© The Authors, 2026, Published by the Universidad del Zulia*Corresponding author: med.souddi@univ-adrar.edu.dz
Keywords:
Sorghum
Exogenously proline
Drought stress
SPAD
Root dry weight
Exogenous applied proline may enhance the tolerance of sweet sorghum (Sorghum bicolor (L.)

La aplicación exógena de prolina puede mejorar la tolerancia del sorgo dulce (Sorghum bicolor (L.)

A aplicação exógena de prolina pode aumentar a tolerância do sorgo doce (Sorghum bicolor (L.)


1
Orkun Babacan
1

1
Tülay Turgut Genç
2
Hüseyin Güngör
3*
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v43.n1.X
Crop production
Associate editor: Dr. Jorge Vilchez-Perozo
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Division of Veterinary Medicine, Kepsut Vocational School,

2
Department of Plant Molecular Genetics, Faculty of
Biology, Çanakkale Onsekiz Mart University, Çanakkale,
Turkey.
3
Field Crops, Faculty of Agriculture, Duzce University,
Duzce, Turkey.
Received: 14-11-2025
Accepted: 12-01-2026
Published: 27-01-2026
Abstract
Drought is a major abiotic stress that threatens global food
security by reducing crop yield and quality. Foliar application
         

of exogenous proline (P0, P200, P400, and P600 mg.L
-1
), sorghum
genotype, and their interaction on morphological, physiological,
       
drought levels (I100, I75, I50, and I25). Proline application

and enhanced root dry weight by 90 % at 75 % water reduction.
The strongest response occurred in chlorophyll content (SPAD),
     
reduced leaf drying by 25 % and alleviated drought-related declines
in forage quality, as evidenced by improvements in NDF, ADF,
and ADL. It also boosted peroxidase activity more than superoxide
      
toxicity and oxidative stress. Even under extreme drought (I25),

by 25 - 40 % at the seedling stage. Compared with the control, leaf
chlorophyll content (SPAD values) decreased by 13.91 %, 24.28 %,
and 31.85 % under the I75, I50, and I25 treatments, respectively,
suggesting that SPAD measurements at the seedling stage may
        
drought-tolerant sorghum genotypes.
.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310 January-March ISSN 2477-9410.
2-7 |
Resumen
         
seguridad alimentaria mundial al reducir el rendimiento y la calidad
de los cultivos. La aplicación foliar de osmoprotectores como la
prolina ofrece un medio prometedor para mitigar el daño inducido

(P0, P200, P400 y P600 mg.L
-1
), el genotipo de sorgo y su interacción
      

I50 e I25). La aplicación de prolina incrementó la materia seca en
            



redujo el secado foliar en un 25 % y alivió las disminuciones de la

mejoras en NDF, ADF y ADL. También incrementó la actividad de
la peroxidasa en mayor medida que la superóxido dismutasa y la

    
       
agua en un 25 - 40 % en la etapa de plántula. En comparación con el

un 13.91 %, 24.28 % y 31.85 % bajo los tratamientos I75, I50 e I25,
respectivamente, lo que sugiere que las mediciones SPAD en la etapa
de plántula pueden servir como un indicador práctico y rentable para

Palabras clave

Resumo
A seca é um importante estresse abiótico que ameaça a segurança
alimentar global ao reduzir o rendimento e a qualidade das culturas. A
aplicação foliar de osmoprotetores, como a prolina, oferece um meio
promissor para mitigar os danos induzidos pela seca. Este estudo
examinou os efeitos da prolina exógena (P0, P200, P400 e P600
mg.L
-1

     
    
