this species of
cichlid. Among these are its omnivorous and piscivorous
predatory habits, moderate fecundity but with strong
parental care of eggs and young (territorialism), and rapid
population growth. erefore, the ecological consequences
from the introduced sh of this family are unpredictable
(Lasso-Alcalá et al. 2014). Some of the consequences
that have been observed with the native fauna of the 94
countries where O. mossambicus has been introduced and
is established, are: e direct predation of eggs, larvae,
juveniles and adults; interspecic competition; reduction
of abundance and biomass; displacement and extinction
of species; changes in the specic composition and trophic
structure of communities; generalized loss of biodiversity
in the ecosystem; destruction and alteration of habitat;
hybridization with species of the same or relative genus (only
in Africa); and transfer of parasites (Aguilera & Carvajal
1976, Jiménez 1977, Canonico et al. 2005, Gutiérrez et al.
2012, Firmat et al. 2013, Cassemiro et al. 2018, Wilson 2019,
Rodríguez et al. 2021). For these reasons, O. mossambicus
has been listed as one of the 100 most harmful invasive alien
species in the world (Lowe et al. 2004).
Taking into account this panorama and the current
knowledge about the sh diversity of the study area
in this work, it is necessary to carry out a monitoring
program of the lagoon system of Chacopata and Bocaripo
to determine if this invasive species has caused a change
in the taxonomic and/or structural composition of the
community of sh and other organisms of this ecosystem.
Likewise, the presence of this and other species introduced
in dierent coastal lagoon systems of Venezuela where they
have not been detected must be evaluated, since most of the
studies (Weibezahn 1949, Mago 1965, Fernández-Yépez
1970, Gómez 1981, Heredia 1983, Cervigón & Gómez
1986, Jory 1988, Rodenas & López-Rojas 1993, Ramírez-
Villarroel 1993, 1994a, b, López-Rojas et al 1996, Marín
2000; Andrés de Grado & Bashirullah 2001, Barreto et
al. 2009), have been carried out more than 10 years ago.
It is evident that the situation in these ecosystems must
have changed. is situation is particularly disturbing
Oscar M. Lasso-Alcalá, J. A. Bello Pulido, E. Quintero-T., I. D. Mikolji & J. H. Peñuela
58
if other antecedents are taken into account, since on the
coasts of Venezuela, at least six other species of estuarine
and marine sh (Eleotris picta, Omobranchus sewalli,
Butis koilomatodon, Gobiosoma bosc, Pterois olitans
and Neopomacentrus cyanomos) have been identied as
introduced, some of them being strongly invasive (Pezold
& Cage 2002, Lasso et al 2004, Lasso-Alcalá et al. 2005a,
b, 2008, Lasso-Alcalá & Posada 2010, Lasso-Alcalá et al.
2011, 2019; Cabezas et al. 2020, 2022). Added to this is
the recent invasion of the octocoral Unomia stolonifera
(Alcyonacea, Xeniidae), native to the Pacic Ocean, which
is seriously impacting the native species and coastal marine
ecosystems of Venezuela (Ruiz-Allais et al. 2022), and is
already beginning to disperse throughout the Greater
Caribbean (Espinosa et al. 2023).
CONCLUSIONS AND RECOMMENDATIONS
Due to the previous experience of the negative impacts
generated by this species in coastal lagoons of Venezuela
(e.g.: Laguna de Los Patos and Laguna de Los Mártires),
and its biological and ecological characteristics; its new
introduction in other coastal marine ecosystems of
Venezuela, as well as in the hydrographic basins of the
country must be prevented. As a management measure for
the species in the coastal lagoon system or negative estuary
of Chacopata and Bocaripo, shing and consumption of
Oreochromis mossambicus is recommended to reduce its
populations, for the conservation of native biodiversity
and local resources. For this, permanent educational
awareness plans must be established at dierent levels,
as well as the development of dierent technological
packages for the aquaculture of native species. For these
activities, international nancial support is needed, as well
as their technical support.
ACKNOWLEDGMENTS
e authors are especially grateful to Alí Narváez, a
sherman from the town of Guayacán, for capturing the
specimens used in this study, as well as for other information
on their presence in the Chacopata and Bocaripo lagoon
system. Yelka Mikolji (Green Earth Alliance, Miami,
USA), Donald C. Taphorn (Royal Ontario Museum,
Totonto, Canada), and William W. Lamar (University
of Texas, Tyler, USA), for the lenguage tecnical review.
