
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254258 October-December. ISSN 2477-9409.
6-7 |
If conrmed in the eld, T. harzianum could complement or
replace chemical fungicides for controlling B. cinerea, thereby
reducing the environmental impact of chemical treatments. Its
adaptability to diverse environments and broad antagonistic activity
against plant pathogens also make it an attractive candidate for
biological control programs, including in Algeria, where local isolates
have shownpromising eects.
Table 4. Comparative analysis of the impacts of Trichoderma
harzianum based treatments on leaf health, vine height
growth, and disease incidence in grapevine plants
infected with Botrytis cinerea (BC3) (T5: Trichoderma
harzianum).
Treatments
Number of
healthy leaves
Number of
infected leaves
Height (cm)
Disease
Incidence
(%)
Control 180±0 11±0b 60±0a 5.75
Vine +BC3 13±2c 34±4.58a 50.67±5.86c 96
Vine +
T5+BC3
109.67±9.50b 30.33±0.58a 65.00±3.00b 42
Vine + T5 198.33±10.41a 3±0b 96.00±3.61a 1.49
ANOVA and the Tukey test (p<0.05) were used to establish statistical signicance. The data
displayed (mean ± standard deviation) with dierent letters.
Figure 2. In vivo evaluation of Trichoderma harzianum (T5)
against Botrytis cinerea (BC3) under eld conditions.
(a) Control (no treatment), (b) Grapevine + BC3, (c)
Grapevine + BC3 + T5, (d) Grapevine + T5 only.
Literature cited
Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T.,
Gbadegesin, L. A., Omole, R. K., Johnson R. M., Uthman Q. O &
Babalola, O. O. (2023). Biopesticides as a promising alternative to
synthetic pesticides: A case for microbial pesticides, phytopesticides, and
nanobiopesticides. Frontiers in Microbiology, 14, 1040901. https://doi.
org/10.3389/fmicb.2023.1040901
Bekkar, A. A., Belabid, L., & Zaim, S. (2016). Biocontrol of phytopathogenic
Fusarium spp. by antagonistic Trichoderma. Biopesticides International,
12(1), 37-45. https://connectjournals.com/pages/articledetails/toc025433
Bendahmane, B. S., Mahiout, D., Benzohra, I. E., & Benkada, M. Y. (2012).
Antagonism of three Trichoderma species against Botrytis fabae and B.
cinerea, the causal agents of chocolate spot of faba bean (Vicia faba L.)
in Algeria. World Applied Sciences Journal, 17(3), 278-283. http://idosi.
org/wasj/wasj17(3)12/2.pdf
Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for
speciation studies in lamentous ascomycetes. Mycologia, 91(3), 553-
556. https://doi.org/10.1080/00275514.1999.12061051
Dos Santos Castro, L., Antoniêto, A. C. C., Pedersoli, W. R., Silva-Rocha, R.,
Persinoti, G. F., & Silva, R. N. (2014). Expression pattern of cellulolytic
and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1
are aected by carbon source in Trichoderma reesei. Gene Expression
Patterns, 14(2), 88-95. https://doi.org/10.1016/j.gep.2014.01.003
Druzhinina, I. S., Kopchinskiy, A. G., Komoń, M., Bissett, J., Szakacs, G.,
& Kubicek, C. P. (2010). An oligonucleotide barcode for species
identication in Trichoderma and Hypocrea. Fungal Genetics and
Biology, 47(4), 385-392. https://doi.org/10.1016/j.fgb.2005.06.007
Gorman, Z., Chen, J., de Leon, A. A. P., & Wallis, C. M. (2023). Comparison
of assembly platforms for the assembly of the nuclear genome of
Trichoderma harzianum strain PAR3. BMC genomics, 24(1), 454. https://
doi.org/10.1186/s12864-023-09544-6
Harman, G. E., Howell C. R., Viterbo A., Chet I. & Lorito, M. (2004). Trichoderma
species-opportunistic, avirulent plant symbionts. Nature Reviews
Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797
Harman, G. E., Doni, F., Khadka, R. B., & Upho, N. (2021). Endophytic strains
of Trichoderma increase plants’ photosynthetic capability. Journal
of Applied Microbiology, 130(2), 529-546. https://doi.org/10.1111/
jam.14368
International Organisation of Vine and Wine (OIV). (2022). State of the world
vine and wine sector in 2023. OIV. https://www.oiv.int/sites/default/les/
documents/OIV_Annual_Assessment-2023.pdf
Khan, R. A. A., Najeeb, S., Hussain, S., Xie, B., & Li, Y. (2020). Bioactive
secondary metabolites from Trichoderma spp. against phytopathogenic
fungi. Microorganisms, 8(6), 817. https://doi.org/10.3390/
microorganisms8060817
Kouadri, M. E. A., Bekkar, A. A., & Zaim, S. (2023a). First report of
using Trichoderma -longibrachiatum as a biocontrol agent against
Macrophomina pseudophaseolina causing charcoal rot disease of lentil in
Algeria. Egyptian Journal of Biological Pest Control, 33(1), 38. https://
doi.org/10.1186/s41938-023-00683-2
Kouadri, M. E. A., Bekkar, A. A., & Zaim, S. (2023b). Morphological, molecular
and pathogenic characterization of Macrophomina pseudophaseolina, the
causal agent of charcoal rot disease on lentil (Lens culinaris) in Algeria.
Physiological and Molecular Plant Pathology, 128, 102143. https://doi.
org/10.1016/j.pmpp.2023.102143
Kthiri, Z., Jabeur, M. B., Machraoui, M., Gargouri, S., Hiba, K., & Hamada, W.
(2020). Coating seeds with Trichoderma strains promotes plant growth
and enhances systemic resistance against Fusarium crown rot in durum
wheat. Egyptian Journal of Biological Pest Control, 30, 139. https://doi.
org/10.1186/s41938-020-00338-6
Kuzmanovska, B., Rusevski, R., Jankulovska, M., & Oreshkovikj, K. B. (2018).
Antagonistic activity of Trichoderma asperellum and Trichoderma
harzianum against genetically diverse Botrytis cinerea isolates. Chilean
Journal of Agricultural Research, 78(3), 391-399. http://dx.doi.
org/10.4067/S0718-58392018000300391
Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual.
Blackwell Publishing / WileyBlackwell. ISBN 9780813819198. https://
doi.org/10.1002/9780470278376
Lian, J., Han, H., Zhao, J., & Li, C. (2018). In-vitro and in-planta Botrytis cinerea
inoculation assays for tomato. Bio-protocol, 8(8), e2810. https://doi.
org/10.21769/BioProtoc.2810
Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational
research on Trichoderma: From ‘omics to the eld. Annual Review
of Phytopathology, 48(1), 395-417. https://doi.org/10.1146/annurev-
phyto-073009-114314
Maruyama, C. R., Bilesky-José, N., de Lima, R., & Fraceto, L. F. (2020).
Encapsulation of Trichoderma harzianum preserves enzymatic activity and
enhances the potential for biological control. Frontiers in Bioengineering
and Biotechnology, 8, 225. https://doi.org/10.3389/fbioe.2020.00225
Conclusion
Trichoderma harzianum isolate T5 showed strong antifungal
activity against Botrytis cinerea, reducing mycelial growth by 80.5 %
in vitro and disease symptoms by 56.25 % in vivo. Its biocontrol eect
is based on mycoparasitism and antifungal metabolite production,
which also promote grapevine growth. As the rst report of such an
isolate in Algerian vineyards, this study highlights its dual benet for
plant health and pathogen control. T5 holds promise for integration
into eco-friendly IPM programs in viticulture, pending validation
through eld trials.