A aplicação de prolina aumentou a matéria seca em mais de 100 %

com uma redução de 75 % da água. A resposta mais intensa ocorreu
       
fotossintética. A prolina exógena reduziu o ressecamento foliar em

seca, conforme evidenciado pelas melhorias em NDF, ADF e ADL.
Também aumentou a atividade da peroxidase em maior grau do que
a superóxido dismutase e a catalase, minimizando a toxicidade do
         
seca extrema (I25), a prolina manteve o vigor das plantas e melhorou


SPAD) diminuiu em 13.91 %, 24.28 % e 31.85 % sob os tratamentos
I75, I50 e I25, respectivamente, sugerindo que as medições SPAD na
fase de plântula podem servir como um indicador prático e de baixo

Palavras-chave      

Introduction
        
to global agriculture by impairing plant growth, water status, and
et al., 2019). It disrupts key physiological and
biochemical processes, reducing carbon assimilation and chlorophyll

(Zahra et al
electrolyte leakage, enhanced respiration, and overproduction of

-
), hydroxyl
        
coordinated antioxidant defense system, comprising enzymatic
(SOD, POD, CAT, APX) and non-enzymatic antioxidants, to maintain
cellular redox homeostasis (Mittler et al
system varies by species and drought intensity (Sher et al., 2023).
Rising drought frequency has renewed interest in tolerant crops.
Maize (Zea mays L.), though the world’s second most cultivated
cereal, is highly water-sensitive and unsuitable for marginal lands.
Consequently, attention has turned to alternative crops with potential
for both forage and bioethanol production. Among these, Sorghum
(Sorghum bicolor (L.) Moench) is notable for its drought tolerance
and adaptability to semi-arid regions (George et al., 2022).
In order to alleviate drought impacts, strategies such as breeding,
        
have been explored (Nguyen et al., 2018). Proline supports osmotic
adjustment, water uptake, and turgor maintenance (Trovato et al.,
2019), enhancing physiological traits such as relative water content
and chlorophyll stability (Hayat et al., 2012). Although sorghum is
considered drought-tolerant, the role of exogenous proline remains
underexplored. Drought increases Neutral Detergent Fiber (NDF),
Acid Detergent Fiber (ADF), and Acid Detergent Lignin (ADL),
reducing forage quality, whereas exogenous proline may enhance
digestibility and dry matter yield (Yahaya et al., 2021).
The following aims are investigated herein: i) To evaluate the
extent to which exogenously applied proline improves drought
tolerance in sorghum. ii) To determine water savings during the
seedling stage of the sorghum. iii) To detect the morphological,
physiological, biochemical, feed quality, and enterobacteria responses
of sorghum under drought stress treatments and foliar application of
proline.
Materials and Methods
Plant material and growth conditions
       
sorghum genotype (Sorghum bicolor (L.) Moench). Plants were grown
in a controlled growth chamber with temperatures of 20/25 °C (night/
day), and 65 % relative humidity. The physicochemical properties
of the potting soil are presented in Table 1. Before sowing, basal
fertilization consisting of 800 mg.kg
-1
of P
2
O
5
and 1000 mg.kg
-1
of
K
2
O was homogenously incorporated into soil. Additionally, 1,600
mg.kg
-1
of N was applied in split doses at the V2, V4, and V6 growth
stages which correspond to the appearance of two, four, and six
leaves with visible collars, respectively (Kordas et al., 2024). After
germination, three seedlings were retained per pot. The experiment
followed a completely randomized design with three replications.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Taş et al. Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310
3-7 |
Variance analysis was conducted to determine the degrees of
freedom and F-values. Treatment means were compared using the
  
0.05.
Results and discussion
Analysis of variance
According to variance analysis, drought and proline treatments

quality, antioxidant, oxidative stress, and Enterobacteriaceae traits in




Degrees of freedom and F-values for these traits are presented in
Table 2.
Plant growth traits
Compared to full irrigation, biomass decreased by 20.29 %, 26.20
%, and 47.64 % under I75, I50, and I25 drought levels, respectively.
Exogenous proline markedly enhanced dry matter (DM), increasing
by 23.72 %, 66.67 %, and 115.07 % with P200, P400, and P600
compared to P0. Under combined treatments, DM rose by 90.66
% - 139.84 % with P600 across irrigation levels, indicating greater
drought tolerance at higher proline doses. Root length (RL) increased
under moderate drought (I75: +9.15 %, I50: +20.89 %) but decreased
under severe drought (I25: -35.81 %). Proline applications raised
RL up to 9.20%, and under combined treatments, by 8.18 % - 10.58
%. Root dry weight (RDW) declined by 15.16 % - 45.30 % under
drought but rose by 21.38 % - 94.78 % with proline, reaching 83.65
% - 115.28 % increases in combined treatments (Table 3).

