© The Authors, 2026, Published by the Universidad del Zulia*Corresponding author: avalverde@unheval.edu.pe
Keywords:
Chili peppers
Ecacy
Bioinsecticides
Infestation
Yield
Capsaicin in the control of Spodoptera frugiperda in corn (Zea mays L.) var. Blanco Urubamba
Capsaicina en el control de Spodoptera frugiperda en maíz (Zea mays L.) var. Blanco Urubamba
Capsaicina no controle de Spodoptera frugiperda em milho (Zea mays L.) var. Blanco Urubamba
Hecar Herrera Marchino
1
Agustina Valverde-Rodríguez
1
*
Manuel Jorge Castillo Nole
2
Laura Carmen Barrionuevo Torres
2
Luisa Madolyn Alvarez-Benaute
4
Miltao Edelio Campos-Albornoz
2
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264302
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v43.n1.II
Crop production
Associate editor: Dra. Evelyn Pérez Pérez
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Facultad de Ciencias Agrarias, Universidad Nacional
Hermilio Valdizan, Huánuco, Perú.
2
Facultad de Ciencias Agrarias, Universidad Nacional Daniel
Alcides Carrión, Cerro de Pasco, Perú.
3
Facultad de Ciencias de la Educación, Carrera Profesional
de Biología y química, Universidad Nacional Hermilio
Valdizan, Huánuco, Perú.
4
Facultad de Ciencias Agrarias, Universidad Nacional
Hermilio Valdizan, Huánuco, Perú.
Received: 08-05-2025
Accepted: 28-10-2025
Published: 26-12-2025
Abstract
Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) causes
severe losses in corn (Zea mays L.) crops, which leads to the
evaluation of sustainable management alternatives. The objective
of this research was to determine the ecacy of capsaicin in
controlling S. frugiperda in the corn Blanco Urubamba var. A
randomized complete block design with six treatments and three
replicates was used: four concentrations of water-soluble capsaicin
(6.70; 10.05; 13.40 and 16.75 mL.L
-
¹), rocoto pepper extract
(Capsicum pubescens Ruiz & Pav. (Solanaceae), 50 g.L
-
¹), and an
absolute control. Applications were made at 80, 90, 100, 110, and
120 days after sowing (das). The 16.75 mL.L
-
¹ dose was the most
eective, reducing larval density from 3.12 to 0.13 larvae per plant,
and the infestation percentage from 61.12 to 2.78 %, with a control
ecacy of 96.69 %. Intermediate concentrations (13.40 and 10.05
mL.L
-1
) also showed signicant eects, with nal ecacies of
93.83 and 85.19 %, respectively. T1 had moderate ecacy (78.30
%), while T5 recorded the lowest control values (72.86 %), with
increasing infestations being observed in the control. In terms
of yield, T4 (16.75 mL.L
-
¹) produced ears of 16.77 cm in length
and 385.13 g in average weight, reaching a yield of 17.12 t.ha
-
¹
compared to 9.54 t.ha
-
¹ for the control. In conclusion, water-soluble
capsaicin, especially at 16.75 mL.L
-
¹, proved to be an eective and
sustainable alternative for the management of S. frugiperda in corn.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264302 January-March. ISSN 2477-9409.
2-6 |
Resumen
Spodoptera frugiperda Smith (Lepidoptera: Noctuidae)
ocasiona severas pérdidas en el cultivo de maíz (Zea mays L.), esto
conlleva a evaluar alternativas sostenibles de manejo. El objetivo
de la investigación fue determinar la ecacia de la capsaicina en el
control de S. frugiperda en maíz var. Blanco Urubamba. Se utilizó
un diseño de bloques completamente al azar con seis tratamientos y
tres repeticiones: cuatro concentraciones de capsaicina hidrosoluble
(6,70; 10,05; 13,40 y 16,75 mL.L
-1
), extracto de rocoto (Capsicum
pubescens Ruiz & Pav. (Solanaceae), 50 g.L
-1
) y un testigo absoluto.
Las aplicaciones se realizaron a los 80, 90, 100, 110 y 120 días
después de la siembra (dds). La dosis de 16,75 mL.L
-1
fue la más
efectiva, reduciendo la densidad larvaria de 3,12 a 0,13 larvas por
planta, el porcentaje de infestación de 61,12 a 2,78 % con una
ecacia de control de 96,69 %. Las concentraciones intermedias
(13,40 y 10,05 mL.L
-1
) también mostraron efectos signicativos,
con ecacias nales de 93,83 y 85,19 %, respectivamente. T1 tuvo
ecacia moderada (78,30 %), mientras que T5 registró los menores
valores de control (72,86 %), observándose infestaciones crecientes
en el testigo. En rendimiento, T4 (16,75 mL.L
-1
) produjo mazorcas
de 16,77 cm de longitud y 385,13 g de peso promedio, alcanzando
un rendimiento de 17,12 t.ha
-1
frente a 9,54 t.ha
-1
del testigo. En
conclusión, la capsaicina hidrosoluble, especialmente a 16,75 mL.L
-1
,
demostró ser una alternativa ecaz y sostenible para el manejo de S.
frugiperda en maíz.