To Jean Ricardo Simões Vitule (Universidade Federal
do Paraná, Curitiba, Brazil) and Alfonso Aguilar-Perera
(Universidad Autónoma de Yucatán, Mérida, México) and
anonymous reviewers, for their comments and suggestions
on this manuscript.
REFERENCES
Acosta, S. 1985. Inentario de la fauna ictiológica de la costa nor-
oeste de la Laguna de Chacopata, estado Sucre, Venezuela. Cu-
maná: Universidad de Oriente, 67 pp. [trabajo de grado].
Aguilera, L. & J. Carvajal. 1976. La ictiofauna del complejo hi-
drográco Río Manzanares, estado, Sucre, Venezuela. Lagena
37-38: 23–25.
Andrade de Pasquier, G., E. H. Weir, O. Gómez & R. Parra.
2005. Diversidad de peces en la Ciénaga de Los Olivitos.
pp. 284–305. In: Informe nal del Proyecto FONACIT Nº
98003428: Biodiversidad en el ecosistema de Los Olivitos y zo-
nas adyacentes. Volumen 3: Inentario y abundancia de los ver-
tebrados: peces, reptiles, aves y mamíferos. Maracaibo: LUZ-
UNERMB-INIA-MARN-FONACIT.
Andrés De Grado, A. & A. Bashirullah. 2001. Algunos atribu-
tos de la estructura comunitaria de la ictiofauna de la Laguna
Grande del Obispo, Golfo de Cariaco, Venezuela. Acta Cien-
tíca Venezolana 52: 3-13.
Baiser, B., J. D. Olden, S. Record, J. L. Lockwood & M. L. McK-
inney. 2012. Pattern and process of biotic homogenization
in the New Pangaea. Proceedings of the Royas Society B 279:
4772–4777.
Baker, P. S., M. Baker & J. Fajans. 2004. Nonindigenous marine
species in the greater Tampa Bay ecosystem. Tampa, Fl.: Final
Report to the Tampa Bay Estuary Program, 131 pp.
Barreto, M., E. Barreto, A. Bonilla, M. Castillo, L. González, J.
Grande, M. Gutiérrez, I. Hernández, N. Hernández, H. Ló-
pez, A. Machado, L. Mogollón, J. Paredes, A. uero, A. Ra-
mos & J. Velásquez. 2009. Estudio integral del sistema lagu-
nar Bajo Alcatraz-Mata Redonda-La Salineta de la Península
de Paria, Estado Sucre, Venezuela: geomorfología, hidrolo-
gía, calidad del agua, vegetación y vertebrados. Acta Biologica
Venezuelica 29(1-2): 1–59.
Bello, J., L. Cumana, I. Guevara, N. Patiño & C. Marchan. 2016.
Angiospermas de los arbustales xerólos en los alrededores
del complejo lagunar Bocaripo-Chacopata, estado Sucre,
Venezuela. Saber 28(3): 523–535.
Blaber, S. J. M. 1997. Fish and sheries of tropical estuaries. Fish
and Fisheries Ser. 22. London: Chapman & Hall, 367 pp.
Bonilla, A., H. López-Rojas, L. A. González, A. Machado-Alli-
son, E. Infante & J. Velásquez. 2010. Ictiofauna y herpeto-
fauna de los sistemas lagunares Chacopata-Bocaripo y Cam-
poma-Buena Vista, de la Península de Araya, estado Sucre,
Venezuela. Acta Biologica Venezuelica 30(1-2): 35–50.
Burger J., K. Cooper, D. J. Gochfeld, J. E. Saliva, C. Sana, D.
Lipsky & M. Cochfeld. 1992. Dominance of Tilapia mos-
sambica, an introduced sh species, in three Puerto Rican
estuaries. Estuaries 15: 239–245.
Cabezas, M. P., O. M. Lasso-Alcalá, R. Xavier & M. J. Jowers.
2020. First genetic record of the non-native muzzled blenny
Omobranchus punctatus (Teleostei: Blenniidae) in the Atlan-
tic Coast of Central and South America. Journal of Fish Biol-
ogy 2020:1–6.
Tilapia in hypersaline waters of Caribbean
59
Cabezas, M. P., O. M. Lasso-Alcalá, E. uintero-T., R. Xavier,
T. Giarrizzo, J. L. S. Nunes, F. S. Machado, J. Gómez, W. Silva
Pedroza & M. J. Jowers. 2022. Clarifying the taxonomy of
some cryptic blennies (Blenniidae) in their native and intro-
duced range. Scientic Reports 12: 9514.