to limited water uptake and inhibited photosynthesis. Foliar-applied
proline improved DM by enhancing osmotic regulation, reducing
water loss, and sustaining metabolism under stress, consistent with
et al., 2022). Root growth declined
under severe drought but was restored by proline, which stimulated
elongation and metabolic activity (Khan et al., 2025). Proline may
also regulate abscisic acid and antioxidant responses, maintaining
osmotic balance. Increased root dry weight (RDW) under proline
treatments, especially in moderate drought, aligns with previous
studies (Shah et al., 2020; Cheng et al., 2021), likely due to improved
water retention and chlorophyll stability.
Physiological traits
Relative water content (RWC) decreased by 10.49 %, 20.13 %,
and 37.91 % under mild (I75), moderate (I50), and severe (I25)
drought treatments, respectively, compared to full irrigation (I100).

Compared to the no-proline treatment (P0), RWC increased by 15.42
%, 20.29 %, and 27.56 % with P200, P400, and P600, respectively.
Compared to the control combinations (I100×P0, I75×P0, I50×P0,
I25×P0), RWC increased by 29.24 %, 31.77 %, 21.22 %, and
Drought stress treatments
Drought stress was applied using the gravimetric method.

gradually irrigated until drainage occurred. After a 4 h drainage
period, pot weights were recorded to determine the soil water-holding
capacity (WHC). Pots were weighed every two days, and irrigation
was adjusted by replenishing the lost water to maintain the target
irrigation levels corresponding to 100 %, 75 %, 50 %, and 25 % of
WHC. Four irrigation levels were applied: I100 (full, Irrigation100),
I75 (upper medium stress), I50 (medium stress), and I25 (severe
stress), corresponding to 100 %, 75 %, 50 %, and 25 % of WHC
(Water Holding Capacity) (Li et al., 2024).
Foliar application of prolin
           
calibrated sprayer, with solutions prepared in distilled water and
applied until uniform leaf wetting was achieved. To enhance leaf
wetting and adhesion, 0.1% Tween-20 was used as a surfactant.
Proline was applied at concentrations of 0 (control), 200, 400, and
600 mg.L
-1
at the V2, V4, V6, and V8 growth stages. Control plants
received distilled water only (Noein & Soleymani, 2022).
Plant growth parameters
The experiment was concluded 50 days after seed germination.
Measurements were then taken for Root length (RL, cm) and Root
dry weight (RDW, g.plant
-1
) (Kalhoro et al., 2018). Dry matter (DM,
%) was determined according to Mi et al., (2018).
Physiological measurements
Leaf chlorophyll content (SPAD) was measured at the V8 stage
using a portable chlorophyll meter on six points of a fully expanded
leaf (Zhang et al., 2022). Leaf drying degree (LDD, 1 - 10) was
evaluated from four directions using the UPOV scale, 0 = no drying
and 10 = completely dry (Bänziger et al., 2000). Relative Water
Content (RWC, %) was calculated using the formula described by
Smart & Bingham (1974).
Forage quality determination
     