Palabras clave: ajíes, ecacia, bioinsecticidas, infestación,
rendimiento
Resumo
Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) causa
perdas severas em culturas de milho (Zea mays L.), o que leva
à avaliação de alternativas de manejo sustentável. O objetivo
desta pesquisa foi determinar a ecácia da capsaicina no controle
de S. frugiperda em milho Blanco Urubamba var. Utilizou-se o
delineamento em blocos casualizados com seis tratamentos e três
repetições: quatro concentrações de capsaicina solúvel em água (6,70;
10,05; 13,40 e 16,75 mL.L
-
¹), extrato de rocoto (Capsicum pubescens
Ruiz & Pav. (Solanaceae), 50 g.L
-
¹) e uma testemunha absoluta.
As aplicações foram feitas aos 80, 90, 100, 110 e 120 dias após o
plantio (das). A dose de 16,75 mL.L
-
¹ foi a mais efetiva, reduzindo a
densidade larval de 3,12 para 0,13 larvas por planta, o percentual de
infestação de 61,12 para 2,78 %, com ecácia de controle de 96,69
%. Concentrações intermediárias (13,40 e 10,05 mL.L
-
¹) também
apresentaram efeitos signicativos, com ecácias nais de 93,83 e
85,19 %, respectivamente. T1 apresentou ecácia moderada (78,30
%), enquanto T5 registrou os menores valores de controle (72,86
%), sendo observadas infestações crescentes na testemunha. Em
termos de produtividade, o T4 (16,75 mL.L
-
¹) produziu espigas
com 16,77 cm de comprimento e 385,13 g de peso médio, atingindo
uma produtividade de 17,12 t.ha
-
¹, contra 9,54 t.ha
-
¹ da testemunha.
Conclui-se que a capsaicina hidrossolúvel, especialmente na dose de
16,75 mL.L
-
¹, demonstrou ser uma alternativa ecaz e sustentável
para o manejo de S. frugiperda na cultura do milho.
Palavras-chave: pimentas, ecácia, bioinseticidas, infestação,
rendimento
Introduction
Spodoptera frugiperda Walker (Lepidoptera: Noctuidae) is a
polyphagous pest that poses the greatest threat to corn crops from
its early stages of growth, causing economic losses of up to 60 % in
tropical and subtropical regions (Lamsal et al., 2020; Clark et al.,
2007). During the larval stage, S. frugiperda feeds voraciously on
leaves and tender shoots, aecting the vegetative development of
corn (Neira and Pérez, 2020; Paredes-Sánchez et al., 2021; Ministry
of Agricultural Development and Irrigation [MIDAGRI], 2020).
Various studies indicate that the incidence and damage caused by the
pest decrease after the stem elongation phase (Montezano et al., 2018;
Du Plessis et al., 2020). According to Du Plessis et al. (2020), its
adaptability to adverse geographical conditions and a wide variety of
plants, including larvae of the same species, increase its devastating
impact on agricultural systems (Du Plessis et al., 2020).
In Peru, the management of S. frugiperda has been hindered by
the excessive and indiscriminate use of chemical insecticides (Van
den Berg & Du Plessis, 2022; Miranda et al., 2021; Kim et al., 2023).
In response to these problems, sustainable alternatives based on
plant-based insecticides have been explored, including compounds
extracted from chili peppers (Capsicum annuum) (Solanaceae),
in particular capsaicin (8-methyl-N-vanillyl-6-nonenamide), an
alkaloid found in the fruit of Capsicum spp. (Ahn et al., 2011;
Ahmed, 2022; Caterina et al., 1997; Aza-González et al., 2011).
It has been documented that capsaicin inhibits oviposition in the
onion y Delia antiqua Meigen (Diptera: Anthomyiidae) (Cowles et
al., 1989) and reduces the feeding of the ladybug Henosepilachna
vigintioctomaculata Motschulsky (Coleoptera: Coccinellidae) (Hori
et al., 2011). In addition, it has larvicidal activity against Anopheles
stephensi Liston (Diptera: Culicidae) and Culex quinquefasciatus
Say (Diptera: Culicidae) (Madhumathy et al., 2007), and larvae of S.
frugiperda (Santoa and Santos, 2024).
Capsaicin acts as an irritant, which induces a repellent response
in insects (Castillo-López et al., 2017; Ahmed, 2022), also minimizes
environmental risks and does not leave toxic residues (Gonçalves et
al., 2021; Cárdenas-De la Peña et al., 2022; Figueroa et al., 2019;
Rakesh et al., 2024).
The objective of this study was to evaluate the ecacy of
capsaicin in the control of S. frugiperda, determining its eectiveness
in reducing larvae and exploring its potential as a sustainable solution
in the phytosanitary control of this pest in corn crops.
Materials and methods
Study area
The study was carried out in the Huánuco region (8°36’25.4’
south latitude; 77°09’15.7’ west longitude, 3,034 m a.s.l.), Peru.
Tropical lower montane dry forest (bs-MBT) (Holdridge, 1987). The
climate is temperate, with temperatures between 17.5 °C and 8.0 °C,
seasonal precipitation, and moderate thermal amplitude (National
Service of Meteorology and Hydrology of Peru [SENAMHI], 2024).
Plant material
The plant material was corn (Zea mays L.) var. Blanco Urubamba,
selected for its wide local adaptability and regional economic value.