Canonico, G. C., A. Arthington, J. K. McCrary & M. L. ieme.
2005. e eects of introduced tilapias on native biodiver-
sity. Aquatic Conservation Marine and Freshwater Ecosystems
15: 463–483.
Carvajal, J. 1965. Estudio ecológico de las lagunas litorales ve-
cinas a la ciudad de Cumaná, Venezuela. Boletín del Instituto
Oceanográco de Venezuela 4(2): 266–311.
Carvajal, J. 1972. Contribución al conocimiento de la biología
de las Lagunas y Ríos de Campoma y Buena Vista (Venezue-
la), especialmente del róbalo Centropomus parallelus Poey.
Cuadernos Oceanográcos 3: 3–36.
Cassemiro, F. A. S., D. Bailly, W. J. da Graça & A. A. Agostinho.
2018. e invasive potential of tilapias (Osteichthyes, Cichli-
dae) in the Americas. Hydrobiologia 817: 133–154.
Caskey, L. L., R. R. Riedel, B. Costa-Pierce, J. Butler & S. H.
Hurlbert. 2007. Population dynamics, distribution, and
growth rate of tilapia (Oreochromis mossambicus) in the
Salton Sea, California, with notes on bairdiella (Bairdiella
icistia) and orangemouth corvina (Cynoscion xanthulus). Hy-
drobiologia 576: 185–203.
Cervigón, F. & A. Gómez. 1986. Las lagunas litorales de la Isla
de Margarita sus recursos y su conservación. Caracas: Funda-
ción Cientíca Los Roques, Editorial Arte, 89 pp.
Chung, K. S. 1990. Adaptabilidad de una especie eurihalina
Oreochromis mossambicus (Peters 1852) en aguas saladas de la
zona nororiental de Venezuela. Saber 3: 21-30.
Chung, K. & S. Méndez. 1993. Tolerancia térmica comparativa
en algunos peces tropicales de Venezuela. Ciencia 1(1): 1–17.
Conde, J. & C. Carmona. 2003. Ecosistemas marino-costeros.
pp: 862–883. In: Aguilera, M., A. Azócar & E. González
(eds.). Biodiversidad en Venezuela (Tomo II). Caracas: Fun-
dación Polar.
Cumana, L., A. Prieto & G. Ojeda. 2000. Florúla de la laguna
de Chacopata, península de Araya, estado Sucre. Venezuela.
Saber 12(1): 25–33.
Daga, V. S., J. D. Olden, É. A. Gubiani, P. A. Piana, A. A. Padial
& J. R. S. Vitule 2020. Scale-dependent patterns of sh fau-
nal homogenization in Neotropical reservoirs. Hydrobiologia
847: 3759–3772.
Debrot, A. O. 2003. A review of the freshwater shes of Cura-
çao, with comments on those of Aruba and Bonaire. Carib-
bean Journal of Science 39(1): 100–108.
de Moor, I. J. & M. N. Bruton, 1988. Atlas of alien and trans-
located indigenous aquatic animals in southern Aica. South
African Scientic Programmes Report No. 144. Port Eliza-
beth, S. Africa: A report of the Committee for Nature Con-
servation Research National Programme for Ecosystem Re-
search, 310 pp.
Doria, C. R. da C., E. Agudelo, A. Akama, B. Barros, M. Bon-
m, L. Carneiro, S. R. Briglia-Ferreira, L. Nobre Carvalho,
C. A. Bonilla-Castillo, P. Charvet, D. T. B. dos Santos Ca-
neo, H. P. da Silva, C. R. Garcia-Dávila, H. D. B. dos Anjos,
F. Duponchelle, A. Encalada, I. Fernandes, A. C. Florentino,
P. C. P. Guarido, T. L. de Oliveira Guedes, L. Jimenez-Segu-
ra, O. M. Lasso-Alcalá, M. R. Macean, E. E. Marques, R. N.
G. Mendes-Júnior, G. Miranda-Chumacero, J. L. S. Nunes, T.
V. T. Occhi, L. S. Pereira, W. Castro-Pulido, L. Soares, R. G.
C. Sousa, G. Torrente-Vilara, P. A. Van Damme, J. Zuanon &
J. R. S. Vitule. 2021. e silent threat of non-native sh in the
Amazon: ANNF Database and Review. Frontiers in Ecology
and Evolution 9: 646702.