analyzer following the method of Van Soest et al. (1991).
Determination of oxidant and antioxidant activities
At the V8 stage, healthy sorghum leaves below the topmost leaf
were collected under control and stress conditions, frozen in liquid
nitrogen, and stored at -86 °C until analysis. Antioxidant enzyme
(Superoxide Dismutase (SOD, U.g
-1
FW), Peroxidase (POD, U.g
-1
FW),
Catalase (CAT, U.g
-1
FW) and Hydrogen peroxide (H
2
O
2
, nmol.g
-1
FW) were determined following the methods of Velikova et al.
(2000), and Jack et al. (2019).
Detection of enterobacteriaceae in feed
Enterobacteriaceae in feed samples was analyzed according to
ISO 21528-2 (ISO, 2018).
Statistical analysis
Statistical analysis was performed using JMP software (JMP
Version 13.2.0; SAS Institute, Cary, NC, USA). A two-way factorial
analysis of variance (ANOVA) was applied to evaluate the main

on all measured parameters.
Table 1. Physical and chemical properties of the pot soil.
EC pH

matter
Sand Clay  P K Cu Mn Fe Zn
(dS.m
-1
) (%) (mg.kg
-1
)
0.94 7.65 1.02 35.82 18.96 45.22 55.40 2110 1.31 3.55 4.18 1.22
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310 January-March ISSN 2477-9410.
4-7 |
27.64 % under I100×P600, I75×P600, I50×P600, and I25×P600,
respectively. Leaf chlorophyll content (LCC, SPAD value) decreased
by 13.91 %, 24.28 %, and 31.85 % under I75, I50, and I25 treatments,
respectively, compared to the control. Proline application increased
           

proline against drought was clearly visible. Compared to the control
combinations, LCC increased by 78.02 %, 95.46 %, 90.51 %, and
112.58 % under I100×P600, I75×P600, I50×P600, and I25×P600,
respectively. Under control and mild drought (I75) conditions, leaf
desiccation was minimal and statistically similar. However, under I50
and I25, about 25 % and 40 % of the leaves showed drying symptoms.
Proline application reduced leaf desiccation by 23.33 %, 33.33 %,
and 46.67 % with P200, P400, and P600, respectively, compared to
P0 (Table 3). Severe drought led to the greatest water loss and reduced
relative water content (RWC), while proline application improved
RWC by enhancing osmotic adjustment. Increased antioxidant
activity (SOD, CAT) further supported drought tolerance. Drought
decreased leaf chlorophyll content (LCC), but proline maintained
higher levels, likely by alleviating oxidative stress and sustaining
photosynthesis (Ibrahim et al., 2022). Leaf drying remained below
20 % across treatments, indicating high tolerance. Proline preserved
turgor, cell structure, and green leaf area, consistent with previous
studies (Ali et al., 2022).
Feed quality variations
Compared to full irrigation, NDF, ADF, and ADL increased by up
to 70.59 %, 63.35 %, and 56.93 % under severe drought, respectively.
Proline application (P200, P400, P600) reduced NDF by 9.92 - 41.30
%, ADF by 22.74 - 54.83 %, and ADL by 4.61 - 12.85 % compared
to the control (P0). In interactions, compared to respective controls
(I100 × P0, I75 × P0, I50 × P0, I25 × P0), P600 (I100 × P600, I75 ×
P600, I50 × P600, I25 × P600) decreased NDF by 45.49 - 38.28 %,
ADF by 59.93 - 52.18 %, and ADL by 11.23 - 16.46 %. These results
indicate that proline consistently alleviated drought-induced increases
in cell wall components across all irrigation levels (Table 4). As