Experimental design
A randomized complete block design (RCBD) was used,
consisting of four blocks, six treatments, and three replications. The
plots were 4.50 m x 3.60 m (16.2 m²) with four rows and 10 plants
per row, planted at a distance of 0.90 m between rows and 0.30 m
between plants, as well as 2 m between blocks.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Herrera et al. Rev. Fac. Agron. (LUZ). 2026, 43(1): e264302
3-6 |
This transformation stabilizes the variance and normalizes the
distribution of proportional data, allowing the application of more
robust parametric statistical analyses. The transformed values were
subjected to an analysis of variance (ANOVA) to assess signicant
dierences between treatments. The means were compared using
Tukey’s multiple range test with a signicance level of p<0.05. The
statistical analysis was carried out using the INFOSTAT software
version 2023, which allowed estimating the values of F, coecients
of variation, and contrasts of means with precision.
Results and discussion
Larval density of Spodoptera frugiperda
Before the application of the treatments, an average density of
Spodoptera frugiperda per plant was observed, gures that were
statistically homogeneous in the experimental plot, classied as
moderate infestation level 3 (Davis and Williams, 1992). This
degree of infestation implies a signicant impact on foliage and a
considerable decrease in corn yield.
From the rst application, it was evident that the T4 treatment
reduced the density, followed by T3 and T2 (Table 1). T1 and T5 did
not show statistically signicant dierences between them (p>0.05),
but they did exceed T6, which maintained the highest larval density
with an average of 3.63 larvae per plant during the rst evaluation.
This substance interferes with the sensory systems of insects, causing
loss of appetite or even death, depending on the dose and frequency
of application (Chabaane et al., 2021).
At 90 das, the T4 and T3 treatments showed ecacy, respectively,
with no statistical dierences between the treatments (p≤0.05).
The T2 treatment also showed a considerable reduction, while the
T6 control again recorded the highest value. The decrease in larval
density was conrmed at 100 and 120 das, a moment at which T4,
T2, and T3 treatments achieved the lowest population density of
S. frugiperda. These results demonstrate the sustained ecacy of
capsaicin as an integrated pest management tool, highlighting its
potential to signicantly reduce the presence of S. frugiperda and,
with it, mitigate foliar damage and improve crop yield.
The results obtained support the ecacy of capsaicin in the
control of S. frugiperda, conrming its potential as a phytosanitary
tool in the management of agricultural pests. As pointed out by
Negrete and Morales (2003), this compound has the ability to directly
The treatments consisted of four concentrations of water-soluble
capsaicin (Bioxter®) at doses of 6.70, 10.05, 13.40, and 16.75
mL.L⁻¹; a treatment with rocoto pepper extract (Capsicum pubescens
Ruiz & Pav., Solanaceae) at doses of 50 g.L⁻¹ and an absolute control
(without application).
The applications were carried out with a backpack spray (Jacto
PJH model, Brazil) at constant pressure, at 80, 90, 100, 110, and 120
days after sowing (das) of the corn plants. Capsaicin was applied to
corn buds that had larvae in early stages (L1 to L3), visually identied
by their size (3-15 mm), these being the most susceptible stages of the
insect (Stirle et al., 2024).
Variables evaluated
Larval infestation. It was determined by counting live larvae per
plant. For each evaluation, 10 plants per plot were randomly selected,
which represented 40 plants per treatment, and a total of 240 plants
per evaluation. Larval density. It was obtained by calculating in each
plant and by plot, the proportion of infested plants with respect to the
total evaluated (10 plants), and then the value of the four replicates
per treatment was averaged. Infestation percentage. It was estimated
by calculating the proportion of infested plants with respect to the total
evaluated, according to the equation of Neira and Pérez (2020) (Eq. 1).
(Eq. 1)
Control eciency. It was estimated using the equation of
Henderson and Tilton (1955) (Eq. 2).
(Eq. 2)
Where:
Cd: is the number of insects in the control after treatment, Ta:
is the number of insects in the treatment before treatment, Ca: is
the number of insects in the control before treatment, and Td: is the
number of insects in the treatment after treatment. Crop yield. It was
quantied as a function of the weight of the ears using a digital scale
(Precisur, Truper base 5EA, Peru) and expressed in t.ha
-
¹.
Statistical analysis
The percentage data were transformed using equation 3 (Eq. 3).
(Eq. 3)
Where: y: represents the original percentage value and Y’: the
transformed value.
Infestation (%) =
Number of infested plants
Number of plants evaluated
X 100
Efficacy (%) =
[1-(cdxTa)]
cdxTa
X 100
= arcsin (
( )
Y
100
)
Table 1. Larval population density of Spodoptera frugiperda, average of larvae pre- and post-application of the treatments in corn (Zea
mays L.) var. Blanco Urubamba.