Espinosa, J., R. Estrada & L. P. Ruiz- Allais. 2023. Presencia en
Cuba de la especie marina invasora Unomia stolonifera (Go-
har, 1938) (Octocorallia, Alcyonacea). Acciones para su con-
trol y eliminación. Revista de Inestigaciones Marinas 43(1):
140–146.
Fernández-Yépez, A. 1970. Análisis ictiológico del Complejo Hi-
drográco (07) Río Unare. Boletín Técnico. Caracas: Minis-
terio de Agricultura y Cría, 29 pp.
Firmat, C., P. Alibert, M. Losseau, J. F. Baroiller & U. K. Schliew-
en. 2013. Successive invasion-mediated interspecic hybrid-
izations and population structure in the endangered cichlid
Oreochromis mossambicus. PLoS ONE 8(5): e63880.
Froese, R. & D. Pauly (eds.). 2023. FishBase. World Wide Web
electronic publication. www.shbase.org. (06/2023).
Gaspar R., Y. C. 2008. Diversidad íctica de la zona costera, in-
uenciada por el río Manzanares, Golfo de Cariaco, Venezuela.
Cumaná: Escuela de Ciencias, Universidad de Oriente, Vene-
zuela, 84 pp. [trabajo de grado].
Gómez, A. 1981. Estudio sobre las comunidades de peces en dos
localidades de la Laguna de La Restinga. Boletín del Instituto
Oceanográco de Venezuela 20 (1-2): 91–112.
González-Bencomo, E. & J. Borjas. 2003. Inventario de la ictio-
fauna de la ensenada La Palmita, estrecho del Lago de Mara-
caibo, Venezuela. Boletín del Centro Inestigaciones Biológicas
37(2): 83–159.
Gutiérrez, F. de P., C. A. Lasso & R. Álvarez-León. 2012. Oreo-
chromis mossambicus (Peters 1852). pp. 153–158. In: Gutié-
rrez, F. de P., C. A. Lasso, M. P. Baptiste, P. Sánchez-Duarte
& A. M. Díaz. (eds.). VI. Catálogo de la biodiversidad acuá-
tica exótica y trasplantada en Colombia: moluscos, crustáceos,
peces, anbios, reptiles y aves. Serie Editorial Recursos Hidro-
biológicos y Pesqueros Continentales de Colombia. Bogotá:
Instituto de Investigación de los Recursos Biológicos Alexan-
der von Humboldt (IAvH).
Heredia, B. 1983. Inentario de la Ictiofauna de la Laguna de
Patanemo, estado Carabobo, Venezuela. Caracas: Escuela de
Biología, Universidad Central de Venezuela, 212 pp. [trabajo
de grado].
Herrera, L. & G. Febres. 1975. Procesos de surgencia y renova-
ción de aguas en la Fosa de Cariaco, Mar Caribe. Boletín del
Instituto Oceanográco de Venezuela 14: 31–44.
Hulsman, H., R. Vonk, M. Aliabadian, A. O. Debrot & V. Nij-
man. 2008. Eect of introduced species and habitat altera-
tion on the occurrence and distribution of euryhaline shes
Oscar M. Lasso-Alcalá, J. A. Bello Pulido, E. Quintero-T., I. D. Mikolji & J. H. Peñuela
60
in fresh- and brackish-water habitats on Aruba, Bonaire and
Curaçao (South Caribbean). Contributions to Zoology 77 (1):
45–52.
Jiménez, M. 1977. Contribución al conocimiento de la biología
de Tilapia mossambica (Peters) en condiciones de laboratorio
y en la Laguna de Los Patos, Cumaná, Venezuela. Cumaná:
Universidad de Oriente, 63 pp. [trabajo de grado].
Jiménez-Ramos, E., V. Acosta-Balbas, L. Hernández & J. Fron-
tado. 2019. Registro malacológico del Sistema Lagunar Bo-
caripo, costa nororiental de Venezuela. Boletín del Centro de
Inestigaciones Biológicas 53(3): 250–272.
Joseph, L., R. B. Ryan, S. Mohammed & A. E. Deacon. 2022. An
assessment of sh assemblages in peripheral lotic habitats of
the Caroni Swamp, Trinidad. Caribbean Naturalist 85: 1–23.
Jory, D. E. 1988. Biology and community structure of the ichthyo-
fauna of La Restinga lagoon (Margarita Island, Venezuela).
Miami: University of Miami, 187 pp. [PhD thesis].
Khandker, N. 1964. Noticias. Lagena (3): 50–51.