as sorghum strengthened cell walls to limit water loss. Proline likely
supported this by enhancing antioxidant defense and maintaining
water balance. The I × P interaction showed proline improved
forage quality by regulating cell wall composition, especially under
et al. (2018) and
Ferreira et al. (2021).
Enzymatic antioxidants and oxidant activity
Compared to full irrigation, SOD activity increased by 4.68 %,
7.77 %, and 13.77 % under mild, moderate, and severe drought,
respectively. Proline treatments (P200, P400, P600) further enhanced
SOD by 2.64 %, 4.55 %, and 7.67 % relative to P0. Combined
treatments increased SOD by 5 - 10 % depending on drought intensity.
POD activity rose sharply by 19.31 %, 33.30 %, and 50.44 % with
increasing drought severity, while proline application enhanced POD
by 33.69 %, 78.05 %, and 125.73 %. Under combined treatments,
POD increased by 97 - 152 %, indicating strong synergy between
drought stress and proline response. CAT activity increased by 20.45
%, 51.15 %, and 75.59 % under mild to severe drought and was
further stimulated by 22.82 %, 46.69 %, and 71.66 % with increasing
proline doses. Combined treatments (I×P600) enhanced CAT by 68 -

and 80.93 % with drought but decreased by 14.46 %, 39.65 %, and
48.78 % following proline treatment.

the ROS-scavenging role of exogenous proline. Drought stress
      
their activity, reducing oxidative damage. POD showed the greatest

wall stability. CAT and SOD together maintained redox equilibrium
      
mitigated oxidative stress by enhancing the enzymatic antioxidant
defense system (Abdou et al., 2022).
Table 2. F values and degrees of freedom of the investigated traits in experiment.
SV DF
F
values
DM RL RDW RWC LCC LDD NDF
R 2 1.07 61.12 0.10 8.02 1.06 0.23 2.58
I 3 163.11
**
1038.82
**
55.82
**
977.61
**
75.91
**
140.21
**
528.60
**
P 3 264.75
**
150.15
**
222.50
**
187.54
**
282.60
**
23.28
**
274.05
**
I*P 9 3.11
*
5.55
**
2.86
*
6.16
**
2.84
**
3.57
**
3.17
*
Error 6
CV ( %) 7.11 1.07 6.70 2.54 5.29 18.91 4.65
SV DF F
values
ADF ADL SOD POD CAT H2O2 EBC
R 2 3.79 45.25 2.58 0.82 0.99 0.37 1.24
I 3 142.00
**
69.75
**
206.34
**
148.17
**
1946.15
**
720.53
**
323.53**
P 3 336.75
**
170.94
**
69.94
**
948.23
**
1829.94
**
658.10
**
71.40**
I*P 9 2.81
*
2.87
*
4.10
**
2.73
*
33.52
**
35.01
**
21.86
ns
Error 6
CV ( %) 6.33 1.57 1.28 3.83 1.84 4.08 28.94

DM: dry matter (%), RL: root length (cm), RDW: root dry weight (g.plant
–1
), RWC: relative water content (%), LCC: leaf chlorophyll content (SPAD), LDD: leaf drying degree (1-10), NDF:

-1
FW), POD: Peroxidase (U.g
-1
FW), CAT: catalase (U.g
-1
FW), H2O2:
hydrogen peroxide (nmol.g
-1
FW), EBC: Enterobacteriaceae counts (cfu.m
-1
)
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Taş et al. Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310
5-7 |
Table 4. Forage characteristics of 8-leaf seedlings in vitro under
drought stress and proline applications.
Stress type P

NDF ( %) ADF ( %) ADL ( %)
I100
0 33.48±0.56
fg
23.51±0.74
de
2.66±0.36
j
200 29.22±1.61

15.81±1.02
g
2.56±0.35
k
400 23.04±0.89
j
13.15±0.57
h
2.41±0.35
l
600 18.25±0.90
k
9.42±0.34
2.35±0.37
l
I75
0 38.69±0.71
e
27.81±0.58
c
3.16±0.20
g
200 34.25±1.26
f
22.33±1.26
ef
2.93±0.26
h
400 28.56±0.83
16.41±0.77
g
2.79±0.25
600 22.42±0.58
j
12.45±0.48
h
2.64±0.24
jk
I50
0 45.59±0.71
c
32.37±0.60
b
3.65±0.21
d
200 41.15±0.99
de
25.48±1.26
d
3.52±0.21
e
400 33.08±1.03
fg
20.44±0.50
f
3.38±0.18
f
600 28.14±0.90
15.48±0.55
g
3.24±0.18
g
I25
0 53.04±0.22
a
35.55±0.63
a
4.20±0.21
a
200 49.22±1.11
b
28.51±1.27
c
4.02±0.23
b
400 43.70±0.77
cd
20.53±1.03
f
3.77±0.23
c
600 31.44±0.42
gh
16.51±0.61
g
3.68±0.23
d
Mean
34.58 20.98 3.18
LSD I= 1.17
**
I= 1.25
**
I= 0.25
**
P= 1.33
**
P= 1.12
**
P= 0.04
**
I*P= 2.70
*
I*P= 2.22
*
I*P= 0.08
*