Treatment Pre-application
Average larvae per plant
Days after sowing (das)
80 90 100 110 120
T1 (capsaicin 6.70 mL.L
-1
) 3.17 a 2.41 d 2.31 d 1.78 c 1.64 b 0.82 b
T2 (capsaicin 10.05 mL.L
-1
) 3.12 a 2.09 c 1.97 c 1.46 b 1.19 ab 0.55 ab
T3 (capsaicin 13.40 mL.L
-1
) 3.15 a 1.81 b 1.69 b 1.19 a 1.16 ab 0.23 a
T4 (capsaicin 16.75 mL.L
-1
) 3.12 a 1.43 a 1.32 a 1.01 a 0.66 a 0.13 a
T5 (Rocoto pepper extract) 3.16 a 2.52 d 2.40 d 1.90 c 1.66 b 1.01 b
T6 (Absolute control) 3.13 a 3.63 e 4.13 e 4.66 d 4.43 c 3.75 c
CV (%) 3.01 4.41 4.15 17.94 19.34
Sx: ± 0.03 0.05 0.04 0.16 0.10
p-value 0.000 0.000 0.000 0.000 0.000
Means with a common letter are not dierent, Tukey’s multiple range test (p>0.05).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264302 January-March. ISSN 2477-9409.
4-6 |
aect the nervous system of larvae, generating neurological alterations
that translate into disorientation, decreased appetite, and, consequently,
a drastic reduction in their ability to feed and develop properly. These
physiological alterations signicantly increase the mortality rate of
insects, which favors the population control of pests in a natural and
sustainable way.
Capsaicin represents between 0.1 and 1 % of the weight of the fruit,
a key range for its insecticidal action (Meckelmann et al., 2015; Li et
al., 2019; Salgado-Aristizabal et al., 2024). Its concentration enhances
toxic and repellent eects. In addition, it plays a natural defensive
role in Capsicum plants against herbivores (Ahn et al., 2011). It acts
on TRPV1 receptors in insects, causing irritation and death (Reyes-
Escogido et al., 2011), and can lead to cumulative neurotoxic eects
(Castillo-López et al., 2017).
However, other studies present partially dierent results. For
example, Ahn et al. (2011) found that Helicoverpa assulta, a lepidoptera
specialized in nightshades (Solanaceae), showed physiological
tolerance to capsaicin, indicating that the insecticidal response varies
by species and their level of specialization. This suggests that the high
eect observed in S. frugiperda, a generalist species, is partly due to its
lower adaptive tolerance to secondary metabolites such as capsaicin.
Additionally, these ndings are consistent with the reports of
Figueroa et al. (2019), who used extracts of Capsicum chinense Jacq.
(Solanaceae) and observed a 70 % reduction in S. frugiperda infestation
in corn under tropical conditions. This supports the applicability of the
present study in Andean temperate climates, such as Huánuco, and
expands the evidence of ecacy in various ecosystems.
On the other hand, treatments with rocoto pepper extract (T5),
although less eective than commercial capsaicin formulations,
showed a signicant tendency to reduce infestation. This behavior
can be attributed to the lower concentration and natural variability of
capsaicinoids present in the artisanal extract, as noted by Rakesh et
al. (2024), who showed that the formulation and type of Capsicum
signicantly inuence insecticidal potency.
The larval reduction observed in this study is associated with
higher crop yield, in agreement with Zelaya-Molina et al. (2022),
who linked the use of capsaicin extracts with productive increases in
tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.).
However, factors such as photodegradation, environmental persistence,
and formulation cost should be considered, as suggested by Sánchez-
Alonso et al. (2024), who recommend ecotoxicological studies and
large-scale eld tests.
Despite the typical cannibalism of S. frugiperda in early larval
stages (Chapman et al., 1999; Capinera, 2017), a high larval density
was observed in the absolute control. Montezano et al. (2018) explain
this phenomenon by the staggered oviposition, which generates
overlapping cohorts, delaying the manifestation of cannibalism.
On the other hand, Chapman et al. (1999) pointed out that
cannibalism in S. frugiperda decreases when there is abundant food and
low competition between larvae. Tang et al. (2024) conrmed that this
behavior arises under stress, food scarcity, or connement, conditions that
were absent in the present study, where plots with high leaf availability
were observed, as in the control. In this regard, it has been reported that
capsaicin does not promote cannibalism but acts as a repellent or inhibitor
of food (Reyes-Escogido et al., 2011; Hori et al., 2011).
Therefore, the persistence of the number of larvae in some plots
during the evaluation time does not necessarily imply the absence of
cannibalism, but a balance between the rate of re-infestation (new
ovipositions), the initial density, the action of the bioinsecticide, and
the availability of food, factors that together can explain the observed
dynamics.
Larval incidence of Spodoptera frugiperda
The evaluations before the application of the treatments revealed
that the percentage of infested plants ranged between 58.38 and
63.89 %, which, according to the scale of Davis and Williams
(1992), corresponds to a moderate level of infestation. This degree of
aectation represents a considerable risk to crop yield, thus justifying
the implementation of control measures.
After the rst application of capsaicin-based treatments (80 das), a
notable decrease in the proportion of plants infested by S. frugiperda
larvae was evidenced, especially in the T4 and T3 treatments (Table 2),
which reduced the levels.
The decrease in larval infestation was accentuated from the
third application (100 das), when the T4 treatment reduced the
percentage of infested plants equivalent to a decrease of 68.8 %,
compared to the initial record. In the fourth (110 das) and fth (120
das) application, the decreasing trend was maintained, reaching the
minimum infestation value observed in the entire trial in the last
evaluation: only 2.78 % of the plants presented live larvae under T4
treatment (Table 2), while the absolute control was exceeded by %.
These results conrm the cumulative ecacy of the T4 treatment as
the applications progressed, evidencing its capacity to sustainably
control the S. frugiperda population in the corn crop.