Lamboj, A. 2004. e cichlid shes of Western Aica. Bornheim:
Birgit Schmettkamp Verlag, 255 pp.
Lara-Rodríguez, R., R. Velásquez-Arenas, L. Troccoli-Ghina-
glia, D. Hernandez & M. Lemus. 2015. Variación temporal
de las variables físico-químicas y biomasa toplanctónica en
aguas superciales de la zona costera de Chacopata, NE Ve-
nezuela (Mar Caribe). Revista de Biología Marina y Oceano-
grafía 50(2): 367–373.
Lasso, C. A. & A. Machado-Allison. 2000. Sinopsis de las especies
de peces de la familia Cichlidae presentes en la cuenca del río
Orinoco. Claves, diagnosis, aspectos bio-ecológicos e ilustracio-
nes. Serie Peces de Venezuela. Caracas: Universidad Central
de Venezuela, 150 pp.
Lasso, C., O. Lasso-Alcalá, C. Pombo & M. Smith. 2004. Ictio-
fauna de las aguas estuarinas del delta del río Orinoco (caños
Pedernales, Manamo, Manamito) y golfo de Paria (río Gua-
nipa): Diversidad, distribución, amenazas y criterios para su
conservación. pp. 70–84. In: Lasso, C., L. Alonso, G. Love &
A. Flores (eds.). A biological assessment and socio economical
aspects of the aquatic ecosystems of the Gulf of Paria and Orinoco
Delta, Venezuela. RAP Bulletin of Biological Assessment 37.
Lasso-Alcalá, O. 2003. Introducción de especies de peces en aguas
continentales de Venezuela: clasicación, inentario, distribu-
ción y estado actual de las Poblaciones. Programa Integrado
de Estudios de Postgrado en Zoología Agrícola, Facultad de
Agronomía, Universidad Central de Venezuela. Caracas, 68
pp. [seminario de grado].
Lasso-Alcalá, O., C. A. Lasso & J. Posada. 2008. Especies exóti-
cas en el Mar Caribe: introducción de Omobranchus puncta-
tus (Valenciennes, 1836) (Perciformes, Blennidae) en las
Costas de Venezuela. pp. 391–395. In: Proceedings of the Six-
ty First Annual Gulf and Caribbean Fisheries Institute. Gosier,
Guadaloupe.
Lasso-Alcalá, O. & J. Posada. 2010. Presence of the invasive red
lionsh, Pterois olitans (Linnaeus, 1758), in the coast of
Venezuela, southeastern Caribbean Sea. Aquatic Inasions
5(1): S53-S59.
Lasso-Alcalá, O., C. Lasso & M. Smith. 2005a. e rst record
of the naked gobi Gobiosoma bosc (Lacepède, 1800) (Pisces:
Gobiidae) from the north coast of South America. Revista de
Biología Tropical 53(1-2): 211.
Lasso-Alcalá, O., C. Lasso, F. Pezold & M. Smith. 2005b. e
mud sleeper Butis koilomatodon (Bleeker, 1879) (Pisces: El-
eotridae): rst record from the Western Central Atlantic. Re-
vista de Biología Tropical 53(1-2): 211.
Lasso-Alcalá, O., J. Nunes, C. Lasso, J. Posada, N. Piorski, R.
Robertson, J. Van Tassell, T. Giarrizzo & G. Gondolo. 2011.
Invasion of the Indo-Pacic blenny Omobranchus punctatus
(Perciformes, Blenniidae) on the Atlantic Coast of Central
and South America. Neotropical Ichthyology 9 (3): 571–578.
Lasso-Alcalá, O., G. Andrade de Pasquier, C. Hoyos & M. Her-
nández. 2014. Sobre la introducción de los pavones, Cichla
orinocensis y C. temensis (Perciformes, Cichlidae), en la cuen-
ca del Lago de Maracaibo, Venezuela. Anartia 26: 1–30.
Lasso-Alcalá, O., R. Robertson & E. uintero-T. 2019. La Da-
misela Real, Neopomacentrus cyanomos (Bleeker 1856): ¿un
nuevo invasor en las costas de Venezuela? pp. 186–187. Resú-
menes del XII Congreso Venezolano de Ecología. Caracas.
Lentino M. & A. R. Bruni. 1994. Humedales costeros de Venezue-
la: situación ambiental. Caracas: Sociedad Conservacionista
Audubon de Venezuela, 188 pp.