-1
,
200 mg.L
-1
, 400 mg.L
-1
, 600 mg.L
-1
), I100: Full Irrigation, I75: Upper Medium, I50: Medium,

detergent lignin (%).
Enterobacteriaceae density in feed
Among all bacterial counts, 67.87 % were observed under full
irrigation, while the least bacterial growth, 0.19 %, occurred under
severe drought conditions. Bacterial growth under upper medium and
medium treatments was 30.11 % and 1.83 %, respectively. The highest
proportion of total Enterobacteriaceae presence was observed under
the P0 treatment, accounting for 48.52 %, followed by P200 with 28.52
%. Bacterial counts under P400 and P600 were 12.81 % and 10.14 %,
respectively (Figure 1).
Drought stress lowered Enterobacteriaceae density, while higher
irrigation favored their proliferation. Proline treatment further reduced
microbial density, contributing to improved forage quality. Similar
pattern has been reported in silage study (Blessington et al., 2014).
Conclusions
Sorghum shows strong adaptability to heat and drought, yet
        
        
accumulation, root growth, and chlorophyll (SPAD) content, thus
      
delays senescence, and improves forage quality by reducing ADF
levels. Antioxidant enzyme activity rises under drought and is
further boosted by proline, strengthening oxidative defense. Drought
decreases Enterobacteriaceae populations, while higher proline doses
(P400, P600) reduce them by about 10 %, supporting a healthier
phyllosphere. Even under severe drought (I25), proline-treated plants
retain vigor, turgor, and upright growth. Proline application at the

a practical means to enhance drought resilience. Early-stage SPAD
readings provide reliable, low-cost indicators for identifying drought-
tolerant sorghum genotypes in breeding programs.
Table 3. Agronomic and physiological responses of sorghum genotype to drought stress and proline applications.
Stress type P
 
DM ( %) RL (cm) RDW (g.plant
–1
) RWC ( %) LCC (SPAD) LDD (1-10)
I100
0 11.45±0.16
fg
52.81±1.54
j
13.33±0.55
e
71.10±0.65
e
25.70±0.62
0.33±0.33
fg
200 13.06±0.33
de
55.11±1.51
16.38±0.68
d
85.81±0.98
b
39.48±0.75
b
0.00±0.00
g
400 17.40±0.33
bc
56.30±1.71
h
19.67±0.59
bc
89.22±1.07
a
43.87±0.60
a
0.00±0.00
g
600 21.83±0.78
a
57.68±2.21
g
24.48±0.65
a
91.89±1.89
a
45.75±0.69
a
0.00±0.00
g
I75
0 7.73±0.10
57.96±2.03
g
10.88±0.46
f
63.89±0.77
gh
22.45±0.36
j
0.67±0.33
f
200 10.35±0.35
gh
59.61±2.30
f
13.44±0.64
e
75.26±1.04
d
30.71±1.18
fg
0.33±0.33
fg
400 14.17±0.18
d
61.93±2.22
e
17.08±0.76
d
79.22±1.39
c
36.24±3.22
cd
0.00±0.00
g
600 18.54±0.20
b
62.70±1.87
de
21.26±0.91
b
84.19±1.16
b
43.88±0.61
a
0.00±0.00
g
I50
0 7.70±0.48
63.70±1.59
d
8.77±0.39
gh
61.59±0.66
h
19.81±0.64
j
3.33±0.33
c
200 9.47±0.45
h
65.66±1.43
c
10.39±0.35
fg
65.67±1.92
fg
27.73±0.58