On the other hand, the eects of capsaicin can vary depending on
the species of insect. Ahn et al. (2011) demonstrated that Helicoverpa
Table 2. Average number of infested plants in corn (Zea mays L.) var. Blanco Urubamba, pre- and post-application of the treatments.
Treatment
Infested plants (%)
Days after sowing (das)
80 90 100 110 120
T1 (capsaicin 6.70 mL.L
-1
) 50.00 bc 38.89 bc 27.78 ab 19.44 a 13.89 a
T2 (capsaicin 10.05 mL.L
-1
) 44.44 bc 33.33 abc 22.22 ab 16.67 a 8.33 a
T3 (capsaicin 13.40 mL.L
-1
) 33.33 ab 22.22 ab 16.67 ab 13.89 a 5.56 a
T4 (capsaicin 16.75 mL.L
-1
) 22.22 a 16.67 a 13.89 a 8.33 a 2.78 a
T5 (Rocoto pepper extract) 61.12 c 47.23 cd 33.34 b 22.22 a 16.67 a
T6 (Absolute control) 63.89 c 66.67 d 69.45 c 66.67 b 52.78 b
CV (%) 11.98 15.65 15.48 19.64 20.89
Sx: ± 0.17 0.20 0.21 0.24 0.28
p-value 0.000 0.000 0.000 0.000 0.000
Tukey’s test (p<0.05). Figures with the same letters within the same column are statistically the same.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Herrera et al. Rev. Fac. Agron. (LUZ). 2026, 43(1): e264302
5-6 |
assulta Guenée (Lepidoptera: Noctuidae), a species specic to the
consumption of plants in the family Solanaceae, showed signicant
physiological tolerance to capsaicin, in contrast to generalist insects
such as Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae),
Heliothis virescens Fabricius (Lepidoptera: Noctuidae), Helicoverpa
armigera Hübner (Lepidoptera: Noctuidae), and Helicoverpa zea
Boddie (Lepidoptera: Noctuidae).
In a pioneering study, Helicoverpa assulta in the crop of
nightshades (Solanaceae) exhibited physiological tolerance to
capsaicin: its growth increased with chronic exposures, while in
generalist species such as S. frugiperda, H. virescens, H. armigera,
and H. zea, a reduction in larval growth rate, increased mortality,
and negative eects on digestive indices were observed, such as the
relative consumption rate (RCR), the relative growth rate (RGR),
and the insect conversion eciency (ECI) (Ahn et al., 2011). This
indicates that the insecticidal response of capsaicin is not uniform,
varying according to the metabolic and adaptive capacity of each
species. Research by Zhu et al. (2020) has related these dierences to
the enzymatic activity of detoxication. Helicoverpa assulta Guenée
(Lepidoptera: Noctuidae) showed a greater ability to metabolize
capsaicin and dihydrocapsaicin in tissues such as the midgut and fat
body, while in H. armigera these metabolic pathways were less active.
This supports the hypothesis that specialist insects develop adaptive
mechanisms to tolerate specic compounds from their host plants.
Likewise, recent studies with generalist insects (S. latifascia) fed
diets with dierent levels of capsaicin synthesis reported clear adverse
eects (Chabaane et al., 2021). This rearms that, in generalist
species, capsaicin is a phytosanitary agent with high ecacy.
Ecacy of control of Spodoptera frugiperda larvae
The control ecacy of each treatment was estimated using the
formula proposed by Henderson and Tilton (1955), which allows
comparing the population dynamics between treatments and absolute
control, correcting for possible natural variations. The T4 treatment
was the most ecient, followed by T3 and T2 treatments (p<0.05)
(Table 3). The reduction of S. frugiperda larvae observed after the
application of capsaicin as a treatment could be due to its action as
a toxic and repellent agent (Ileer et al., 2022), this shows that the
ability of capsaicin to modulate the activity of the larval nervous
system constitutes a relevant mechanism of action, which supports
its potential application as a bioactive agent in integrated pest
management strategies.
Corn yield
The yield of the corn crop showed statistically signicant
dierences (p<0.05) between treatments (Table 4), with an increasing
trend associated with capsaicin concentration. The T4 treatment
achieved the highest yield. The T4, T3, and T2 treatments formed
a statistically dierent group compared to the T6, while T1 and T5
showed intermediate yields.
The T3 and T4 treatments caused a notable decrease in the levels
of S. frugiperda infestation. These ndings coincide with those
obtained by Zelaya-Molina et al. (2022), who showed that capsaicin
signicantly reduces infestation in tomato (S. lycopersicum) and
cucumber (C. sativus) crops.
Table 4. Average yield of corn crop (Z. mays) var. Blanco
Urubamba (t.ha⁻¹) under dierent capsaicin treatments.
Treatments Yield (t.ha
⁻¹
)
T1 (Capsaicin, 6.70 mL.L
⁻¹
) 11.56 ± 0.11 bc
T2 (Capsaicin, 10.05 mL.L
⁻¹
) 12.04 ± 0.14 ab
T3 (Capsaicin, 13.40 mL.L
⁻¹
) 14.09 ± 0.12 ab
T4 (Capsaicin, 16.75 mL.L
⁻¹
) 17.12 ± 0.15 a
T5 (Rocoto pepper extract) 11.43 ± 0.09 bc
T6 (Absolute control) 9.31 ± 0.12 c
C.V. (%): 3.28; p-value <0.05. Same letters indicate treatments without statistically signicant
dierences, according to Tukey at 5 %.