López-Rojas, H., C. Marcano & O. Brull. 1996. Los peces del
refugio Silvestre Cuare (Falcón) y zonas adyacentes. Acta Bio-
logica Venezuelica 16(2): 27–34.
López-Monroy, F. & L. Troccoli-Ghinaglia. 2014. Aproxima-
ción sobre la climatología de la Isla de Margarita y su impor-
tancia en los procesos oceánicos. Saber 26(4): 465–471.
Lowe S., M. Browne, S. Boudjelas & M. De Poorter. 2004. 100
de las especies exóticas inasoras más dañinas del mundo. Una
selección del Global Inasive Species Database. Auckland:
Grupo Especialista de Especies Invasoras (GEEI). Comisión
de Supervivencia de Especies (CSE). Unión Mundial para la
Naturaleza (UICN), 12 pp.
Luengo, J. A. 1963. La fauna ictiológica del Lago de Valencia
(Venezuela) y algunas consideraciones sobre las demás hoyas
del país y Trinidad. Acta Biologica Venezuelica 3: 319–338.
Luengo, J. 1970. Notas sobre los cichlidos de Venezuela (Pisces).
Lagena 25-26: 27–36.
Mago, F. 1965. Contribución a la sistemática y ecología de los
peces de la laguna de Unare, Venezuela. Bulletin of Marine
Science 15(2): 274–330.
Marín, G. 2000. Ictiofauna y pesca en la Laguna de Unare, Esta-
do Anzoátegui, Venezuela. Acta Biologica Venezuelica 20(3):
61–92.
Marín, G., E. Guevara, & L. V. Bastidas. 2003. Algunos compo-
nentes y aspectos ecológicos de la dieta de aves Ciconiiformes
en ecosistemas marino-costeros del estado Sucre, Venezuela.
Saber 15 (1-2): 99–105.
Meaño, C. 1986. Contribución al conocimiento de la comunidad
de peces en la costa sureste de la laguna de Chacopata, estado
Sucre, Venezuela. Cumaná, Venezuela. Cumaná: Universidad
de Oriente, 89 pp. [trabajo de grado].
Tilapia in hypersaline waters of Caribbean
61
Medina, E. & F. Barboza. 2006. Lagunas costeras del lago de
Maracaibo: distribución, estatus y perspectivas de conserva-
ción. Ecotrópicos 19(2): 128–139.
Miloslavich, P., E. Klein, A. Martín, C. Bastidas, B. Marín &
P. Spiniello. 2005. Ve n e zu el a . pp. 109–136. In: Miloslavich,
P. & E. Klein (eds.). Caribbean marine biodiversity: e
known and the unknown. Lancaster, PA: Destech Publica-
tions, Inc.
Miloslavich P. & E. Klein. 2008. Ecorregiones marinas del Ca-
ribe venezolano. pp. 16–19. In: Klein, E. (ed.). Prioridades
de PDVSA en la conservación de la biodiversidad en el Caribe
venezolano. Caracas: Petróleos de Venezuela, S. A. - Universi-
dad Simón Bolívar - e Nature Conservancy.
Mohammed, R. S. 2014. A safe haven for three freshwater in-
vasive alien species in Tobago, Trinidad and Tobago. Living
World, Journal of e Trinidad and Tobago Field Naturalists
Club 2014: 53–55.
Nirchio, M. & J. Pérez. 2002. Riesgos del cultivo de tilapias en
Venezuela. Interciencia 27 (1): 39–44.
Ojasti, J., E. González, E. Szeplaki & L. García. 2001. Informe
sobre las especies exóticas en Venezuela. Caracas: MARN-ON-
DB, 205 pp.
Oliveros, C. & L. Martínez. 1984. Notas sobre la ictiofauna de la
laguna de Bocaripo, estado Sucre. Acta Cientíca Venezolana
35 (1): 130.
Pérez, J., S. Salazar, C. Alfonsi & L. Ruíz. 2003. Ictiofauna del río
Manzanares: a cuatro décadas de la introducción de la tilapia
negra Oreochromis mossambicus (Pises: Cichlidae). Boletín
del Instituto Oceanográco de Venezuela 42 (1-2): 29–35.
Pérez M., G. Martínez & I. Fermín 2006a. Metales traza biodis-
ponibles en sedimentos superciales de las lagunas Bocaripo
y Chacopata, Península de Araya, estado Sucre. Boletín del
Instituto Oceanográco de Venezuela 45(2): 61–91.