3.00±0.00
cd
400 12.88±1.33
def
68.45±1.20
b
14.15±0.77
e
68.04±1.83
f
31.93±0.26
ef
2.67±0.33
d
600 16.98±0.38
c
70.44±1.03
a
18.88±0.55
c
74.66±0.65
d
37.74±0.70
bc
2.00±0.00
e
I25
0 5.32±0.25
j
33.59±1.57
l
7.07±0.55
45.26±1.08
k
16.29±0.63
k
5.67±0.33
a
200 6.95±0.23
35.74±1.62
k
8.40±0.52

52.41±0.58
j
25.77±1.06
4.33±0.33
b
400 9.21±0.12
h
36.74±1.76
k
11.55±0.76
f
54.45±0.62
j
28.80±0.68
gh
4.00±0.00
b
600 11.89±0.67
ef
36.36±1.13
k
13.38±0.83
e
57.77±0.51
34.63±0.52
de
3.33±0.33
c
Mean
12.18 54.67 14.32 70.03 31.92 1.85
LSD I= 0.84
**
I= 1.43
**
I= 1.65
**
I= 1.49
**
I= 2.09
**
I= 0.58
**
P= 0.72
**
P= 0.49
**
P= 0.80
**
P= 1.50
**
P= 1.42
**
P= 0.28
**
I*P= 1.45
*
I*P= 0.98
**
I*P= 1.62
*
I*P= 2.99
**
I*P= 2.84
**
I*P= 0.57
**
*,** 
(cm), RDW: root dry weight (g.plant
–1
), RWC: relative water content (%), LCC: leaf chlorophyll content (SPAD), LDD: leaf drying degree (1 - 10).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310 January-March ISSN 2477-9410.
6-7 |
Table 5. Biochemical reactions in sorghum genotype leaves subjected to drought stress and proline treatments.
Stress type P

SOD (U.g
-1
FW) POD (U.g
-1
FW) CAT (U.g
-1
FW) H2O2 (nmol.g
-1
FW)
I100
0 486.54±2.75
k
17.46±0.49
k
290.48±6.44
l
211.29±5.78
fg
200 518.15±3.53
j
23.92±0.22
311.38±5.97
k
191.15±5.03
h
400 526.14±3.81

33.97±0.76
g
390.63±5.45

135.63±3.00
jk
600 532.66±5.13

44.07±0.49
e
491.24±5.50
f
123.51±2.65
k
I75
0 522.52±6.19

20.89±0.41
j
331.28±5.56
j
262.57±4.50
e
200 536.92±3.08
fgh
30.73±2.24
h
414.42±3.92
h
199.02±5.64
gh
400 545.10±3.60
ef
39.58±0.59
f
482.38±5.12
fg
172.70±4.64
600 555.49±4.98
de
51.28±0.55
c
559.05±7.70
d
143.20±4.28
j
I50
0 544.06±4.20
efg
24.41±0.39
405.75±2.98

340.82±6.46
c
200 545.71±3.23
ef
33.96±0.87
g
513.05±4.62
e
310.87±5.12
d
400 561.05±3.46
d
45.69±0.48
e
612.67±6.79
c
213.59±3.66
fg
600 573.07±4.37
bc
55.12±0.86
b
711.23±5.98
b
172.91±7.01
I25
0 566.92±3.62
cd
31.48±0.62
h
472.70±4.63
g
421.99±4.16
a
200 575.18±4.34
bc
37.36±0.91
f
603.78±4.99
c
356.85±3.10
b
400 584.18±4.56
b
48.55±1.48
d
714.95±4.73
b
224.37±5.51
f
600 621.41±6.30
a
62.25±0.60
a
813.77±5.26
a
193.81±8.23
h
Mean
549.69 37.55 507.42 229.64
LSD I= 7.15
**
I= 1.80
**
I= 9.66
**
I= 7.82
**
P= 5.96
**
P= 1.21
**
P= 7.87
**
P= 7.88
**
I*P= 11.92
**
I*P= 2.43
*
I*P= 15.75
**
I*P= 15.77
**