In turn, these results are supported by what was stated by Sinha
et al. (2011), who pointed out that capsaicin eliminates various
invertebrates.
After the rst application (80 das), a signicant increase in
the ecacy of T4 treatment for controlling S. frugiperda larvae
was observed. The dierences found could be associated with
environmental factors, which, according to Zelaya-Molina et al.
(2022), directly inuence the ability of S. frugiperda to cause
damage to corn crops. Similarly, Cabrera et al. (2016) reported that
formulations of natural origin helped to reduce the incidence of the
green leafhopper (Empoasca kraemeri, Ross, and Moore).
Conclusions
The application of water-soluble capsaicin proved to be highly
eective in the control of Spodoptera frugiperda in corn (Zea mays
L.) var. Blanco Urubamba, highlighting the dose of 16.75 mL.L
for
Table 3. Ecacy in the control of Spodoptera frugiperda larvae in corn (Zea mays L.) var. Blanco Urubamba, post-application of the
treatments.
Treatment
Ecacy in the control of Spodoptera frugiperda larvae (%)
Days after sowing (das)
80 90 100 110 120
T1 (capsaicin 6.70 mL.L
-1
) 33.58 d 44.13 d 61.77 d 62.78 b 78.30 bc
T2 (capsaicin 10.05 mL.L
-1
) 42.58 c 52.43 c 68.62 c 72.91 ab 85.19 abc
T3 (capsaicin 13.40 mL.L
-1
) 50.06 b 59.02 b 74.56 b 73.97 ab 93.83 ab
T4 (capsaicin 16.75 mL.L
-1
) 60.57 a 68.21 a 78.32 a 85.21 a 96.69 a
T5 (Rocoto pepper extract) 30.67 d 41.92 d 59.29 d 62.51 b 72.86 bc
CV (%) 3.05 3.42 3.78 12.32 11.42
Sx: ± 0.11 0.10 0.08 0.16 0.21
p-value 0.003 0.003 0.003 0.003 0.003
Means with a common letter are not dierent (p>0.05).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264302 January-March. ISSN 2477-9409.
6-6 |
its ability to reduce larval density and infestation, which resulted
in a signicant increase in yield. These results show its potential
as a sustainable alternative to conventional chemical insecticides,
providing both agronomic and environmental benets.
Literature cited
Ahmed, Q. (2022). Evaluation of tea tree extract formulation for the control of the
cotton aphid, Aphis gossypii (Homoptera: Aphididae) on Capsicum annuum
in the glasshouse. Journal of Biopesticides, 15(1), 31-38. https://doi.
org/10.57182/jbiopestic.15.1.31-38
Ahn, S., Badenes-Pérez, F., & Heckel, D. (2011). A host-plant specialist, Helicoverpa
assulta, is more tolerant to capsaicin from Capsicum annuum than other
noctuid species. Journal of Insect Physiology, 57(9), 1212-1219. https://doi.
org/10.1016/j.jinsphys.2011.05.015
Aza-González, C., Núñez-Palenius, H., & Ochoa-Alejo, N. (2011). Molecular biology
of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell
Reports, 30, 695-706. https://link.springer.com/article/10.1007/s00299-010-
0968-8
Cabrera Verdezoto, R., Morán Morán, J., Mora Velasquez, B., Molina Triviño, H.,
Moncayo Carreño, O., Díaz Ocampo, E., & Cabrera Verdesoto, C. (2016).
Evaluación de dos insecticidas naturales y un químico en el control de plagas
en el cultivo de frejol en el litoral ecuatoriano. Idesia (Arica), 34(5), 27-35.
http://dx.doi.org/10.4067/S0718-34292016005000025
Capinera, J. L. (2017). Encyclopedia of entomology. Springer.
Cárdenas-De la Peña, A., Muñoz-MadridAlba, A., Montero-Solís, F., & Hernández-
Arzaba, J. (2022). Factibilidad económica de biopreparados: Una
alternativa en la producción de hortalizas en Valle de Santiago, Guanajuato,
México. Agro-Divulgación, 2(4), 49-51. https://agrodivulgacion-colpos.org/
index.php/1agrodivulgacion1/article/view/92
Castillo-López, I., Rodríguez-Africano, P., Montes-Pérez, R., & González-Valderrama,
D. (2017). Fauna silvestre que afecta los cultivos en Boyacá y control del
daño a cultivos de maíz. Ciencia y Agricultura, 14(1), 75-84. https://doi.