Pérez J. E., M. Nirchio, C. Alfonsi & C. Muñoz. 2006b. e bi-
ology of invasions: the genetic adaptation paradox. Biological
Inasions 8: 1115–1121.
Pérez, M., L. Ruiz, A. Aponte & J. Bello. 2012. Ictiofauna de
la laguna Bocaripo, Península de Araya, estado Sucre, Vene-
zuela. Boletín del Instituto Oceanográco de Venezuela 51(2):
111–121.
Pezold, F. & B. Cage. 2002. A review of the spinycheek sleepers,
genus Eleotris (Teleostei: Eleotridae), of the western hemi-
sphere, with comparisons to the West African species. Tulane
Studies in Zoology and Botany 31(2): 19–63.
Philippart, J. & J. Ruwet. 1982. Ecology and distribution of
tilapias. pp. 15–59. In: Pullin, R. S. V. & R. H. Lowe-Mc-
Connell (eds.). e biology and culture of tilapias. ICLARM
Conference Proceedings.
Potter, I. C., B. M. Chuwen, S. D. Hoeksema & M. Elliott. 2010.
e concept of an estuary: A denition that incorporates sys-
tems which can become closed to the ocean and hypersaline.
Estuarine, Coastal and Shelf Science 87(3): 497–500.
Prieto, A., C. Tineo, L. Ruiz & N. García. 2009. Moluscos aso-
ciados a sustratos someros en la Laguna de Bocaripo, estado
Sucre, Venezuela. Boletín del Centro de Inestigaciones Bioló-
gicas 40(1): 1–15.
Pullin, R. 1988. Tilapia genetic resources for aquaculture.
ICLARM Conf. Proc. 16, 108 pp.
Pyšek, P., P. E. Hulme, D. Simberlo, S. Bacher, T. M. Blackburn,
J. T. Carlton, W. Dawson, F. Essl, L. C. Foxcro, P. Genovesi,
J. M. Jeschke, I. Kühn, A. M. Liebhold, N. E. Mandrak, L. A.
Meyerson, A. Pauchard, J. Pergl, H. E. Roy, H. Seebens, M.
Van Kleunen, M. Vilà, M. J. Wingeld & D. M. Richardson.
2020. Scientists’ warning on invasive alien species. Biological
Reviews 95: 1511–1534.
Ramírez, I & P. Roa. 1994. El caso de Venezuela. In: de La Lan-
za, G., J. J. Salaya & E. Varsi (eds.). Manejo y aproechamiento
acuícola de lagunas costeras en América Latina y el Caribe. Pro-
yecto GCP/RLA/102/ITA “Apoyo a Las Actividades Regio-
nales de Acuicultura en América Latina y el Caribe”-Aquila
II. Documento de campo N° 10. FAO, Roma. http://www.
fao.org/3/AB485S/AB485S06.htm visitada: 10/01/2021.
Ramírez, M. 1971. Notas sistemáticas y ecológicas de Cichla
ocellaris y Tilapia mossambica (Pisces, Cichlidae). Lagena 27-
28: 49–62.
Ramírez-Villarroel, P. 1993. Ecología y estructura de las comu-
nidades de peces de la Laguna de Punta de Piedras, Isla de
Margarita, Venezuela. Memoria de la Sociedad de Ciencias
Naturales La Salle 139: 23–46.
Ramírez-Villarroel, P. 1994a. Estructura de las comunidades de
peces en lagunas costeras de la isla de Margarita, Venezuela.
Anales del Instituto de Ciencias del Mar y Limnología 21(1-2):
23–42.
Ramírez-Villarroel, P. 1994b. Estructura de la comunidad de pe-
ces de la laguna de Punta de Mangle, Isla de Margarita, Vene-
zuela. Ecotropicos 7(1): 13–29.
Ramírez-Villarroel, P. 1996. Lagunas costeras venezolanas. Por-
lamar: Universidad de Oriente, Nueva Esparta. Editorial
Bema, 275 pp.
Raz-Guzmán, A., L. Huidobro & V. Padilla. 2018. An updated
checklist and characterisation of the ichthyofauna (Elasmo-
branchii and Actinopterygii) of the Laguna de Tamiahua,
Veracruz, Mexico. Acta Ichthyologica et Piscatoria 48 (4):
341–362.
Rodenas, R. & H. López-Rojas. 1993. Ictiofauna de la laguna de
Tacarigua: resultados preliminares. Acta Biologica Venezueli-
ca 14(2): 71–75.