-1
FW), POD: Peroxidase (U.g
-1
FW), CAT: catalase (U.g
-1
FW), H2O2: hydrogen peroxide (nmol.g
-1
FW).

-1
), P400 (400 mg.L
-1
) and P600 (600 mg.L
-1
)
and drought stress treatments (a1) (Control (I100, full irrigation), Upper medium (I75), Medium (I50) and Severe stress (I25)
applied to sorghum up to V8 stage.
Literature cited
Abdou, N.M., El-Saadony, F. M.A., Roby, M. H.H., Mahdy, H. A.A., El-
        
       


    , 29(11), 8074-8085. http:// 
org/10.1016/j.sjbs.2022.02.033


        
, 29, 30967-30985. https://

    

pp.68. http://hdl.handle.net/10883/765
            
        
      , 77(9), 1462-1470.


          
      Water, 13, 148.
http:// 


       , 279,
115027. 
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Taş et al. Rev. Fac. Agron. (LUZ). 2026, 43(1): e264310
7-7 |



, 151, 960-969. 


, 7


       

, 13, 897027. http:// 





sample mass.    , 7(1), e01210. http:// 
org/10.1002/aps3.1210
Kale, H., Kaplan, M., Ulger, I., Unlukara, A., & Akar, T. (2018). Feed value of
corn (Zea 
, 23(1),
56-61. http:// 

         
         
     , 15. https:// 
org/10.1007v/s11355-018-0363-0

, 14, 41. 

Kordas, L., Lejman, A., Kuc, P., Szlachta, J., Fugol, M., & Prask, H. (2024). The

, 33(2),
1215-1223. http:// 
Li, H., Liu, Y., Zhen, B., Lv, M., Zhou, X., Yong, B., Niu, Q., & Yang, S. (2024).

function. , 13(7), 957. https://doi.org/10.3390/plants13070957

(2019). Metabolic response to drought in six winter wheat genotypes.
, https://doi.org/10. 1371/ journal.pone.0212411

responses of corn yield to drought at vegetative and reproductive
stages.    , 64(6), 260-267. https://doi.
org/10.17221/141/2018-PSE
Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive
oxygen species signalling in plant stress responses.  
  , 23, 663-679. https://doi.org/10.1038/s41580-
022-00499-2
            

    , 164, 452-466.
http:// 
    mays  

 , 41, 672-681. 
10332-3
   
       
       
, 261, 127728. http:// 
chemosphere.2020.127728


       
       
Ecology 107, 104620. 

, 53(2), 258-260. 


     (pp.41-72).  

     

, 74, 3583-3597. 
org/10.3168/jds.S0022-0302(91)78551-2
           
        
    , 151(1), 59-66. 
org/10.1016/S0168-9452(99)00197-1
Yahaya, M. A., & Shimelis, H., (2021). Drought stress in sorghum: Mitigation
strategies, breeding methods and technologies. 
, 208, 127-142. https://doi.org/10.1111/jac.12573
Zahra, N., Hafeez, M. B., Kausar, A., Alzeidi, M., Asekova, S., Siddique, K. H.
M., & Farooq, M. (2023). Plant photosynthetic responses under drought
,
209, 651-672. https://doi.org/10.1111/jac.12652
Zhang, R., Yang, P., Liu, S.,Wang, C., & Liu, J. (2022). Evaluation of the methods
for estimating leaf chlorophyll content with SPAD Chlorophyll Meters.
, 14, 5144. https://doi.org/10.3390/rs14205144