org/10.19053/01228420.v14.n1.2017.6090
Caterina, M., Schumacher, M., Tominaga, M., Rosen, T., Levine, J., & Julius,
D. (1997). The capsaicin receptor: a heat-activated ion channel in the
pain pathway. Nature, 389(6653), 816-824. https://www.nature.com/
articles/39807
Chabaane, Y., Arce, C., Glauser, G., & Benrey, B. (2021). Altered capsaicin levels in
domesticated chili pepper varieties aect the interaction between a generalist
herbivore and its ectoparasitoid. Journal of Pest Science, 95, 735-747. https://
doi.org/10.1007/s10340-021-01399-8
Chapman, J., Williams, T., Martínez, A., Cisneros, J., Caballero, P., Cave, R.,
& Goulson, D. (1999). Does cannibalism in Spodoptera frugiperda
(Lepidoptera: Noctuidae) reduce the risk of Bt resistance? Journal of
Economic Entomology, 92(4), 935-940. https://doi.org/10.1093/jee/92.4.935
Clark, P., Molina-Ochoa, J., Martinelli, S., Skoda, S., Isenhour, D., Lee, D., Krumm,
J., & Foster, J. (2007). Population variation of the fall armyworm, Spodoptera
frugiperda, in the Western Hemisphere. Journal of Insect Science, 7(1), 5.
https://doi.org/10.1673/031.007.0501
Cowles, R., Keller, J., & Miller, J. (1989). Pungent spices, ground red pepper, and
synthetic capsaicin as onion y ovipositional deterrents. Journal of Chemical
Ecology, 15, 719-730. https://link.springer.com/article/10.1007/bf01014714
Davis, F., Ng, S., & Williams, W. (1992). Visual rating scales for screening whorl-
stage corn for resistance to fall armyworm. Mississippi Agricultural and
Forestry Experiment Station. Technical Bulletin, 186, 1-9.
Du Plessis, H., Schlemmer, M., & Van den Berg, J. (2020). The eect of
temperature on the development of Spodoptera frugiperda (Lepidoptera:
Noctuidae). Insects, 11(4), 228. https://doi.org/10.3390/insects11040228
Figueroa Gualteros, A., Castro Triviño, E., & Castro Salazar, H. (2019). Efecto
bioplaguicida de extractos vegetales para el control de Spodoptera frugiperda
en el cultivo de maíz (Zea mays). Acta Biológica Colombiana, 24(1), 58-66.
https://doi.org/10.15446/abc.v24n1.69333
Gonçalves, G., Lira, S., GlSSI, D., & Vendramim, J. (2021). Bioactivity of extracts from
solanaceae against Zabrotes subfasciatus. Acta Biológica Colombiana, 26(1),
62-71. https://doi.org/10.15446/abc.v26n1.84712
Henderson, F., & Tilton, W. (1955). Tests with acaricides against the brown wheat
mite 12. Journal of Economic Entomology, 48(2), 157-161. https://doi.
org/10.1093/jee/48.2.157
Holdridge, L. (1987). Ecología basada en zonas de vida. Agroamerica.
Hori, M., Nakamura, H., Fujii, Y., Suzuki, Y., & Matsuda, K. (2011). Chemicals
aecting the feeding preference of the Solanaceae‐feeding lady beetle
Henosepilachna vigintioctomaculata (Coleoptera: Coccinellidae). Journal
of Applied Entomology, 135(1‐2), 121-131. https://doi.org/10.1111/j.1439-
0418.2010.01519.x
Ileer, V., Peralta, J., Palacios, C., & Burgos, A. (2022). Bioinsecticidas elaborados con
extractos botánicos utilizados contra Spodoptera spp. en el cultivo de sandía
(Citrullus lanatus T.) en Los Ríos-Ecuador. Uniciencia, 36(1), 659-669.
http://doi.org/10.15359/ru.36-1.42
Kim, S., Boo, K., Na, Y., & Tak, J. (2023). Screening of insecticidal activity of plant
essential oils and extract-based formulations against four agricultural insect
pests and their risk assessment. Journal of Asia-Pacic Entomology, 26(4),
102127. https://doi.org/10.1016/j.aspen.2023.102127
Lamsal, S., Sibi, S., & Yadav, S. (2020). Fall armyworm in South Asia: Threats
and management. Asian Journal of Advances in Agricultural Research,
13(3), 21–34. https://doi.org/10.9734/ajaar/2020/v13i330106
Li, B., Yang, M., Shi, R., & Ye, M. (2019). Insecticidal activity of natural
capsaicinoids against several agricultural insects. Natural Product
Communications, 14(7). https://doi.org/10.1177/1934578X19862695
Madhumathy, A., Aivazi, A., & Vijayan, V. (2007). Larvicidal ecacy of Capsicum
annum against Anopheles stephensi and Culex quinquefasciatus. Journal
of Vector Borne Diseases, 44(3), 223-226. PMID: 17896626.
Meckelmann, S., Jansen, C., Riegel, D., van Zonneveld, M., Ríos, L., Peña, K.,
Mueller-Seitz, E., & Petz, M. (2015). Phytochemicals in native Peruvian
Capsicum pubescens (Rocoto). European Food Research and Technology,
241(6), 817-825. https://doi.org/10.1007/s00217-015-2506-y
Ministerio de Desarrollo Agrario y Riego. (2020). Anuario estadísticas de la
producción agrícola y ganadera. Lima, Perú, Dirección de Estadística
Agraria. http://frenteweb.minagri.gob.pe/sisca/?mod=consultacult
Miranda, A., Espejo, Y., Salas, J., Gonzales, H., Aguilera, J., & Martínez, L.