Rodríguez, E., E. Ron, I. Mikolji, J. L. Fuentes & O. M. Lasso-
Alcalá. 2021. Invasive Mozambique tilapia (Oreochromis
mossambicus), dominates Southeastern Caribbean Sea island
estuary. Memoria de la Fundación La Salle de Ciencias Natu-
rales 188: 75–104.
Rojas, B., J. Muñoz & G. Marín. 2018. Dieta del águila pesca-
dora (Pandion haliaetus) en el complejo lagunar Chacopata-
Bocaripo, Península de Araya, Estado Sucre, Venezuela. Bole-
tín del Instituto Oceanográco de Venezuela 58(2): 122–129.
Ruíz L., S. Salazar, J. Pérez & C. Alfonsi. 2005. Diversidad íctica
del sistema hidrográco río Manzanares, estado Sucre, Vene-
Oscar M. Lasso-Alcalá, J. A. Bello Pulido, E. Quintero-T., I. D. Mikolji & J. H. Peñuela
62
zuela. Boletín del Centro de Inestigaciones Biológicas 29(2):
91–107.
Ruiz-Allais, J. P., Y. Benayahu & O. M. Lasso-Alcalá. 2021. e
invasive octocoral Unomia stolonifera (Alcyonacea, Xeni-
idae) is dominating the benthos in the Southeastern Carib-
bean Sea. Memoria de la Fundacion La Salle de Ciencias Na-
trurales 187: 63–80.
Senior, W., I. Fermín & F. J. Mata. 2004. Diagnóstico ambiental y
participación comunitaria para el control de la contaminación
del río Manzanares, estado Sucre, Venezuela. Informe Técnico
Final, Proyecto Embajada Británica-Caracas: Universidad de
Oriente, Fundación Río Manzanares, PNUMA, 89 pp.
Skelton, P. H. 1993. A complete guide to the eshwater shes of south-
ern Aica. Cape Town: Southern Book Publishers, 388 pp.
Solórzano, E., C. Marcano-Chirguita, A. Quijada & M. Cam-
po. 2001. Impacto ecosistémico de las tilapias introducidas
en Venezuela. pp: 194–199. In: Ojasti, J., E. González, E.
Szeplaki & L. García (eds.). Informe sobre las especies exóticas
en Venezuela. Caracas: MARN-ONDB.
Toledo, J., M. Lemus & K. S. Chung. 2000. Cobre, cadmio y
plomo en el pez Cyprinodon dearborni, sedimentos y agua
en dos lagunas de Venezuela. Revista de Biología Tropical 48:
225–231.
Trewavas, E. 1982. Tilapias: taxonomy and speciation. pp. 3–13.
In: Pullin R. S. V. & R. H. Lowe-McConnell (eds.). e biol-
ogy and culture of tilapias. ICLARM Conf. Proc. 7.
Tweedley, J. R., S. R. Dittmann, A. K. Whiteld, K. With-
ers, S. D. Hoeksema & I. C. Potter. 2019. Hypersalinity:
global distribution, causes, and present and future eects
on the biota of estuaries and lagoons. Coasts and Estuaries
523–546.
Valecillos I. 1993. Estructura ecológica de la comunidad de peces
del sistema costero Chacopata-Bocaripo, península de Araya,
estado Sucre Venezuela. Cumaná: Universidad de Oriente, 84
pp. [trabajo de grado].
Vitule, S. J. R. & V. Prodocimo. 2012. Introdução de espécies
não nativas e invasões biológicas. Estudos de Biologia 34(83):
225–237.
Vitule, S. J. R. & L. P. Pozenato. 2012. Homogeneização biótica:
Misturando organismos em um mundo pequeno e globaliza-
do. Estudos de Biologia 34(83): 239–245.
Weibezahn, F. H. 1949. Contribución al estudio de la fauna ic-
tiológica de la Laguna de Tacarigua. Memoria de la Sociedad
de Ciencias Naturales La Salle 28: 213–219.
Welcomme, R. 1988. International introductions of inland
aquatic species. FAO Fisheries Tecnical Papers 294. 318 pp.
Whiteld A. K. & S. J. M. Blaber. 1979. e distribution of the
freshwater cichlid Sarotherodon mossambicus in estuarine sys-
tems. Enironmental Biology of Fishes 4(1): 77–81.
Wilson, J. R., R. J. Saunders & K. S. Hutson. 2019. Parasites of
the invasive tilapia Oreochromis mossambicus: evidence for
co-introduction. Aquatic Inasions 14(2): 332–349.