(2021). Bioplaguicidas: Mecanismos de acción biocida en insectos
plaga. Research, Society and Development, 10(7), e42010716893. https://
doi.org/10.33448/rsd-v10i7.16893
Montezano, D., Sosa-Gómez, D., Specht, A., Roque-Specht, V., Sousa-Silva, J.,
Paula-Moraes, S., Peterson, J., & Hunt, T. (2018). Host plants of Spodoptera
frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology,
26(2), 286-300. https://hdl.handle.net/10520/EJC-112bc26060
Negrete, F., & Morales, J. (2003). El gusano cogollero del maíz: (Spodoptera
frugiperda. Smith): Manejo del gusano cogollero del maíz utilizando
extractos de plantas. Corpoica. http://hdl.handle.net/20.500.12324/2220
Neira, M., & Pérez, E. (2020). Manejo ecológico para el control de Spodoptera
frugiperda en el cultivo de maíz amarillo duro en las regiones de
Lambayeque y La Libertad. Instituto Nacional de Innovación Agraria -
INIA. https://repositorio.inia.gob.pe/handle/20.500.12955/1148
Paredes-Sánchez, F., Rivera, G., Bocanegra-García, V., Martínez-Padrón,
H., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V.
(2021). Avances en estrategias de control contra Spodoptera frugiperda.
Una revisión. Moléculas, 26(18), 5587. https://doi.org/10.3390/
molecules26185587
Rakesh, V., Patgiri, P., Borah, A., Nandhini, D., & Gogoi, I. (2024). Comparative
study on the repellency and chemical proles of dierent chilli peppers
formulations against Sitophilus oryzae (L.) (Coleoptera: Curculionidae)
in stored wheat. Journal of Stored Products Research, 106, 102312.
https://doi.org/10.1016/j.jspr.2024.102312
Reyes-Escogido, M., Gonzalez-Mondragon, E., & Vazquez-Tzompantzi, E. (2011).
Chemical and pharmacological aspects of capsaicin. Molecules, 16(2),
1253-1270. https://doi.org/10.3390/molecules16021253
Salgado-Aristizabal, N., Galvis-Nieto, J., Narvaez-Perez, J., Jurado-Erazo,
D., Rodríguez, L., & Orrego, C. (2024). Evaluation of a sustainable
production of encapsulated chili pepper powder (Capsicum pubescens)
through convective and vacuum drying. Processes, 12(10), 2154. https://
doi.org/10.3390/pr12102154
Sánchez-Alonso, I., Fonseca-González, A., Olmedo-Juárez, A., Olivares-Pérez,
J., González-Cortazar, M., Monteon-Ojeda, A., & Rojas Hernández, S.
(2024). Insecticidal activity of two organic extracts from Libidibia coriaria
(Jacq.) Schltdl. fruits against Spodoptera frugiperda JE Smith. Natural
Product Research, 1-7. https://doi.org/10.1080/14786419.2024.2368274
Santoa, L., & Santos, L. (2024). Eect of Capsicum chinense as a botanical
insecticide on the mortality of Spodoptera frugiperda (J.E. Smith)
(Lepidoptera: Noctuidae) in soybeans. Contribuciones a las Ciencias
Sociales, 17(13), e13891. https://doi.org/10.55905/revconv.17n.13-370
Servicio Nacional de Meteorología e Hidrología del Perú. (2024). Datos
climáticos históricos de la región Huánuco 1991-2020. Plataforma de
Datos Climáticos. https://www.senamhi.gob.pe
Sinha, R., Shaham, Y., & Heilig, M. (2011). Translational and reverse
translational research on the role of stress in drug craving and
relapse. Psychopharmacology, 218, 69-82. https://link.springer.com/
article/10.1007/s00213-011-2263-y
Stirle, J., Matias, J., Mendes, G., Moscardini, V., Maia, J., Michaud, J., &
Gontijo, P. (2024). Dierential susceptibility of Spodoptera frugiperda
(Lepidoptera: Noctuidae) to single versus pyramided Bt traits in Brazilian
soybean: what doesn’t kill you makes you stronger?. Pest Management
Science, 80(12), 6535-6544. https://doi.org/10.1002/ps.8391
Tang, X., Lyu, B., Lu, H., Tang, J., & Zhang, Y. (2024). Eects of cannibalism
on the growth and development of Spodoptera frugiperda (Lepidoptera:
Noctuidae). International Journal of Pest Management, 70(4), 1423-
1433. https://doi.org/10.1080/09670874.2022.2140856
Van den Berg, J., & du Plessis, H. (2022). Chemical control and insecticide resistance
in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic
Entomology, 115(6), 1761-1771. https://doi.org/10.1093/jee/toac108
Zelaya-Molina, L., Chávez-Díaz, I., De los Santos-Villalobos, S., Cruz-Cárdenas,
C., Ruíz-Ramírez, S., & Rojas-Anaya, E. (2022). Control biológico
de plagas en la agricultura mexicana. Revista Mexicana de Ciencias
Agrícolas, 13(SPE27), 69-79. https://doi.org/10.29312/remexca.
v13i27.3251
Zhu, J., Tian, K., Reilly, C., & Qiu, X. (2020). Capsaicinoid metabolism by the
generalist Helicoverpa armigera and specialist H. assulta: Species and
tissue dierences. Pesticide Biochemistry and Physiology, 163, 164-174.
https://doi.org/10.1016/j.pestbp.2019.11.013